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Required Hacker 
Skill Level 

Open Platforms Pose an Opportunity & a Risk  

� Ongoing trend towards openness (even TVs and STBs)  
� Open devices/platforms attract more developers and consumers 
� Unfortunately, they decrease the required hacker skill level  
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Crypto Assumption
Cryptographic Assumption and Traditional Attacks   

   

Bob 

Black Box Attacks or Grey Box Attacks 

Alice 

Software Software 

Network 

Trusted Inside Black Box 
• Alice and Bob each have exclusive 
control over their own computers 
• No information leaves from or store 
into their computers without their 
approval 
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Man-In-The-Middle Attack  
(Indirect, side-channel) 

Perimeter     Defenses 



White-Box AttacksWhite-Box Attacks 
   

Bob is the Attacker 

Software 
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Network 

Alice 

Software 

Man-At-The-End  
Attack 

� Device and environment are un-
trusted 

� Attacker has direct access to the 
machine and software no matter 
whether  it’s  running  or  not 

Attackers have open-end powers to do  
� Trace every program instruction 
� View the contents of memory and cache 
� Stop execution at any point and run an off-line process 
� Alter code or memory at will 
� Do all of this for as long as they want, whenever they want, 

in collusion with as many other attackers as they can find 

Attacking has much less 
limitation than protection 



Just Like in Museums



The state of the art
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Black-Box Security: Formal Definition

A nondeterministic algorithm O is a TM obfuscator if three
following conditions hold:
➯ (functionality) For every TM M, the string O(M)

describes the same function as M.
➯ (polynomial slowdown) The description length and

running time of O(M) are at most polynomially larger
than that of M.

➯ (“virtual black box” property) For any PPT A, there is
a PPT S and a negligible function ↵ such that for all
TMs M

���Pr [A(O(M)) = 1]� Pr [SM(1|M|) = 1]
���  ↵(|M|).

“Anything that can 
be learned from the 
obfuscated form, 
could have been 
learned by merely 
observing the 
program’s input-
output behavior 
(i.e., by treating the 
program as a 
black-box)’’

Attack

Simulator

Obfuscation
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Black-Box Security: Formal Definition

A nondeterministic algorithm O is a TM obfuscator if three
following conditions hold:
➯ (functionality) For every TM M, the string O(M)

describes the same function as M.
➯ (polynomial slowdown) The description length and

running time of O(M) are at most polynomially larger
than that of M.

➯ (“virtual black box” property) For any PPT A, there is
a PPT S and a negligible function ↵ such that for all
TMs M

���Pr [A(O(M)) = 1]� Pr [SM(1|M|) = 1]
���  ↵(|M|).

“Anything that can 
be learned from the 
obfuscated form, 
could have been 
learned by merely 
observing the 
program’s input-
output behavior 
(i.e., by treating the 
program as a 
black-box)’’

Attack

Simulator
Barak’s et al.  JACM 2012



What exactly do we mean when we say that we have obfuscated a program?

1. Program obfuscation re-cast as a 
rigorous mathematical science 

2. The adversary can have full knowledge 
of the obfuscating theory but still 
cannot de-obfuscate 
!

Garg, Gentry, Halevy, Raykova, Sahai, Waters, 
2013 “Candidate Indistinguishability 
Obfuscation and Functional Encryption for All 
Circuits”.

Security through obscurity

ObfuscationProgram Source 

Code
Obfuscated 
Program

Obfuscation

Indistinguishability:!
If P and Q compute the 

same function 
then O(P) ≈ O(Q) 

Hard



The valueValue of Software Protection 

Secured Input 
Authentication, validation, 
integrity, confidentiality of 

input data 

Secured Output 
Authentication, validation, 

integrity, confidentiality 
of output data 

Hide Algorithms 
& Computations 

Hide Internal 
Data 

Including internally 
initialized data  

Tamper 
Resistance 

Makes it hard to modify 
the  code’s  data  and  

control flow 

Tamper 
Detection 

Damage 
Mitigation 

34 

Anti 
Bug



A different view from PL…



  

Attack Effectiveness 

� Input / output 

Black-box 

� Timing analysis 
� Power analysis 
� Fault injection 

Grey Box 

White-box � Debuggers 
� Emulators 
� Other attack tools 
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White-Box Cryptography:  
Security Intent - Require WB Cryptography 

More Concrete

Input/output	


abstraction



Obfuscation

PROTECTION BY OBSCURITY: CODE OBFUSCATION
O : P → P is a code obfuscator if it is an obfuscating compiler:

➪
It is potent: O(P) is more complex (ideally unintelligible) than P ;

➪
It preserves the observational behaviour of programs !O(P)" = !P"
[C. Collberg et al. ’97, ’98]

Input

Output

τ

P → τ!P"

Input

Output
c⃝Giaco – Rennes 2012 – p.7/63



PROTECTION BY OBSCURITY: CODE OBFUSCATION
O : P → P is a code obfuscator if it is an obfuscating compiler:

➪
It is potent: O(P) is more complex (ideally unintelligible) than P ;

➪
It preserves the observational behaviour of programs !O(P)" = !P"
[C. Collberg et al. ’97, ’98]

Input

Output

τ

P → τ!P"

Input

Output
c⃝Giaco – Rennes 2012 – p.7/63IN PRACTICE

(Pseudo-)Code:
mov eax, [edx+0Ch]
push ebx
push [eax]
call ReleaseLock

Obfuscated code (junk + reordering):
mov eax, [edx+0Ch]
jmp +3
push ebx
dec eax
jmp +4
inc eax
jmp -3
call ReleaseLock
jmp +2
push [eax]
jmp -2

c⃝Giaco – Cagliari 2012 – p.5/50

IN PRACTICE

(Pseudo-)Code:
mov eax, [edx+0Ch]
push ebx
push [eax]
call ReleaseLock

Obfuscated code (junk + reordering):
mov eax, [edx+0Ch]
jmp +3
push ebx
dec eax
jmp +4
inc eax
jmp -3
call ReleaseLock
jmp +2
push [eax]
jmp -2

c⃝Giaco – Cagliari 2012 – p.5/50

CODE PROTECTION BY OBFUSCATION
O : P → P is a code obfuscator if it is an obfuscating compiler:

➪
It is potent: O(P) is more complex (ideally unintelligible) than P ;

➪
It preserves the observational behaviour of programs !O(P)" = !P"
[C. Collberg et al. ’97, ’98]

Input

Output

τ

P → τ!P"

Input

Output
c⃝Giaco – Cagliari 2012 – p.4/50

Obfuscation as compilation



Abstraction

Interpretation
Abstract Interpretation is a general theory for approximating the semantics of dynamic systems  

(Cousot & Cousot 1977)

Computing means Interpreting

For large/real programs control/data flow 
is too complex for being understandable by humans: 

!
Reverse Engineering needs abstraction!!

Reverse Engineering needs automated tools!  



P

We can quantify the security achieved by looking at proof complexity!
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Reverse Engineering is Interpreting
Each tool is an 
Abstract Interpretation



O(P)

Removing noise means refining abstractions / complicating proofs! (Giacobazzi et al 2000 / 2012)
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Protecting is obscuring Interpretation
Transform code to 
make all tools blind
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...the ingredients?



A Model

x(t)

t

Too complicated, complex, undecidable

Bad State

No bug!



x(t)

t

To understand code we need abstraction: simpler and computable

Abstraction



x(t)

t

Abstraction ➟ (sound) loss of precision	



Abstraction



x(t)

t

Computable 	


Abstraction ➟ (sound) loss of precision

Bad State

No bug!

Abstraction



x(t)

t

Abstraction ➟ (sound) loss of precision	


Incompleteness

≠

Completeness

Bad State

False!
Alarms



x(t)

t

Abstraction ➟ False alarms	


Incompleteness

≠ Error

Completeness

Bad State



COMPLETENESS

x

f

⊤ ⊤

⊥ ⊥

ρ
η

COMPLETENESS: η◦f ◦ρ = η◦f

c⃝Giaco – London 2012 – p.19/31

BackwardCompleteness



COMPLETENESS

x

f

⊤ ⊤

⊥ ⊥

ρ
η

IN-COMPLETENESS: η◦f ◦ρ ≥ η◦f

c⃝Giaco – London 2012 – p.19/31

Backward(in)Completeness

Error



COMPLETENESS

x

f

⊤ ⊤

⊥ ⊥

ρ
η

Making ABSTRACTIONS COMPLETE: Refining input domains
[Giacobazzi et al. JACM’00]

c⃝Giaco – London 2012 – p.19/31

BackwardMaking Completeness

Refining



COMPLETENESS

x

f

⊤ ⊤

⊥ ⊥

ρ
η

Making ABSTRACTIONS COMPLETE: Simplifying output domains
[Giacobazzi et al. JACM’00]

c⃝Giaco – London 2012 – p.19/31

BackwardMaking Completeness

Simplifying



A CLASSICAL EXAMPLE

A SIMPLE EXAMPLE IN INTERVAL ANALYSIS

Z

[0,+∞]

[0, 10]

[0, 2]

[0, 0]

[−∞, 0]

➪
A simple domain of intervals

➪
sq(X ) =

{
x2

∣

∣

∣ x ∈ X
}

➪
{Z, [0,+∞], [0, 10]} is Forward but
not Backward complete

c⃝Giaco – Cagliari 2012 – p.26/50

�x.g(f(x)) and f(S) =

�

f(s)
�

� s 2 S
 ✓ T . Functions

ordered point-wise give rise to a lattice, namely f, g : L�!D are
such that f v g if for any x 2 L : f(x) 

D

g(x). We denote with
t and u the lub and glb of functions. f : L�!D on complete
lattices is additive (co-additive) if for any Y ✓ L, f(_

L

Y ) =

_
D

f(Y ) (f(^
L

Y ) = ^
D

f(Y )). A function f is continuous
when it preserves lubs’s of chains. Co-continuity is dually defined.
For a continuous function f : lfp(f) =

V

�

x
�

� x = f(x)
 

=

W

n2N f
n

(?) where f0
(?) = ? and fn+1

(?) = f(fn

(?)). The
gfp is dually defined for co-continuous functions.

Abstract interpretation. It is known that abstract domains can be
equivalently specified as Galois connections or closure operators
on complete lettices (cf. [5]). Let C and A be complete lattices, a
pair of monotone functions ↵ : C�!A and � : A�!C forms a
Galois connection (GC) between C and A if for every x 2 C and
y 2 A we have ↵(x) 

A

y , x 
C

�(y). ↵ (resp. �) is the left-
adjoint (resp. right-adjoint) to � (resp. ↵) and it is additive (resp.
co-additive). Given an additive (resp. co-additive) function ↵ (resp.
�) we have a GC h↵,↵+i (resp. h��, �i) by considering its right
(resp. left) adjoint ↵+

= �x.
W{y | ↵(y)  x} (resp. ��

=

�x.
V{y | x  �(y)}). An upper closure operator (or simply a

closure) on a complete lattice hC,i is an operator � : C�!C

which is monotone, idempotent, and extensive (i.e., x  �(x)).
We denote with uco(C) the set of all closure operators on the poset
L. If h↵, �i is a GC between C and A then � � ↵ 2 uco(C).
If ↵ 2 uco(C) then h↵, idi is a GC between C and ↵(C).
In this case huco(C),v,t,u,�x.C, idi forms itself a complete
lattice [23], which is isomorphic, up to representation of abstract
elements, to the set of all possible abstractions Abs(C) of C, i.e.,
Abs(C)

⇠
=

uco(C). Because of this, in the following we will
always identify an abstract domain A 2 Abs(C) with its (unique)
associated closure operator ↵ 2 uco(C) such that ↵(C) = A.
In the following we will used both Abs(C) and uco(C) in order
to distinguish respectively the use of closures as abstract domains
and as abstraction functions. Recall that the set of fix-points A of
a closure ↵ is always a Moore family, A = M(A)

def
= {^S | S ✓

A}. Therefore ^? = > 2 A. Here the bottom element is id =

�x.x, the top is �x.>
C

and for every ↵,� 2 uco(C): ↵ is more
concrete than � iff ↵ v � iff for each y 2 C. ↵(y)  �(y) iff
�(C) ✓ ↵(C), (u

i2I

↵
i

)(x) = ^
i2I

↵
i

(x); (t
i2I

↵
i

)(x) = x
iff for each i 2 I. ↵

i

(x) = x. An abstraction ↵ 2 uco(C) is
disjunctive when ↵(C) is a join-sublattice of C, which holds iff
↵ is additive (cf. [5]). Examples of abstract domains include the
abstract domain of intervals:

Int = �X ✓ Z. [min(X),max(X)]

where:

min(X) =

⇢

x 2 X if 8y 2 X. x  y
�1 otherwise

max(X) =

⇢

x 2 X if 8y 2 X. y  x
+1 otherwise

In this case Int 2 uco(}(Z)). The non-relational lift of intervals
to n-dimensions is straightforward and it is defined in terms of a
function ext : Int(}(Z))⇥[0, n�1]�!}(Zn

) defined as follows:
if I 2 Int(}(Z)) is an interval with boundaries in Z[{�1,+1}
and ~x

r

is the projection of the vector ~x 2 Zn along the affine
subspace r of Zn of dimension 1 (i.e., a line), then we define

ext(I, r)
def
=

�

~x 2 Zn

�

� ~x
r

2 I
 

For i 2 [0, n � 1] we denote r
i

the i-th dimension, namely the
affine subspace given by the set r

i

=

�

~x
�

� 8j 6= i. ~x
j

= 0

 

. In

this case Intn 2 uco(}(Zn

)) is such that:

Intn(X) =

\

�

ext(I, r
i

)

�

� X ✓ ext(I, r
i

), 0  i  n� 1

 

The Octagon abstract domain [20] generalizes the Zone abstraction
introduced for model checking timed automata in [16] and based
on Difference-Bound Matrices (DBM), i.e., constraints of the form
v
j

� v
i

 c. Octagons are defined by enhancing DBMs including
also constraints of the form v

j

+ v
i

 c. Let m be a matrix having
coefficients m

i,j

2 Z [ {�1,+1}. Then

Octm =

�

~x 2 Zn

�

� 8i, j. ± ~x
j

± ~x
i

 m
i,j

 

If X 2 }(Zn

) then:

Oct(X) =

\

�

Octm
�

� X ✓ Octm
 

Intn,Oct 2 uco(}(Zn

)) and Oct v Intn. Algorithms for having
unique canonical representations of Octagons have been developed
in order to guarantee that these domains hold a GC (see [20]).

Soundness and completeness. If f : C�!C is a continuous
function and ↵ 2 uco(C) then f always has a best correct ap-
proximation in ↵(C) which is f↵

def
= ↵ � f � ↵. Any approxima-

tion f ]

: ↵(C)�!↵(C) of f in ↵(C) is sound if f↵ v f ]. In this
case we have the fix-point soundness ↵(lfpf)  lfp(f↵

)  lfp(f ]

)

(cf. [4]). f ] is complete when ↵ � f = f ] � ↵ (see [5, 21]) which
holds iff ↵ � f = ↵ � f � ↵ (cf. [13]). Therefore the possibil-
ity of defining a complete approximation f ] of f on some ab-
stract domain ↵ only depends on f and ↵. In this case we have
the so called Kleene fix-point transfer or fix-point completeness:
↵(lfpf) = lfp(f↵

) = lfp(f ]

) [4].

The problem of making abstract domains complete has been
solved in [13]. A constructive characterization of the most abstract
refinement, called complete shell, and of the most concrete sim-
plification, called complete core, of any domain, making it com-
plete, for a given continuous function f , is given as a solution
of an abstract domain equation. Let f : C�!C be continu-
ous and ↵ 2 uco(C), and consider the following basic operators
R

f

, C
f

: uco(C)�!uco(C) transforming closures (therefore ab-
stractions):

R
f

def
= �X.M(

S

y2X

max(f�1
(#y)))

C
f

def
= �X.

�

y 2 C
�

�

max(f�1
(#y)) ✓ X

 

The most concrete � w ↵ such that � is complete for f is
the complete core of ↵. The most abstract � is complete for
f is the complete shell of ↵. These abstract domains can be
constructively defined as a fix-point iteration on abstract do-
mains, which are respectively R

f

(↵) = gfp(�X. ↵ uR
f

(X))

and C
f

(↵) = lfp(�X. ↵ t C
f

(X)). It is worth noting that the
complete core and shell are adjoint abstract domain transformers,
i.e., they form a GC on the lattice of all abstract domains: for any
↵, ⌘ 2 uco(C): C

f

(⌘) v ↵ , ⌘ v R
f

(↵).

3. Syntax, Semantics, and Abstract Semantics
We consider a simple deterministic while-language Imp as defined
in [24]. We often view programs as both sequences of commands
and sets of commands.

C ::= skip | x := a | C ;C | if b then C |
while b do C

e ::= a | b
a ::= a + a | a � a | x 2 Var | k 2 Z
b ::= t | f | a = a | a > a | b ^ b | b _ b | ¬b

Var(s) denote the set of variables in the syntactic (command or
expression) s. ⌃ def

= Var�!}(Z) denotes the set of stores, with
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The Octagon abstract domain [20] generalizes the Zone abstraction
introduced for model checking timed automata in [16] and based
on Difference-Bound Matrices (DBM), i.e., constraints of the form
v
j
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 c. Octagons are defined by enhancing DBMs including
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 c. Let m be a matrix having
coefficients m
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Intn,Oct 2 uco(}(Zn

)) and Oct v Intn. Algorithms for having
unique canonical representations of Octagons have been developed
in order to guarantee that these domains hold a GC (see [20]).

Soundness and completeness. If f : C�!C is a continuous
function and ↵ 2 uco(C) then f always has a best correct ap-
proximation in ↵(C) which is f↵

def
= ↵ � f � ↵. Any approxima-

tion f ]

: ↵(C)�!↵(C) of f in ↵(C) is sound if f↵ v f ]. In this
case we have the fix-point soundness ↵(lfpf)  lfp(f↵

)  lfp(f ]

)

(cf. [4]). f ] is complete when ↵ � f = f ] � ↵ (see [5, 21]) which
holds iff ↵ � f = ↵ � f � ↵ (cf. [13]). Therefore the possibil-
ity of defining a complete approximation f ] of f on some ab-
stract domain ↵ only depends on f and ↵. In this case we have
the so called Kleene fix-point transfer or fix-point completeness:
↵(lfpf) = lfp(f↵

) = lfp(f ]

) [4].

The problem of making abstract domains complete has been
solved in [13]. A constructive characterization of the most abstract
refinement, called complete shell, and of the most concrete sim-
plification, called complete core, of any domain, making it com-
plete, for a given continuous function f , is given as a solution
of an abstract domain equation. Let f : C�!C be continu-
ous and ↵ 2 uco(C), and consider the following basic operators
R

f

, C
f

: uco(C)�!uco(C) transforming closures (therefore ab-
stractions):

R
f

def
= �X.M(

S

y2X

max(f�1
(#y)))

C
f

def
= �X.

�

y 2 C
�

�

max(f�1
(#y)) ✓ X

 

The most concrete � w ↵ such that � is complete for f is
the complete core of ↵. The most abstract � is complete for
f is the complete shell of ↵. These abstract domains can be
constructively defined as a fix-point iteration on abstract do-
mains, which are respectively R

f

(↵) = gfp(�X. ↵ uR
f

(X))

and C
f

(↵) = lfp(�X. ↵ t C
f

(X)). It is worth noting that the
complete core and shell are adjoint abstract domain transformers,
i.e., they form a GC on the lattice of all abstract domains: for any
↵, ⌘ 2 uco(C): C

f

(⌘) v ↵ , ⌘ v R
f

(↵).

3. Syntax, Semantics, and Abstract Semantics
We consider a simple deterministic while-language Imp as defined
in [24]. We often view programs as both sequences of commands
and sets of commands.

C ::= skip | x := a | C ;C | if b then C |
while b do C

e ::= a | b
a ::= a + a | a � a | x 2 Var | k 2 Z
b ::= t | f | a = a | a > a | b ^ b | b _ b | ¬b

Var(s) denote the set of variables in the syntactic (command or
expression) s. ⌃ def

= Var�!}(Z) denotes the set of stores, with
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Same input & output abstraction = fix-point refinement

↵

Making Completeness



OBFUSCATION BY INTERPRETATION?

Y. Futamura, Partial Evaluation of Computation Process, 1971

target := !spec"(int,source)

A simple programming language:
;; A NORMA program works on two registers, x and y,
;; each holding a number ( n = list of n 1’s )
;; INITIALLY x = input, y = 0.
;; AT END: output is y’s final value.
;;
;; Norma syntax: (only 7 instructions)
;;
;; pgm ::= ( instr* )
;; instr ::= X:=X+1 | X:=X-1 | Y:=Y+1 | Y:=Y-1
;; | ifX=0goto addr) | ifY=0goto addr
;; | goto addr
;; addr ::= 1*
Still a Turing-complete language!!!
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Defense

Attack

A self interpreter int and a specializer spec

Transformation

Design int and spec for obfuscating code  	


Challenge! 
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Still a Turing-complete language!!!

c⃝Giaco – Gent 2011 – p.34/57

Defense

Attack

A self interpreter int and a specializer spec

Transformation

Design obfuscation from observation 	


        (transformation)    (abstraction)



The Attacker



WHY ABSTRACT INTERPRETATION?
Abstract Interpretation (1977) is the a general model for the (static or dynamic)

approximation of semantics of discrete dynamic systems

➪
Including: Static program analysis, dynamic analysis, profiling,
debugging, tracing, compilation, de-compilation, type checking and type
inference, model checking and predicate abstraction, trajectory
evaluation, testing, proof systems, etc.

⊥

lfp(f)

x ≤ f(x)

f(x) ≤ x

x = f(x)

⊤

c⃝Giaco – Rennes 2012 – p.24/63



ABSTRACT INTERPRETATION
Design approximate semantics of programs [Cousot & Cousot ’77, ’79].

α

γ

γ(α(x))

x
Abstract

Concrete

⊤ ⊤

α

Galois Connection: ⟨C ,α,γ,A⟩, A and C are complete lattices.

Closures: ⟨uco(C ),⊑⟩ set of all possible abstract domains,
A1 ⊑ A2 if A1 is more concrete than A2

c⃝Giaco – Rennes 2012 – p.25/63



APPROXIMATING INTERPRETATION

G is a sound approximation of F if

α◦F ◦γ ⊑ G

c⃝Giaco – Cagliari 2012 – p.22/50

Error



SOUNDNESS AND COMPLETENESS

➪
WhichChess : Img −→ ℘(Chess) returns the type of chess on the
chessboard.

➪
ρ : Img −→ Img such that: ρ

( )

=

➪
η : ℘(Chess) −→ [0, 12] counts an upper bound to the number of different
types of chess

η

(

WhichChess
(

ρ

( )))

= η

(

WhichChess
( ))

= 12

≥ η

(

WhichChess
( ))

= 7

c⃝Giaco – Cagliari 2012 – p.24/50



Obscurity as Incompleteness

The attack strategy is a temporal formula to check against an abstraction	



The attacker is an abstract interpreter	



Failing precision means failing completeness	



!

Obfuscating is making abstract interpreters and strategies incomplete!!

OBSCURITY AS INCOMPLETENESS
Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete

➪
Let ρ ∈ uco(Σ) with Σ semantic objects (data, traces etc)

➪
A program transformation τ : P → P such that !P" = !τ(P)".

➪
ρ B-complete for !·" if ρ(!P") = !P"ρ

τ obfuscates P if !P"ρ ❁ !τ(P)"ρ

!P"ρ ❁ !τ(P)"ρ ⇐⇒ ρ(!τ(P)") ❁ !τ(P)"ρ

c⃝Giaco – Cagliari 2012 – p.30/50
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OBSCURITY AS INCOMPLETENESS
Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete
P : x = a ∗ b

Sign is an obvious abstraction of ℘(Z):

0− 0+

℘(Z)

0

. . . 1 . . .

. . .

. . . . . .

0+0−

0

∅

℘(Z)

{−1,−3,−4} {2, 3, 5}

∅

c⃝Giaco – Cagliari 2012 – p.30/50
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0− 0+

℘(Z)

0

. . . 1 . . .
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OBSCURITY AS INCOMPLETENESS
Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete

x = 0;

P : x = a ∗ b −→ τ(P) : if b ≤ 0 then {a =−a; b =−b};

while b ̸= 0 {x = a+ x; b = b− 1}

➪
Sign is complete for P :

✔ !P"Sign = λa,b. Sign(a ∗ b)

➪
Sign is incomplete for τ(P):

✔ !τ(P)"Sign = λa,b.

{
0 if a = 0∨ b = 0

? = ℘(Z) otherwise

➪
Is there any way to get τ(P) systematically out of P?

c⃝Giaco – Cagliari 2012 – p.30/50



EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function  

abc

: ⌃�!⌃ [ {?}, with ? denoting
non-termination:

 
abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

 

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive  is computed by a program R 2 Imp such
that JRK(P, S) =  (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P )K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S)) 
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [ {x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P )K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P ) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have  (P, S) = JP>K(S) and therefore Jg(R,P )K =JP>K, which implies that g(R,P ) 2 C
↵

.

Because the function �P 2 Imp. g(R,P ) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

( JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise
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that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
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that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P
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and P
↵(A) on a single variable x such that JP

A
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c 2 ↵(A) r A. The program Q
abc

associated with the following
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: ⌃�!⌃ [ {?}, with ? denoting
non-termination:

 
abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc
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This means that (due to c) the program Q

abc
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true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
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, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive  is computed by a program R 2 Imp such
that JRK(P, S) =  (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P )K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S)) 
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [ {x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P )K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P ) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have  (P, S) = JP>K(S) and therefore Jg(R,P )K =JP>K, which implies that g(R,P ) 2 C
↵

.

Because the function �P 2 Imp. g(R,P ) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

( JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

Z



EXPOLITING INCOMPLETENESS

Maximize !P"ρ incompleteness!

➪
The abstraction is the specification of the attacker

✔ Profiling: Abstract memory keeping only (partial) resource usage
✔ Tracing: Abstraction of traces (e.g., by trace compression)
✔ Slicing: Abstraction of traces (relative to variables)
✔ Monitoring: Abstraction of trace semantics ([Cousot&Cousot POPL02])
✔ Decompilation: Abstracts syntactic structures (e.g., reducible loops)
✔ Disassembly: Abstracts binary structures (e.g., recursive traversal)

➪
Each abstraction is incomplete for a concrete enough trace semantics

➪
Maximize incompleteness by code transformation: Obfuscation

➪
Exploit incompleteness for hiding information: Steganography

c⃝Giaco – Rennes 2012 – p.36/63



Interpreter-based Obfuscation



Whole-program VIEW OF OBFUSCATION

A major conflict makes program obfuscation a subtle problem in programming:
Good programs are well-structured and have concise invariants

This is a key to

➪
understanding a program, and

➪
adapting it to new purposes.

Good structure and short invariants are necessity in order to develop, debug
and perfect a program P in the first place.

However, instead an obfuscated program should not be well-structured and
easy to understand.

This suggests (among other things):

obfuscation by making the program’s control/data flow hard to understand
c⃝Giaco – Grenoble 2012 – p.34/59



ABOUT P ′ = !spec"(interp,P)

1. Program P ′ inherits the algorithm of program P.
2. Program P ′ inherits the programming style of interp.

➪
1: A correct interpreter interp must faithfully execute the operations
specified by program P. Usually: specialized program P ′ performs the
same computations in the same order as those performed by P.

Most interpreters do not devise new computational approaches!

➪
2: P ′ consists of specialized code from the interpreter interp:

P ′ = the operations of interp that depend on its dynamic input
(all others will be “specialized away”).

c⃝Giaco – Grenoble 2012 – p.35/59



OUR IDEA
Build a general-purpose program transformer by programming a
self-interpreter in a style to give the desired transformation

CLAIM: !P" = !P ′", by simple equational reasoning:

!P"(d) = !interp"(P,d) definition of self-interpreter
= !!spec"(interp,P)"(d) definition of specializer
= !P’"(d) definition of P’

Therefore the function

P !−→ !spec"(interp,P)

is a semantics-preserving program transformer!!

➪
We need to change the interpretation: interp ❀ interp+

c⃝Giaco – Grenoble 2012 – p.36/59

Idea



Flattening



CODE FLATTENING
[Cloackware 2000]

Idea: “scramble” or “distort” the control flow of input program P, without
changing its whole-program semantics

c⃝Giaco – Rennes 2012 – p.46/63



EXAMPLE OF FLATTENING
The following flattened program P ′ has
➪

only one loop (regardless of how many loops P has), and

➪
an explicit program counter pc

Original program P: Flattened equivalent program P ′:

1.input x ;
2.y := 2;
3.while x > 0 do

4.y := y + 2;
5.x := x − 1

endw
6.output y ;
7.end

1.input x ; 2.pc := 2;
3.while pc < 6 do

4.case pc of
2 : 5.y := 2; 6.pc := 3;

3 : 7.if x > 0 then 8.pc := 4 else 9.pc := 6;

4 : 10.y := y + 2; 11.pc := 5;

5 : 12.x := x − 1; 13.pc := 3;

endw
14.output y
15.end

c⃝Giaco – Grenoble 2012 – p.44/59



STRUCTURE OF A SIMPLE SELF-INTERPRETER

input P, d ; Program to be interpreted, and its data
pc := 2; Initialise program counter and store
store := [in !→ d , out !→ 0, x1 !→ 0, . . .];

while pc < length(P) do
instruction := lookup(P, pc); Find the pc-th instruction
case instruction of Dispatch on syntax
skip : pc := pc + 1;

x := e : store := store[x !→ eval(e, store)]; pc := pc + 1;

. . . endw ;

output store[out ];
eval(e, store) = case e of Function to evaluate expressions

constant : e

variable : store(e)

e1+ e2 : eval(e1, store) + eval(e2, store)

e1− e2 : eval(e1, store)− eval(e2, store)

e1 ∗ e2 : eval(e1, store) ∗ eval(e2, store) . . .

c⃝Giaco – Grenoble 2012 – p.45/59

pc dynamic!

OBFUSCATION BY INTERPRETATION?

Y. Futamura, Partial Evaluation of Computation Process, 1971

target := !spec"(int,source)

A simple programming language:
;; A NORMA program works on two registers, x and y,
;; each holding a number ( n = list of n 1’s )
;; INITIALLY x = input, y = 0.
;; AT END: output is y’s final value.
;;
;; Norma syntax: (only 7 instructions)
;;
;; pgm ::= ( instr* )
;; instr ::= X:=X+1 | X:=X-1 | Y:=Y+1 | Y:=Y-1
;; | ifX=0goto addr) | ifY=0goto addr
;; | goto addr
;; addr ::= 1*
Still a Turing-complete language!!!

c⃝Giaco – Gent 2011 – p.34/57



Why?



THE CFG ABSTRACTION

➪
The attacker is an abstract interpreter extracting the CFG from P

✔ forgets the computed memoryM: C = λσ. M

✔ forgets the branch computation when involving the pc: η
✔ Fixpoint Graph semantics: !P"G = lfp(GP)

➪
Theorem

C(!P"G) = !P"C,η
G

iff pc is not a program variable

Flattening is distorting an interpreter making an abstract interpreter extracting
the CFG incomplete

c⃝Giaco – Grenoble 2012 – p.48/59

Completeness!!
pc dynamic!



A Theory?



Simplifying abstractions

8

branches. B can be obtained from the identity abstraction by erasing all the states that
lead to follow only one branch, namely all the states corresponding to the evaluation
of an opaque predicate. In other words, B has to ignore the evaluation of any control
statement guard, considering always both the branches of computation.
This abstraction, informally described here as an incompleteness driven simplifica-
tion of the identity domain, corresponds precisely to the abstraction statically char-
acterizing the control-flow semantics in [23]. Namely, the control-flow graph of an
imperative program is the fix-point abstraction of the concrete semantics: JPKCFG =
lfp

s
(gCFG

P ) where gCFG
P

def= C � gP � B. Note that, in [23] opacity is characterized by the
absence of completeness, showing that C(JPKG) =G JPKCFG iff P doesn’t contain opaque
predicates.

4 Making abstract domains incomplete

In this section, we formalize the construction of the most abstract domain having a fixed
complete refinement, i.e., the incomplete domain compressor. The idea is to consider
the complete shell in [20], and to show that it admits right adjoint and that this right
adjoint is exactly the incomplete compressor.

4.1 Simplifying abstractions

First of all, we observe that a complete shell always admits right adjoint. Indeed, by
Prop. 3 we know that the right adjoint of an lco exists iff the lco is join-uniform. At this
point, since complete shells have the form of pattern completion, we observe that pat-
tern completion domain transformers are always join-uniform (this result was observed
for the first time in [19]).

Lemma 6. Let C a complete lattice and ⇥ ⇤ uco(C ) then the pattern completion func-
tion f�

def= ⇤�.� ⌅ ⇥ is join-uniform.

Note that, the domain transformers defined in Ex. 4 are exactly of this form, and indeed,
the fact that they admit right adjoint on the lifted orders depends precisely on the fact
that these transformers are join-uniform by Lemma 6.

Forward incomplete compressor
Consider F completeness, i.e., ⌅ � f � ⇥ = f � ⇥ with ⌅, ⇥ ⇤ uco(C ), C complete
lattice, and f : C �⇥ C , denoting also its additive lift to ⌥(C ). The completeness
shell is RF

f ,� which refines the output domain by adding all the f -images of elements of
⇥ to ⌅. Hence, by Lemma 6 we have the following result.

Proposition 7. RF
f ,� = ⇤⌅. ⌅ ⌅M(f (⇥))1 is join-uniform on uco(C ).

Being R
def= RF

f ,� join-uniform, its right adjoint exists (Prop. 3) and by Prop. 2 it is

R+ = ⇤⌅.
⌅ �

�
⇤⇤R(�) = R(⌅)

⇥
= ⇤⌅.

⌅ �
�
⇤⇤ � ⌅M(f (⇥)) = ⌅ ⌅M(f (⇥))

⇥

1 f (�) stands for f (�(C ))
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A CLASSICAL EXAMPLE

A SIMPLE EXAMPLE IN INTERVAL ANALYSIS

Z

[0,+∞]

[0, 10]

[0, 2]

[0, 0]

[−∞, 0]

➪
A simple domain of intervals

➪
sq(X ) =

{
x2

∣

∣

∣ x ∈ X
}

➪
{Z, [0,+∞], [0, 10]} is Forward but
not Backward complete

c⃝Giaco – Cagliari 2012 – p.26/50
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More abstract

More concrete
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branches. B can be obtained from the identity abstraction by erasing all the states that
lead to follow only one branch, namely all the states corresponding to the evaluation
of an opaque predicate. In other words, B has to ignore the evaluation of any control
statement guard, considering always both the branches of computation.
This abstraction, informally described here as an incompleteness driven simplifica-
tion of the identity domain, corresponds precisely to the abstraction statically char-
acterizing the control-flow semantics in [23]. Namely, the control-flow graph of an
imperative program is the fix-point abstraction of the concrete semantics: JPKCFG =
lfp

s
(gCFG

P ) where gCFG
P

def= C � gP � B. Note that, in [23] opacity is characterized by the
absence of completeness, showing that C(JPKG) =G JPKCFG iff P doesn’t contain opaque
predicates.

4 Making abstract domains incomplete

In this section, we formalize the construction of the most abstract domain having a fixed
complete refinement, i.e., the incomplete domain compressor. The idea is to consider
the complete shell in [20], and to show that it admits right adjoint and that this right
adjoint is exactly the incomplete compressor.

4.1 Simplifying abstractions

First of all, we observe that a complete shell always admits right adjoint. Indeed, by
Prop. 3 we know that the right adjoint of an lco exists iff the lco is join-uniform. At this
point, since complete shells have the form of pattern completion, we observe that pat-
tern completion domain transformers are always join-uniform (this result was observed
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tion f�

def= ⇤�.� ⌅ ⇥ is join-uniform.

Note that, the domain transformers defined in Ex. 4 are exactly of this form, and indeed,
the fact that they admit right adjoint on the lifted orders depends precisely on the fact
that these transformers are join-uniform by Lemma 6.
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By join-uniformity we know that R⇤R+(⇤) = R(⇤), namely R+(⇤) is the most abstract
domain such that R+(⇤) ⌦M(f (�)) = ⇤ ⌦M(f (�)), which by definition is exactly the
pseudo-complement (⇤ ⌦ M(f (�))) ⇥ M(f (�))2. By [13] we know that if C is meet-
generated by Mirr(C ) then uco(C ) is pseudo-complemented and for any A ⌃ uco(C ),
C ⇥A = M(Mirr(C ) ⇤ A). Hence we define

URF
f ,�

def= ⇥⇤. M(Mirr(⇤ ⌦M(f (�))) ⇤ M(f (�)))

This transformation first erases all the elements that we should avoid, and then by the
Moore-family completion adds only those necessary for obtaining a Moore-family, i.e.,
an abstract domain. We call this transformation incomplete compressor.

Proposition 8. URF
f ,� = (RF

f ,�)+

Example 9. Consider the operation sq(X ) =
�

x 2
⇤⇤ x ⌃ X

⇥
for X ⌃ ⌥(Z), this time
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�
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⇥
�

�
[�⇧, b]

⇤⇤ b ⌃ Z
⇥
��

[a,+⇧]
⇤⇤a ⌃ Z

⇥
[6, 7]. In this case the best correct approximation of sq in Int is
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↵

Int. Hence we have that Int� def= URF
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˘

[�⌅, b]
˛̨
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¯
�

˘
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˛̨
a ⇧ Z, �c ⇧ Z. a = c2

¯
)

=
˘
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¯
�˘
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�

˘
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Note that this transformation does not always generate an incomplete domain. The
following result provides the formal conditions that have to hold in order to induce
incompleteness, namely in order to guarantee the existence of incomplete compression.
The domains that does not satisfy these conditions are complete and are complete shells
of only themselves, namely we cannot find a unique most concrete simplification which
is incomplete.
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f ,�(⇤) (here denoted UR) is
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2. M(f (�))  Mirr(⇤) ⌥= �;

In the following examples we show the meaning of these conditions.
2 If C is a meet-semilattice with bottom, then the pseudo-complement of x ⇧ C , when it exists,

is the unique element x⇤ ⇧ C such that x  x⇤ = ⌥ and such that ⌃y ⇧ C . (x  y = ⌥) ⇤
(y ⇥ x⇤) [1].
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branches. B can be obtained from the identity abstraction by erasing all the states that
lead to follow only one branch, namely all the states corresponding to the evaluation
of an opaque predicate. In other words, B has to ignore the evaluation of any control
statement guard, considering always both the branches of computation.
This abstraction, informally described here as an incompleteness driven simplifica-
tion of the identity domain, corresponds precisely to the abstraction statically char-
acterizing the control-flow semantics in [23]. Namely, the control-flow graph of an
imperative program is the fix-point abstraction of the concrete semantics: JPKCFG =
lfp

s
(gCFG

P ) where gCFG
P

def= C � gP � B. Note that, in [23] opacity is characterized by the
absence of completeness, showing that C(JPKG) =G JPKCFG iff P doesn’t contain opaque
predicates.

4 Making abstract domains incomplete

In this section, we formalize the construction of the most abstract domain having a fixed
complete refinement, i.e., the incomplete domain compressor. The idea is to consider
the complete shell in [20], and to show that it admits right adjoint and that this right
adjoint is exactly the incomplete compressor.

4.1 Simplifying abstractions

First of all, we observe that a complete shell always admits right adjoint. Indeed, by
Prop. 3 we know that the right adjoint of an lco exists iff the lco is join-uniform. At this
point, since complete shells have the form of pattern completion, we observe that pat-
tern completion domain transformers are always join-uniform (this result was observed
for the first time in [19]).

Lemma 6. Let C a complete lattice and ⇥ ⇤ uco(C ) then the pattern completion func-
tion f�

def= ⇤�.� ⌅ ⇥ is join-uniform.

Note that, the domain transformers defined in Ex. 4 are exactly of this form, and indeed,
the fact that they admit right adjoint on the lifted orders depends precisely on the fact
that these transformers are join-uniform by Lemma 6.

Forward incomplete compressor
Consider F completeness, i.e., ⌅ � f � ⇥ = f � ⇥ with ⌅, ⇥ ⇤ uco(C ), C complete
lattice, and f : C �⇥ C , denoting also its additive lift to ⌥(C ). The completeness
shell is RF

f ,� which refines the output domain by adding all the f -images of elements of
⇥ to ⌅. Hence, by Lemma 6 we have the following result.

Proposition 7. RF
f ,� = ⇤⌅. ⌅ ⌅M(f (⇥))1 is join-uniform on uco(C ).

Being R
def= RF

f ,� join-uniform, its right adjoint exists (Prop. 3) and by Prop. 2 it is

R+ = ⇤⌅.
⌅ �

�
⇤⇤R(�) = R(⌅)

⇥
= ⇤⌅.

⌅ �
�
⇤⇤ � ⌅M(f (⇥)) = ⌅ ⌅M(f (⇥))

⇥

1 f (�) stands for f (�(C ))
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Example 15. Consider the ⌃b domain in Fig. 1(b).
Then Mirr(⌃b) = {[0,+⌃], [�9, 0], [0, 9]} and M(sqS(⌃b)) = {Z, [0,+⌃], [0, 99], [0]}.

S� def
= URF

sqS,�b
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= M(Mirr(�b) ⇥ M(sqS(�b))) = M({[0, +⇤], [�9, 0], [0, 9]}) = {Z, [�9, 0], [0, 9], [0]}
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Backward incompleteness compressor
In this section we show that all the results holding for F completeness can be instanti-
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This result tells us that also the B shell admits right adjoint, and as before, its adjoint
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�
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URB
f ,⇧

def= ⇧⌅. M(Mirr(⌅ � Rf (⌃)) ⌅ Rf (⌃)) = (RB
f ,⇧)

+.

Finally, also for B completeness we can prove that the B incomplete compressor exists
iff some conditions hold, as stated in the following theorem.

Theorem 18. Let ⌅, ⌃ ⌥ uco(C ) and f : C �⌅ C . URB
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Example 20. Let us consider data obfuscation, and in particular the incompleteness
characterization provided in [23]. This obfuscation technique is based on the encoding
of data [11]. In this case obfuscation is achieved by data-refinement, namely by ex-
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concretizing , viz. refining, the datum x and c� represents the program abstracting the
refined datum x back to the original data-type. As proved in [15], this is precisely mod-
eled as a pair of adjoint functions: � : V�⌅V⌅ and ⇥ : V⌅�⌅V relating the standard
data-type V for x with its refined version V⌅. For instance, consider P = x := x + 2;,
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Fig. 1. The abstract domain S and two abstractions

Let ⌥ ⇧ {F ,B}. In [20] the authors proved that the most concrete � � ⌅ such that
 �, ⇥⌦ is ⌥-complete and the most abstract � � ⇥ such that  ⌅, �⌦ is ⌥-complete are re-
spectively the ⌥-complete core and ⌥-complete shell, which are: CB

f ,�(⌅) def= ⌅ ↵ CB
f (⇥)

[CF
f ,⇥(⇥) def= ⇥ ↵ CF

f (⌅)] and RB
f ,⇥(⇥) def= ⇥ � RB

f (⌅) [RF
f ,�(⌅) def= ⌅ � RF

f (⇥)].
When ⇥ = ⌅, then the fix-point iteration on abstract domains of the above function
R⌅

f (⌅) = gfp(⇤X . ⌅ � R⌅
f (X )) is called the absolute ⌥-complete shell. By construction

if f is additive then RB
f = RF

f + (analogously CB
f = CF

f +) [17]. This means that when
we have to solve a problem of B-completeness for an additive function then we can
equivalently solve the corresponding F -completeness problem for its right adjoint.

Example 1. Assume S be the domain in Fig. 1, which is an abstraction of  �(Z),⇥⌦
for the analysis of integer variables and sq : �(Z) ⇤ �(Z) be the square operation
defined as follows: sq(X ) =

�
x 2

⇤⇤ x ⇧ X
⇥

for X ⇧ �(Z). Let ⌅S ⇧ uco(�(Z))
be the closure operator associated with S. The best correct approximation of sq in S
is sqS : S ⇤ S such that sqS(X ) = ⌅S(sq(X )), with X ⇧ S (the arrows in Fig. 1
(a)). It is easy to see that the abstraction ⌅a = {Z, [0,+⌅], [0, 99], [�9, 0], [0]} (black
dots in Fig. 1 (a)) is not B-complete on the concrete domain S for sqS (for instance
⌅a(sqS(⌅a([0, 9]))) = [0,+⌅] but ⌅a(sqS([0, 9])) = [0, 99]). The complete shell adds
the maximal of inverse images of sqS, namely it adds [0, 9]. Note that, the shell does
not add [�99, 0] and [�⌅, 0] since max

�
X

⇤⇤ sqS(X ) ⇥ [0,+⌅]
⇥

= ⌃, hence all the
other elements X such that sqS(X ) = [0,+⌅] are not added. The complete core erases
[0, 99] hence it is {Z, [0,+⌅], [�9, 0], [0]}.
On the other hand, ⌅b = {Z, [0,+⌅], [0, 9], [�9, 0], [0]} (black dots in Fig. 1 (b)) is
not F -complete on the concrete domain S for sqS (for instance ⌅b(sqS(⌅b([�9, 0]))) =
[0,+⌅] but sqS(⌅b([�9, 0])) = [0, 99]). The complete shell adds the direct images of
⌅b fix points, i.e., [0, 99], while the core erases the incomplete elements obtaining the
domain {Z, [0,+⌅], [0]}.

2.1 Adjoining closure operators

In the following we will make an extensive use of adjunction, in particular of closure
operators. Janowitz [22] characterized the structure of residuated (adjoint) closure oper-
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f +) [17]. This means that when
we have to solve a problem of B-completeness for an additive function then we can
equivalently solve the corresponding F -completeness problem for its right adjoint.
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On the other hand, ⌅b = {Z, [0,+⌅], [0, 9], [�9, 0], [0]} (black dots in Fig. 1 (b)) is
not F -complete on the concrete domain S for sqS (for instance ⌅b(sqS(⌅b([�9, 0]))) =
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spectively the ⌥-complete core and ⌥-complete shell, which are: CB

f ,�(⌅) def= ⌅ ↵ CB
f (⇥)

[CF
f ,⇥(⇥) def= ⇥ ↵ CF

f (⌅)] and RB
f ,⇥(⇥) def= ⇥ � RB

f (⌅) [RF
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f (⇥)].
When ⇥ = ⌅, then the fix-point iteration on abstract domains of the above function
R⌅
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f (X )) is called the absolute ⌥-complete shell. By construction

if f is additive then RB
f = RF
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f +) [17]. This means that when
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Example 1. Assume S be the domain in Fig. 1, which is an abstraction of  �(Z),⇥⌦
for the analysis of integer variables and sq : �(Z) ⇤ �(Z) be the square operation
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�
x 2

⇤⇤ x ⇧ X
⇥

for X ⇧ �(Z). Let ⌅S ⇧ uco(�(Z))
be the closure operator associated with S. The best correct approximation of sq in S
is sqS : S ⇤ S such that sqS(X ) = ⌅S(sq(X )), with X ⇧ S (the arrows in Fig. 1
(a)). It is easy to see that the abstraction ⌅a = {Z, [0,+⌅], [0, 99], [�9, 0], [0]} (black
dots in Fig. 1 (a)) is not B-complete on the concrete domain S for sqS (for instance
⌅a(sqS(⌅a([0, 9]))) = [0,+⌅] but ⌅a(sqS([0, 9])) = [0, 99]). The complete shell adds
the maximal of inverse images of sqS, namely it adds [0, 9]. Note that, the shell does
not add [�99, 0] and [�⌅, 0] since max

�
X

⇤⇤ sqS(X ) ⇥ [0,+⌅]
⇥

= ⌃, hence all the
other elements X such that sqS(X ) = [0,+⌅] are not added. The complete core erases
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In the following we will make an extensive use of adjunction, in particular of closure
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For a variable v and a statement (program point) s (final use of v), the slice S 
of program P with respect to the slicing criterion ⟨s,v⟩ is any executable 
program such that S can be obtained by deleting zero or more statements 
from P and if P halts on input I then the value of v at the statement s, each 
time is reached in P, is the same in P and in S.
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .

12

from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to
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original() { 
int c, nl = 0, nw = 0, nc =0, in; 
in = F; 
while ((c = getchar()) ! = EOF) { 

nc ++; 
if (c == ‘ ’ || c == ‘\n’ || c == ‘\t’) in = F; 
else if (in == F) {in = T; nw ++; } 
if (c == ‘\n’) nl ++;  
} 

out(nl, nw, nc); }

Word Count program 
which takes a block of text and outputs the number of


lines (nl), words (nw) and characters (nc):




original() { 
int c, nl = 0, nw = 0, nc =0, in; 
in = F; 
while ((c = getchar()) ! = EOF) { 

nc ++; 
if (c == ‘ ’ || c == ‘\n’ || c == ‘\t’) in = F; 
else if (in == F) {in = T; nw ++; } 
if (c == ‘\n’) nl ++;  
} 

out(nl, nw, nc); }

Word Count program 
which takes a block of text and outputs the number of


lines (nl), words (nw) and characters (nc):

Slicing criterion: nl
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obfuscated() { 
int c, nl = 0, nw = 0, nc =0, in; 
in = F; 
while ((c = getchar()) ! = EOF) { 
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if (c == ‘ ’ || c == ‘\n’ || c == ‘\t’) in = F; 
else if (in == F) {in = T; nw ++; } 
if (c == ‘\n’) {if (nw <= nc) nl ++; } 
if (nl > nc) nw = nc + nl; 
else {if (nw > nc) nc = nw − nl; }  
} 

out(nl, nw, nc); }

Word Count program 
which takes a block of text and outputs the number of
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .

12

from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Entry

1 2 3 4

2

�00 = R+(�0) = R+(�a)

DEntry = � s = �⇥, �Entry, 1⇥⇥
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stracted in the program slicing. In particular, we first define a semantics, similar to

Entry

1 2 3 4

2

�00 = R+(�0) = R+(�a)

D1 = [Dx = 1] s = �⇥, �1, 2⇥⇥

Attack: Semantic PDG
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .

12

from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Entry

1 2 3 4

2

�00 = R+(�0) = R+(�a)

D2 = [Dx = 1,Di = 2] s = �⇥, �2, 3⇥⇥

Attack: Semantic PDG
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .

12

from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Entry

1 2 3 4

3a

2

�00 = R+(�0) = R+(�a)

D3 = [Dx = 1,Di = 2] s1 = �⇥, �3, 3a⇥⇥ and s2 = �⇥, �3, 4⇥⇥

Attack: Semantic PDG
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .
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from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Entry

1 2 3 4

3a

2

�00 = R+(�0) = R+(�a)

D3a = [Dx = 1,Di = 3a] s1 = �⇥, �3a, 3⇥⇥ and s2 = �⇥, �3, 4⇥⇥

Attack: Semantic PDG
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .

12

from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Entry

1 2 3 4

3a

2

�00 = R+(�0) = R+(�a)

D3a = [Dx = 1,Di = 3a] s1 = �⇥, �3, 3a⇥⇥ and s2 = �⇥, �3, 4⇥⇥
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .

12

from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Entry

1 2 3 4

3a

2

�00 = R+(�0) = R+(�a)

D4 = [Dx = 1,Di = 2,Dy = 4] s1 = ⇥⇥, ⇥3, 3a⇤⇤ and s2 = ⇥⇥, ⇥4,�⇤⇤

Attack: Semantic PDG



Potency of Data obfuscation

• If a program P contains fake dependencies (i.e., not semantic) the analyses 
deceived are those analyzing syntactic dependencies only!


• The incomplete backward compressor of the abstraction of the PDG based 
on semantic dependencies is the PDG based on syntactic dependencies only, 
i.e., standard slicing!


• Namely, any obfuscator adding fake dependencies deceives slicing 
algorithms based on the computation of syntactic dependencies!!


The semantic PDG is complete (the PDG analysis is precise) iff the program 
does not contain fake dependencies



Concluding



MY CLAIM!

➪
Any obfuscation technique is an instance of

!spec"(interp+,P)

for some interp+ making an abstraction α incomplete!

➪
Given an obfuscated code P, what is α?

➪
Given α, can we derive interp+ systematically?

c⃝Giaco – Rennes 2012 – p.55/63

So what?

EXPOLITING INCOMPLETENESS

Maximize !P"ρ incompleteness!

➪
The abstraction is the specification of the attacker

✔ Profiling: Abstract memory keeping only (partial) resource usage
✔ Tracing: Abstraction of traces (e.g., by trace compression)
✔ Slicing: Abstraction of traces (relative to variables)
✔ Monitoring: Abstraction of trace semantics ([Cousot&Cousot POPL02])
✔ Decompilation: Abstracts syntactic structures (e.g., reducible loops)
✔ Disassembly: Abstracts binary structures (e.g., recursive traversal)

➪
Each abstraction is incomplete for a concrete enough trace semantics

➪
Maximize incompleteness by code transformation: Obfuscation

➪
Exploit incompleteness for hiding information: Steganography

c⃝Giaco – Rennes 2012 – p.36/63

MY CLAIM!

➪
Any obfuscation technique is an instance of

!spec"(interp+,P)

for some interp+ making an abstraction α incomplete!

➪
Given an obfuscated code P, what is α?

➪
Given α, can we derive interp+ systematically?

c⃝Giaco – Rennes 2012 – p.55/63



META-LEVEL DISCUSSION

The Futamura projections are as follow for a distorted interpreter interp+:

1. P ′ := !spec"(interp+,P) Transform program
2. comp := !spec"(spec,interp+) Generate transformer
3. cogen := !spec"(spec,spec) Transformer generator

We have just seen instances of the 1st Futamura projection.

If the set of incomplete program structures is Turing complete: Write the
distorted interpreter as incomplete structures

If you want to act locally: use interference to ensure that incompleteness is
propagated

An obfuscating compiler can also be generated, by the 2nd Futamura
projection; this has been done using the UNMIX partial evaluator.

For example, if P is interpflat, then compiler is a stand-alone obfuscator:
a “flattening” program transformer.
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IMMEDIATE CONSEQUENCES

There are other better ways to obfuscate and to produce a obfuscator:

➪
P ′ = !comp"(p) (obfuscate by compiler) and

➪
comp = !cogen"(interp+) (generate obfuscator).

Future developments will involve gaining a deeper understanding in expected
time factors:

1. timeP ′(d) and timeP(d), exemplifying
the slowdown imposed by the obfuscation;

2. timespec(interp
+,p) and length(P), exemplifying the

the amount of time required to do the obfuscation by specialization;
3. timecomp(p) and length(P), exemplifying the

time to do the obfuscation by running the generated obfuscator
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By constraining the adversary within a theorem prover we can quantify the security achieved from obfuscation 

Force the attacker to use 
automated tools (programs of 
large size and highly 
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Design code transformations 
making tools blind

Determine lower bounds for proof 
complexity in obfuscated code

Measure the degree of noise/
slowdown induced in obfuscation
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Thanks!

Mila IsaNeil


