irdeto

Obscuring Code

Unveiling and Verling Information in Programs

Roberto Giacobazzi

University of Verona
&

irdelo

irdeto

irdeto

iPad
iPhone

Game
Console

TV Feature
Phone
|

e Required Hacker
Skill Level

Digital Assat Protection Asse

Android
phone

Security Threat

Low

Crypto Assumption

Black Box Attacks or Grey Box Attacks

Man-In-The-Middle Attack

‘ (Indirect, side-channel)

Perimeter ‘LDefenses

Trusted Inside Black Box

* Alice and Bob each have exclusive
control over their own computers

* No information leaves from or store
into their computers without their
approval

irdeto

White-Box Attacks

Attackers have open-end powers to do
] Trace every program instruction

Man-At-The-End
Attack

] View the contents of memory and cache

] Stop execution at any point and run an off-line process
] Alter code or memory at will

] Do all of this for as long as they want, whenever they want,
in collusion with as many other attackers as they can find

Attacking has much less
limitation than protection

] Device and environment are un-

trusted

) Attacker has direct access to the
machine and software no matter
whether it's running or not

Bob is the Attacker

4=

Software

Digital A rotection Asse

irdeto

irdeto

irdeto

The state of the art

' %
| v
Digital Assat Protection Asse

irdeto

Obfuscation

Code

Program

A nondeterministic algorithm O is a TM obfuscator if three
“Anything that can following conditions hold:

be learned fromthe = (functionality) For every TM M, the string O(M)

obfuscated form, describes the same function as M.

could have been — (polynomial slowdown) The description length and
lear ”ed by merely running time of O(M) are at most polynomially larger
observing the than that of M.

program-ss ’”RUt' = (“virtual black box” property) For any PPT A, there is
O_UtPUt beha‘/_’or a PPT S and a negligible function « such that for all
(I.e., by treating the TMs M

program as a — Attack

black-box)” PrIAO(M)) = 1] = Pr[SM(1M) = 1]| < a (M)

\ Simulator

irdeto

Impossibility
—— Obfuscated
Code

Program

AT Rdeterministic algorithm O is a TM obfuscator if t ~

“Anything that can followinggg nditions hold:

be learned from the (function®ity) For every TM M, the stgistd O(M)
obfuscated form, describes the $age function as M_#*

could have been =~ (polynomial slowd®yn) Thg#€scription length and
lear ned by merely running time of O(M) argl most polynomially larger
observing t_he thanthatof M. o %

programs ’”RUt' = (“virtual blackdfox” property) Fo%gay PPT A, there is
output behavior a PPT S getfa negligible function o st8ithat for all
(i.e., by treating the TMs A -,

program as a R /Attack

|Pr[A(O(M)) = 1] — Pr[SY(1 IMI) _ 1]| < a(|“\
\ Simulator
Barak’s et al. JACM 2012

black-box)”

irdeto

Obfuscation

Program Source 4 Obfuscation
Code

Program

PROGRAM OBFUSCATION

(

Security through obscurity)
k 2013)
Indistinguishability: 1. Program obfuscation re-cast as a

If P and Q Compute the rigorous mathematical science
. 2. The adversary can have full knowledge
same function of the obfuscating theory but still

then O(P) = ©(Q) cannot de-obfuscate

Garg, Gentry, Halevy, Raykova, Sahai, Waters,
2013 “Candidate Indistinguishability
Obfuscation and Functional Encryption for All
Circuits”.

What exactly do we mean when we say that we have obfuscated a program?

irdeto
The value

Hide Algorithms
& Computations

Secured Input

Authentication, validation,
integrity, confidentiality of
input data

Tamper
Detection

Tamper

Resistance

Makes it hard to modify
the code’s data and
control flow

Secured Output
Authentication, validation,
integrity, confidentiality
of output data

Damage

Hide Internal
Mitigation

Data

Including internally
initialized data

Anti
Bug

Digital Assat Protection Asse

Jindeha

A different view from PL...

irdeto

More Concrete

White-box

A
A
.
.
.
L
L
.
A
“
\J

Grey Box

“
.
“
*

Black-box

Difficulty to Protect Assets

Input / output

Easiest

Weakest Attack Effectiveness

Input/output
abstraction

- Debuggers
= Emulators
= Qther attack tools

Strongest

irdeto

Obfuscation

Input Input

P — T[P]

Output Output

Obfuscation as compilation

Input

(

/

Output

(Pseudo-)Code:

mov eax, [edx+0Ch]
push ebx

push [eax]

call ReleaseLock

P — T[P]

Input

(

/

A

Output

Obfuscated code (junk + reordering):

mov eax, [edx+0Ch]
jmp +3

push ebx

dec eax

jmp +4

inc eax

Jmp -3

call Releaselock
jmp +2

push [eax]

Jmp -2

irdeto

irdeto

Computing means Interpreting

For large/real programs control/data flow

Abstraction IS too complex for being understandable by humans:

Input

Reverse Engineering needs abstraction!
Reverse Engineering needs automated tools!

SW 5
2 malicious
= Reverse user
- 2 Engineeringg
\ / \ - y =
8
Output Interpretation

Abstract Interpretation is a general theory for approximating the semantics of dynamic systems

(Cousot & Cousot 1977)

' %
| v
Digital Assat Protection Asse

irdeto

Reverse Engineering is Interpreting

P ‘ - Each tool is an
Abstract Interpretation

~ Tracing

Decompiler

‘ Sllcm SAT

Profiling

5

19N0.1d wiaJoay |

VMware
Emulation

Dynamic ; i .

Analysis
\vy' — Monitoring

© L , , irdeto
~ Protecting is obscuring Interpretation

- Transform code to
make all tools blind

19N01d wiaJoay L

sy ™ ; %

RS L T I i Py
S TS

¢ N G '6"‘:“\{;"‘ a. ‘l})'f- .‘3;%"- N

R R e

_...‘. ? et ’.‘.u‘.:{ Y 27 .,, ;',.'-:' "

S &‘m\gﬁ?'@r 03 R S

Removing noise means refining abstractions / complicating proofs! (Giacobazzi et al 2000 / 2012)

JAPA

Digital Assat Protection Asse

ts?

ien

d

ingre

the

irdeto

A Model

4 Z(t)

Bad State

T e

%ﬂé‘.‘,«’\ﬂl
A

No bug!

>
t
Too complicated, complex, undecidable

‘ &
JAPA

irdeto

Abstraction i

4 2()

~Y

To understand code we need abstraction: simpler and computable

Digital Assat Protection Asse

irdeto

Abstraction

2 (@)

>

t
Abstraction "+ (sound) loss of precision

VAPA

Digitat Assat Protection Asse,

irdeto

Abstraction

p 7 Bad State

No bug!

t
Computable
Abstraction " (sound) loss of precision

VAPA

Digital Assat Protection Assn,

irdeto

Completeness

2 (@)

Bad State

False
Alarms

Abstraction "+ (sound) loss of precision
Incompleteness

DAPA

Digital Assat Protection Assn,

irdeto

Completeness

2 (@)

Bad State

Error

Abstraction " False alarms
Incompleteness

VAPA

Digital Assat Protection Assn,

-

Completeness

T

f

B

i

COMPLETENESS: nofop =mnof

irdeto

T T

IN-COMPLETENESS: N0fop >nof

irdeto

T T

- - = -

Refining 9

Making ABSTRACTIONS COMPLETE: Refining input domains
[Giacobazzi et al. JACM'00]

irdeto

T

Simplifying

X

1 L

Making ABSTRACTIONS COMPLETE: Simplifying output domains
[Giacobazzi et al. JACM’00]

irdeto

Making Completeness
A SIMPLE EXAMPLE IN INTERVAL ANALYSIS

A simple domain of intervals

& sq(X):{a:Z) r e X }

~ {Z, 10, 4+00],[0,10]} is

not Backward complete

[0, 0]

Same input & output abstraction = fix-point refinement

Ry(a) =gfp(AX. al Rf(X))

Ry = AX. M(U, cx max(f~ (1))
irdeto

& ___ irdeto

Transformation

A self interpreter int and a specializer spec

target ;= [spec](int, source) source

Design int and spec for obfuscating code

Challenge!

A self interpreter int and a specializer spec

1

‘input z; % pc = 2;

3. ot 1.s
while {p}c < 6do input z;
e e Defense 2

5.4 1= 2: 6:pei=3; < >-while {z} > 0do
7f {2} {>)0 then 3 pc := 4 else * pc := 6; Ty=y+2
104 .y + 2 1Vope i= 5: >z .=z — 1 endw
2gi=gz—1; 3pc:=3 AttaCI(*-output y;

endw > 7-end

- output y

1>-end

target ;= [spec](int, source) source

Design obfuscation from observation
(transformation) (abstraction)

irdeto

irdeto

The Attacker

irdeto

WHY ABSTRACT INTERPRETATION?

Abstract Interpretation (1977) is the a general model for the (static or dynamic)

40 sum{A[i] | i=0..0-1 } & 0<=N

0
0

S= S:A[J]
|

S=sum{A[i] | i=0..J-1 } & J<=N

S=sum{A[i] | i=0..J-1 } & J=<=N

RN S=STmALT| 0,378 I8N & J>=N

-J<N>b [
- LN
S=sum{Ali] | i=0..J-1 } & J<N

. ' 'L

SA=J 4

S=sum{A[j)’| i=0..J} & J<N
S=sumfAi] | i=0..(J+1)-1 } & J+1<=N

S=sum{Al[i] | i=0..J-1 } & J<=N

approximation of semantics of discrete dynamic systems

Including: Static program analysis, dynamic analysis, profiling,
debugging, tracing, compilation, de-compilation, type checking and type
inference, model checking and predicate abstraction, trajectory
evaluation, testing, proof systems, etc.

S=sum{A[i] | i=0
1

irdeto

ABSTRACT INTERPRETATION

Design approximate semantics of programs [Cousot & Cousot '77, '79].
T T

Abstract

Concrete

Galois Connection: (C, «, v, A), A and C are complete lattices.

Closures: (uco(C'), C) set of all possible abstract domains,
A7 C Ay if A7 is more concrete than A

irdeto

APPROXIMATING INTERPRETATION

™ = . T
Abstract domain Fﬁ =~
_f
A A
« v @ "/ a a "/ Applo\llll ation Error
S = i '- relation C b ,
P - a"
n ?
L F F 5 Concrete domain
)i
_u
B _

GG is a sound approximation of F if

xoFoyLC @G

Digital Assat Protection Assn

&

SOUNDNESS AND COMPLETENESS

WhichChess : Img — p(Chess) returns the type of chess on the
chessboard.

po:Img — Img such that: p

N : o(Chess) — [0, 12] counts an upper bound to the number of different
types of chess

n (WhichChess <p (

-~
M (WhichChess (. /.'

12

'V

| (WhichChess

irdeto

rdeto

Obscurity as Incompleteness

The attack strategy is a temporal formula to check against an abstraction
The attacker is an abstract interpreter

Failing precision means failing completeness

Obfuscating is making abstract interpreters and strategies incomplete!!

[P] = [T(P)] o([P]) = [P]°

T obfuscates P if [P]° C [t(P)]°

[P]° C [t(P)]° <= p([t(P)]) C [*(P)]°

& irdeto

OBSCURITY AS INCOMPLETENESS

Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete

P:x=axb
Sign is an obvious abstraction of p(Z):
o(Z)
//\\ o(Z)
0— 0+ 0— 0+
(—1,-3,—4} "°° {2,3,5) 0
o 1 ... 0

0

& irdeta

OBSCURITY AS INCOMPLETENESS

Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete
P:x=axb

Sign is an abstraction of p(Z):

2 g irdeto

OBSCURITY AS INCOMPLETENESS

Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete

x =0
P: x=axb — 1(P): ifb<0then{a=—a; b=—b}
whileb#0{x=a+x; b=b—1}

&

Sign is complete for P:
[P]°%“" = Aa,b. Sign(a *b)
)

Sign is incomplete for t(P):

0 fa=0Vb=0
?=p(Z) otherwise

[T(P)]”“" = Aa, b. {

P
Q :

r:=ax*xb
r:=ax*x(b—2)+a-+a

(P

irdeto

—}):{CE,H—I—,CLI%—I—,[?'—)—F}

S ({a— -
[QT*" ({a = +,b > -

B ={z,—~ Z,a— +,b— +}.

EXPOLITING INCOMPLETENESS

Maximize [P]° incompleteness!

S

The abstraction is the specification of the attacker
Profiling: Abstract memory keeping only (partial) resource usage
Tracing: Abstraction of traces (e.g., by trace compression)
Slicing: Abstraction of traces (relative to variables)
Monitoring: Abstraction of trace semantics ([Cousot&Cousot POPL02])
Decompilation: Abstracts syntactic structures (e.g., reducible loops)
Disassembly: Abstracts binary structures (e.g., recursive traversal)

Each abstraction is incomplete for a concrete enough trace semantics
Maximize incompleteness by code transformation: Obfuscation

Exploit incompleteness for hiding information: Steganography

irdeto

irdeto

Interpreter-based Obfuscation

’\ /

Interpreter

Digital Assat Protection Assn

irdeto

Whole-program VIEW OF OBFUSCATION

A major conflict makes program obfuscation a subtle problem in programming:
Good programs are well-structured and have concise invariants

This is a key to

understanding a program, and

adapting it to new purposes.

Good structure and short invariants are necessity in order to develop, debug
and perfect a program P in the first place.

However, instead an obfuscated program should not be well-structured and
easy to understand.

This suggests (among other things):

obfuscation by making the program’s control/data flow hard to understand

irdeto
ABOUT P’ = |spec|(interp, P)

Program P’ inherits the algorithm of program Pp.

Program P’ inherits the programming style of interp.

1: A correct interpreter interp must faithfully execute the operations

specified by program p. Usually: specialized program P’ performs the
same computations in the same order as those performed by P.

Most interpreters do not devise new computational approaches!

2: P’ consists of specialized code from the interpreter interp:

P’ = the operations of interp that depend on its dynamic input
(all others will be “specialized away”).

L= |dea

Build a general-purpose program transformer by programming a
self-interpreter in a style to give the desired transformation

CLAIM: [P] = [P'], by simple equational reasoning:

[P](d) = [interp](P,d) definition of self-interpreter
= [[spec](interp,P)](d) definition of specializer
= [P’](d) definition of P’

Therefore the function
P — [spec](interp, P)

IS a semantics-preserving program transformer!!

We need to change the interpretation: interp ~» interp™

irdeto

irdeto

Flattening

JAPA

Digital Assat Protection Asse

irdeto

CODE FLATTENING

(Cloackware 2000] (FcJeto

ldea: “scramble” or “distort” the control flow of input program P, without
changing its whole-program semantics

Conditional jump
—1___ |

Loop :i Conditional jump .1 l rzl | 3 l I7 l |
== e[

i -

Original Program Flow Control Flow Flattened Program

|
L

-
A

Digital Assat Protection Asse

irdeto

EXAMPLE OF FLATTENING

The following flattened program P’ has

only one loop (regardless of how many loops P has), and

an explicit program counter pc

Original program P: Flattened equivalent program p’:

1‘input z, % pe =2

input z; 3>-while pc < 6 do
2oy =2 4-case pc of
3-while z > 0 do 2: %y:=2; %pc:=3:

Yyi=y+2 3: 7if z > 0 then 8 pc := 4 else ” pc := 6;

Ypi=x—1 4: 10y =y +2: M pe:=5;

endw 5: 12 p:=2—1; 3 pc:=3:
6'output Y, endw
’-end 14'output Y
15.

end

irdeta
STRUCTURE OF A SIMPLE SELF-INTERPRETER

input P, d; Program to be interpreted, and jts data
pe = 2; Initialise program counter and store
store .= [in +— d, out — 0,21 — 0,...];)
while pe < length(P) QO oreerereeem e
instruction := lookup (P, pc); Find the pc-th instruction
case instruction of Dispatch on syntax
skip : pc:=pc+1;
T = e : store:= storelr — eval(e, store)]; pc = pc+ 1;

----- pc dynamic!

. endw ;
output storelout];
eval(e, store) = case e of Function to evaluate expressions
constant : e
variable : store(e)
el +e2 :eval(el,store) + eval(e2, store)

el —e2 :eval(el,store) — eval(e2, store)

el xe2 :eval(el, store) * eval(e2, store)

target := [spec]|(int, source)

& irdeto

Why?

irdeto

THE CFG ABSTRACTION

> The attacker is an abstract interpreter extracting the CFG from P
forgets the computed memory M: C = Ac. Ml
forgets the branch computation when involving the pc: n
Fixpoint Graph semantics: [P]g = Ifp(Gp)

)

................... pc dynamic!

Flattening is distorting an interpreter making an abstract interpreter extracting
the CFG incomplete

A Theory?

xV-wyVz

“xV =z -aVz]

DAPA

Digital Assat Protection Assn

ALY

irdeto

Simplifying abstractions

sq(X)
More abstract .
RERT, = Ap. pTTM(f (n))
7 [0, +00]
[0, 10] >
p [072]
R
\ 4
More concrete

[0, +00]

irdelo

Simplifying abstractions

sq(X)
More abstract .
Y A
RERT, = Ap. pTTM(f (n))
7 [0, +00]
[0, 10] > ";
. o
° P * [0,2]
R
® 4
More concrete

[0, +00]

irdelo

irdelo

Simplifying abstractions

More abstract
A

RE=R7, = Ap. pTTM(f(n))

irdeto

Simplifying abstractions

More abstract The Inverse!
RER7, = Ap. pTIM(f(n))

More concrete

RY =Xp. | [{6]|R6) =R(p) } =p. | [{6]6NM(f(n) = pn1M(f(n)) }

Mirr

Ap. M

Example

irdeto

sq(X)z{xz‘ r e X }

Example

irdeto

sq(X)z{xz‘ r e X }

'. | irdeto

Example

Int’ = M(Mirr(Int) ~ M(sq*(Int)))

ircdaha

Example

M(sq*(Int)) = { [a*, b?] |a, b€ Z } U\{ [a?,+o0] |a € Z }

Int' = M(Mirr(Int) ~ M(sq¢*(Int))) =
a,b€Z,Pe.a=c2VRAd. b=d* }U{[-0c0,b]|beZ }U{[a,+o0]|a€Z Pc.a=c?}

{ a, 0]

irdeto
Absolute Incomplete
Com pre ressor
If 93*() is notT then
= R*(p) is absolute incomplete compressor, i.e., 3‘
R (p)of R* (p) # foR" (1)
Z Mirr(py) %
[0, +o0] o/ \o [—00, 0] [07"‘00@0[00, 0] @
0 99]l l[—99 0] [0, 99] l 99, 0] 0, 99 99, 0]
[0, 9] l l [—9,0] [0,9]@[9, 0] 0, 9 @ —9,0]
[(.)] (0]
S = ps(p(Z)) pp = 1Z,[0,+0c},[0,9], [9,0], [0]} S" = M(Mirr(py TM(5¢5(pp))) ~ M(sq*(ps))

s¢°(X) = ps(sq(X))

irdeto

irdeto

Program Slicing Obfuscation

For a variable v and a statement (program point) s (final use of v), the slice S
of program P with respect to the slicing criterion <s,v) is any executable
program such that S can be obtained by deleting zero or more statements
from P and if P halts on input | then the value of v at the statement s, each
time is reached in P. is the same in P and in S.

0; Ll i=0;
1;3%whilei >0doi:=14+1; Py
T

9 Y =T,

irdeto

Data Dependency (Slicing) Obfuscation

Word Count program
which takes a block of text and outputs the number of
lines (nl), words (nw) and characters (nc):

original() {
int c,nl=0, nw =0, nc =0, in;

in=F,
while ((¢c =getchar()) | = EOF) {
NC ++;
if(c="||lc=\n" || c=\t)in=F;

elseif (in==F) {in=T; nw ++; }
if (c ==\n") nl ++;

}

out(nl, nw, nc); }

= rdeto

Data Dependency (Slicing) Obfuscation

Word Count program
which takes a block of text and outputs the number of
lines (nl), words (nw) and characters (nc):
Slicing criterion: nl

original() {
intc,nl =0, nw=0, nc =0, in;

in=F,
while ((¢c = getchar()) | = EOF) {
Nne ++;
if(c="||lc=\n" || c=\t)in=F;

elseif (in==F) {in=T; nw ++; }
if(== ‘\n,) n]_ ++;
}

out(nl, nw, nc); }

Data Dependency (Slicing) Obfuscation

Word Count program
which takes a block of text and outputs the number of
lines (nl), words (nw) and characters (nc):
Slicing criterion: nw

original() {
int ¢, nl =0, nw =0, nc =0, in;

in=F;
while ((c = getchar()) | = EOF) {
NC ++;
if(c==""]lc=\n" || c=\t) in=F,

elseif (in==F) {in =T; nw ++; }
if (c==\n") nl ++;

}

out(nl, nw, nc); }

irdeto

Data Dependency (Slicing) Obfuscation

Word Count program
which takes a block of text and outputs the number of
lines (nl), words (nw) and characters (nc):

obfuscated() {
int ¢, nl =0, nw =0, nc =0, in;

in=F,
while ((¢ = getchar()) | = EOF) {
Ne ++;
if(c=="||lc=\n" || c=\t) in=F;

elseif (in==F) {in=T; nw ++; }

if (c ==\n") {if (aw <=nc) nl ++; }
if (nl > nc) nw =nc + nl;

else {if (nw > nc) nc=nw - nl; }

}

out(nl, nw, nc); }

irdeto

Data Dependency (Slicing) Obfuscation

Word Count program
which takes a block of text and outputs the number of
lines (nl), words (nw) and characters (nc):

obfuscated() {
int c,nl=0, nw =0, nc =0, in;
in=F,
while ((¢ = getchar()) | = EOF) {
1NC ++
if (c==""|
else if (in = F) {in
1f (c==\n") {if
Always false &= c *nl;
else {if(aw >ncy)nc = nw - nl; }
}

out(nl, nw, nc); }

Always true

irdeto

Data Dependency (Slicing) Obfuscation

Word Count program
which takes a block of text and outputs the number of
lines (nl), words (nw) and characters (nc):
Slicing criterion: nl

obfuscated() {
inte,nl=0,nw =0, nc =0, in;

in=F;
while ((¢c = getchar()) | = EOF) {
ne ++;
if(c=""|]lc=\n"|| c==\t)in=F,

elseif (in==F) {in=T; nw ++; }

if (c==\n") {if (nw <=nc) nl ++; }
if (nl > nc) nw =nc + nl;

else {if (hw > nc) nc =nw - nl; }

}

out(nl, nw, nc); }

F G irdeta

Data Dependency (Slicing) Obfuscation

Word Count program
which takes a block of text and outputs the number of
lines (nl), words (nw) and characters (nc):
Slicing criterion: nw

obfuscated() {
inte,nl=0,nw =0, nc =0, in;

in=F;
while ((¢c = getchar()) | = EOF) {
ne ++;
if(c=""||lc=\n"|| c==\t)in=F,

elseif (in==F) {in=T; nw ++; }

if (c==\n") {if (nw <=nc) nl ++; }
if (nl > nc) nw =nc + nl;

else {if (hw > nc) nc =nw - nl; }

}

out(nl, nw, nc); }

irdeto

Attack: Semantic PDG

=0;
:=1; >whilei>0doi:=i+1; Deey = @ s = (o, (Entry, 1))
—

Digital Assat Protection Assn

irdeto

Attack: Semantic PDG

Py |%4i:=1;3%whilei>0doi: =i+ 1; Dy =1[D, =1] s = (o,(1,2))
4.
yi=a;

Digital Assat Protection Assn

irdeto

Attack: Semantic PDG

Dy, =[D, =1,D; = 2] s = (0,(2,3))

Digital Assat Protection Assn

irdeto

Attack: Semantic PDG

D3 =[D, =1,D; = 2] s1 = (0,(3,3a)) and sy = (0, (3,4))

I
8 — o
@\
=
)
V
(@]
o
i
|
—t

Digital Assat Protection Assn

irdeto

Attack: Semantic PDG

D3, =[D, =1,D; = 3d] s1 = (0,(3a,3)) and so = (0, (3,4))

]
8 o
w
s
=
o
Vi
(@]
‘

irdeto

Attack: Semantic PDG

=0;
:=1; Cwhilei >0dodi :=i+1; Ds, =[D, =1,D; = 3a] s1 = (0,(3,3a)) and s2 = (o, (3, 4))
=z

fixpoint

' %
| v
Digital Assat Protection Asse

irdeto

Attack: Semantic PDG

. >whilei >0doi:=i+1; Dy=1[D,=1,D;, =2,D, =] s1 = (0,(3,3a)) and 55 = (o, (4, 1))

' %
| v
Digital Assat Protection Asse

& irdeto

Potency of Data obfuscation

- If a program P contains fake dependencies (i.e., not semantic) the analyses
deceived are those analyzing syntactic dependencies only!

- The incomplete backward compressor of the abstraction of the PDG based
on semantic dependencies is the PDG based on syntactic dependencies only,
l.e., standard slicing!

- Namely, any obfuscator adding fake dependencies deceives slicing
algorithms based on the computation of syntactic dependencies!!

i The semantic PDG is complete (the PDG analysis is precise) iff the program §
'“ does not contain fake dependencies

boaaa SIS R RO GG TR VI SO0 TS R O WP T Y DO P R A s L QO PR S P T I OV LIRS B DR P g P rs L A" EE e e Aee B Lo b jecp ol o g £ e s A e Aok B Lo b

irdeto

Concluding

Digital Assat Protection Assn

© So what! rdeto

Any obfuscation technique is an instance of
[spec](interp ", P)

for some interp™ making an abstraction « incomplete!

Tracing: Abstraction of traces (e.g., by trace compression)

£ Slicing: Abstraction of traces (relative to variables)
Monitoring: Abstraction of trace semantics ([Cousot&Cousot POPL02])
Decompilation: Abstracts syntactic structures (e.g., reducible loops)
Disassembly: Abstracts binary structures (e.g., recursive traversal)

-4
:DQ;LQ‘C
S =
Profiling: Abstract memory keeping only (partial) resource usage
N

Given an obfuscated code P, what is «?

Given «, can we derive interp™ systematically?

irdeto
META-LEVEL DISCUSSION

The Futamura projections are as follow for a distorted interpreter interp™:

1. P’ .= [spec](interp™,P) Transform program
2. comp := [spec](spec,interp’) Generate transformer
3. cogen := [spec](spec,spec) Transformer generator

We have just seen instances of the 1st Futamura projection.

If the set of incomplete program structures is Turing complete: Write the
distorted interpreter as incomplete structures

If you want to act /ocally. use interference to ensure that incompleteness is
propagated

An obfuscating compiler can also be generated, by the 2nd Futamura
projection; this has been done using the UNMIX partial evaluator.

For example, if P is interp®!®*t, then compiler is a stand-alone obfuscator:
a “flattening” program transformer.

IMMEDIATE CONSEQUENCES
There are other better ways to obfuscate and to produce a obfuscator:

~ P’ = [comp](p) (obfuscate by compiler) and

&

comp = [cogen](interp™) (generate obfuscator).

Future developments will involve gaining a deeper understanding in expected
time factors:

1. timep/(d) and timep(d), exemplifying
the slowdown imposed by the obfuscation;

2. timegspec(interp™,p) and length(P), exemplifying the
the amount of time required to do the obfuscation by specialization;

3. timecomp(p) and length(P), exemplifying the
time to do the obfuscation by running the generated obfuscator

irdeto

& irdeto

L Measurin g Adversa 'y Stre ngth 4

High
- Force the attacker to use
automated tools (programs of
>
= Attack large size and highly
%_ interconnected)
c - Design code transformations
S making tools blind
o) - Determine lower bounds for proof
09_ complexity in obfuscated code
- Defense - Measure the degree of noise/
slowdown induced in obfuscation
Low

High Degree of obfuscation Low

By constraining the adversary within a theorem prover we can quantify the security achieved from obfuscation

& irdeto

b Measurin g Adversa 'y Stre ngth !

High
- Force the attacker to use
automated tools (programs of
>
= Attack large size and highly
%_ interconnected)
c - Design code transformations
S making tools blind
o) - Determine lower bounds for proof
09_ complexity in obfuscated code

- Defense - Measure the degree of noise/
slowdown induced in obfuscation

Low « ’

High Degree of obfuscation Low

By constraining the adversary within a theorem prover we can quantify the security achieved from obfuscation

irdeto

Digital Assat Protection Asse

