
On the Rôle of Abstract Non-Interference in

Language-based Security

Isabella Mastroeni

Department of Computing and Information Sciences - Kansas State University,

Manhattan, Kansas, USA (isabellm@cis.ksu.edu)

Abstract. In this paper, we illustrate the rôle of the notion of Abstract

Non-Interference in language based security, by explaining how it mod-

els both the weakening of attackers’ observational capability, and the

declassification of private information. Namely, we show that in abstract

non-interference we model both attackers that can only observe prop-

erties of public data, and private properties that can or cannot flow.

Moreover, we deepen the understanding of abstract non-interference by

comparing it, by means of examples, with some the most interesting ap-

proaches to the weakening of non-interference, such as the PER model,

robust declassification, delimited release and relaxed non-interference.

Keywords: Language-based Security, Non-Interference, Declassification.

1 Introduction

An important task of language based security is to protect confidentiality of

data manipulated by computational systems. Namely, it is important to guar-

antee that no information, about confidential/private data, can be caught by an

external viewer. The standard way used to protect private data is access control:

special privileges are required in order to read confidential data. Unfortunately,

these methods allow to restrict accesses to data but cannot control propagation

of information. Once the information is released from its container, it can be

improperly transmitted without any further control. This means that security

mechanisms such as digital signature and antivirus scanning, do not provide

assurance that confidentiality is maintained during the whole execution of the

checked program. This implies that, if a user wishes to keep some data confi-

dential, he might state a policy stipulating that no data visible to other users

is affected, within the executed program, by modifying confidential data. This

policy allows programs to manipulate and modify private data, as long as visible

outputs of those programs do not reveal information about these data. A policy

of this sort is called non-interference policy [13], since it states that confidential

data may not interfere with public data, but it is also referred as secrecy [25].

The standard approach to non-interference, is based on a characterization of

attackers that does not impose any observational or complexity restriction on

the attackers’ power. This means that the attackers are all-powerful, modeled

without any limitation in their quest to obtain confidential information. For this

reason non-interference, as defined in literature, is an extremely restrictive pol-

icy. The problem of refining this kind of security policies has been addressed by

many authors as a major challenge in language-based information flow security

[22], where refining security policies means weakening standard non-interference

checks. In order to adapt security policies to practical cases, we need a weaker

notion of non-interference where the power of the attacker (or external viewer)

is bounded, and where intentional leakage of information is allowed. In [9], we

introduce a weak notion of non-interference for characterizing the secrecy degree

of programs by identifying the most powerful attacker that is not able to dis-

close confidential information by observing the execution of programs, but also

in order to characterize the maximal amount of information released. Clearly,

this is not the only, and not even the first attempt to weaken the notion of

non-interference, from both these points of view, as we will see in Sect. 3. But

this is the only one, to the best of our knowledge, that can model, in the same

formalism, both weaker attackers and released information. In this paper we

show, by means of examples, that different techniques proposed in literature for

weakening non-interference (e.g., PER model) and for declassifying information

(e.g., selective dependency, delimited release, relaxed non-interference) can be

equivalently formalized in abstract non-interference, but moreover we show that

in some cases abstract non-interference captures a much more precise notion and

allows to derive certifications of the security degree of programs. The aim of this

paper is to show how abstract non-interference can be simply adapted in order

to cope with different problems concerning secure information flow, and to allow

a deep insight of this notion.

2 Abstract Interpretation: A panoramic view

In the following of this paper we will use the standard framework of abstract

interpretation [5, 6] for modeling the observational capability of attackers. The

idea is that, instead of observing the concrete semantics of programs, namely

the concrete values of public data, the attackers can only observe properties of

public data, namely abstract semantics of the program. For this reason we model

attackers by means of abstract domains. Abstract domains are used for denoting

properties of concrete domains, since their mathematical structure guarantees,

for each concrete element, the existence of the best correct approximation in

the abstract domain. This is due to the property, of abstract domains, of being

closed under the concrete greatest lower bound. So for example an abstract do-

main for the sign analysis is Sign
def

= {Z, 0+, 0−, {0}, ∅}1, while if we weed out

{0}, then it is no more an abstract domain. Formally, the lattice of abstract

interpretations of C is isomorphic to the lattice uco(C) of all the upper clo-

sure operators on C [6]. An upper closure operator ρ : C → C on a poset C

is monotone, idempotent, and extensive2. Closure operators are uniquely deter-

mined by the set of their fix-points ρ(C), which are abstract domains formalized

independently of the representation of their objects. If C is a complete lat-

tice then 〈uco(C),v,t,u, λx. >, λx. x〉 is the lattice of upper closures, where

for every ρ, η ∈ uco(C), {ρi}i∈I ⊆ uco(C) and x ∈ C: ρ v η iff η(C) ⊆ ρ(C);

ti∈Iρi =
⋂

i∈I ρi; and ui∈Iρi = M(
⋃

i∈I ρi), where M is the operation of closing

a domain by concrete greatest lower bound, e.g., intersection on power domains.

3 Non-Interference and Declassification: The road map

Non-interference for programs essentially means that “a variation of confidential

(high or private) input does not cause a variation of public (low) output” [22].

When this happens, we say that the program has only secure information flows

[1, 4, 7, 15, 25]. This situation has been modeled by considering the denotational

(input/output) semantics JP K of the program P . In the following, we consider

programs where data are typed as private (H) or public (L). Program states,

whose set is Σ, are functions (represented as tuples) mapping variables in the

set of values V. Any input state s, can be seen as a pair (h, l), where sH = h

is a value for private data and sL = l is a value for public data. In this case,

(standard) non-interference can be formulated as follows: Let P be a program

P is secure if ∀ s, t ∈ Σ. sL = tL ⇒ (JP K(s))L = (JP K(t))L

This notion has been formulated also as a Partial Equivalence Relation [14, 23].

The limitation of this notion of non-interference is that it is an extremely

restrictive policy. Indeed, non-interference requires that any change upon confi-

dential data has not to be revealed through the observation of public data. There

are at least two problems with this approach. On one side, many real systems are

intended to leak some kind of information. On the other side, even if a system

satisfies non-interference, too restrictive tests could reject it as insecure. These

observations address the problem of weakening the notion of non-interference

both characterizing the information that is allowed to flow, and considering

weaker attacker models, that can observe only properties of public data. The

first problem is treated by means of declassification of private information, while

the second problem characterizes the observational capability of the attacker.

1 0 +
def

= {n | n ≥ 0}, 0 −
def

= {n | n ≤ 0}.
2 ∀x ∈ C. x ≤C ρ(x).

Different notions of non-interference dealing with declassification have been in-

troduced. The first formalization is selective dependency [4], where a property

on private input is declassified, by letting the private input range only upon

sets of confidential values with the same declassified property. In this case non-

interference is checked only whenever a fixed input property holds. So, if we

consider the property ϕ(h) : h mod 3 = 1, then non-interference is checked only

when the input h satisfies ϕ. Declassification is considered in presence of ac-

tive attackers, i.e., attackers that can modify the code of the program in robust

declassification [26]. Declassification is robust whenever an active attacker can-

not disclose more information than what can be observed by a passive attacker.

This notion is then better formalized in [19], where also a type system is pro-

vided for enforcing robust declassification. More recently two other weakenings of

non-interference are provided for dealing with declassification: delimited release

[21] and relaxed non-interference [17]. Both these notions enforce the respective

non-interference with a type system, the first on a simple imperative language

with explicit declassification of expressions, and the second on λ-calculus. The

end-to-end policy in both of them is the same, and it corresponds to selective

dependency [4]. In [17] a method is also provided for deriving the declassifica-

tion policy that makes the program satisfying relaxed non-interference. All these

approaches are qualitative. There exist also two approaches for quantifying the

information released [3, 18].

As far as the model of the attacker is concerned, a possible limitation of the

attackers consists in restricting the possible computational complexity of at-

tackers [8, 16], but we can also think of defining non-interference parametric on

what the attacker can observe of public data. This model can be given in terms

of equivalence relations [14, 23, 26] or in terms of abstract domains [9–12].

4 Abstract Non-Interference for modeling attackers

Consider the program P
def

= l := |l| ∗ Sign(h), suppose that | · | is the absolute

value function and suppose Sign(h) returns the sign of h, then “only a portion

of l is affected [by h], in this case l’s sign. Imagine if an observer could only

observe l’s absolute value and not l’s sign” [4] then we could say that the pro-

gram is secure. This is the basic idea in the notion of abstract non-interference

[9], used for modeling both weaker attack models and declassification. The idea

is that an attacker can observe only some properties, modeled as abstract in-

terpretations of the concrete program semantics. In the following, if T ∈ {H, L},

n = |{x ∈ Var(P)|x of type T}|, and v ∈ Vn, we abuse notation by denoting

v ∈ VT the fact that v is a possible value for the variables with security type T.

The model of an attacker , also called attacker , is therefore a pair of abstractions

〈η, ρ〉, with η, ρ ∈ uco(℘(VL)), representing what it can observe about, respec-

tively, the public input and output of a program. We obtain so far the notion of

[η]P (ρ) if ∀h1, h2 ∈ VH, ∀l1, l2 ∈ VL . η(l1) = η(l2) ⇒ ρ(JP K(h1, l1)
L) = ρ(JP K(h2, l2)

L)

(η)P (ρ) if ∀h1, h2 ∈ VH, ∀l ∈ VL .ρ(JP K(h1, η(l))L) = ρ(JP K(h2, η(l))L)

Table 1. Narrow and Abstract Non-Interference (without declassification).

narrow (abstract) non-interference (NANI) denoted [η]P (ρ), provided in Table 1.

It says that if the attacker is able to observe the property η of public input, and

the property ρ of public output, then no information flow concerning the pri-

vate input is observable from the public output. The problem with this notion is

that it introduces deceptive flows [9], generated by different public output due to

different public inputs, with the same input property η. Consider, for instance,

[Par]if l then l := 2h + l else l := 2h + 1(Par), we can observe a variation of

the output’s parity due to the fact that both 0 and 2, for example, are even

numbers, revealing a flow not due to different private inputs. Most known mod-

els for weakening non-interference (e.g., PER model [23]) and for declassifying

information (e.g., robust declassification [26]) corresponds to instances of NANI

[9, 14]. In order to avoid deceptive interference we introduce a weaker notion

of non-interference which considers, as public input, the set of all the elements

sharing the same property η. Hence, in the previous example, the observable

output for l is the set of the possible values obtained by considering all the in-

puts with the same parity, e.g., if Par(l) = even then we check the parity of
{

2h + l
∣

∣ l 6= 0 is even
}

∪ {2h + 1} which is always unknown, since 2h + 1 is

always odd, and h does not interfere with the final parity. This notion, denoted

(η)P (ρ), is called abstract non-interference (ANI) without declassification, and

it is formally defined in Table 1. So, if P
def

= l := |l| ∗Sign(h), and we consider the

closure Abs that forgets the sign of an integer number, i.e., Abs(n) = {n,−n},

then [Abs]P (Abs). While, for example if P
def

= if h > 0 then l = m else l = −m,

then [id]P (Abs). Hence abstract non-interference allows the weakening of attack-

ers models without introducing deceptive interference. Moreover, this abstract

model can be used for characterizing the security degree of programs. In partic-

ular, the most concrete output observation for a program, given the input one,

for both narrow and abstract non-interference can be systematically derived [9].

The idea is that of abstracting in the same object all the elements that, if distin-

guished, would generate a visible flow. These most concrete harmless attackers,

with a fixed η in input, are, respectively, denoted [η]JP K(id) and (η)JP K(id), both

in uco(℘(VL)). Hence, in both the programs above, we note that each value n has

to be abstracted in {n,−n}, in order not to generate visible flows, hence the most

concrete harmless attacker can at most observe Abs, i.e., [Abs]JP K(id) = Abs.

4.1 Abstract Non-Interference vs PER model

In [14], the authors analyze the relationship between abstract non-interference

and the PER model of secure information flow. Given the equivalence relations

All, Id such that ∀x, y.x All y and ∀x, y. Id y iff x = y, then the PER model of

secure information flow [23] says that P satisfies non-interference if:

x All × Id y ⇒ JP K(x) All × Id fJP K(y)

where each state x is partitioned in its confidential and public component, i.e.,

x = 〈xH, xL〉. In [14] it is shown that this is an instance of NANI, since it considers

particular equivalence relations, and since equivalence relations can be modeled

by a subset of upper closure operators, called partitioning [20]. This also implies

that abstract non-interference, without declassification, is strictly more general,

as it is proved in [14].

4.2 Abstract Non-Interference vs Security for Robust

Declassification

In [26], in order to accommodate programs that do leak confidential information,

the authors allow the information flow controls to include a notion of declassi-

fied information, where declassifying means downgrading the sensitivity labels on

data. Declassification is defined by saying that a passive attacker , i.e., attackers

that can make only observations of the system and draw inference from those ob-

servations, may be able to learn some confidential information by observing the

system, but by assumption, that information leakage is allowed by the security

policy. The problem is that once a channel is added to the system along which

sensitivity labels are downgraded, there is the potential for the channel to be

abused to release sensitive information other than that intended. This is clearly

possible whenever we are in presence of active attackers , i.e., programs running

concurrently with the system. When such an attacker cannot obtain more con-

fidential information than what a passive attacker can by simply observing the

system, then we say that the system is robust . In other words, robust declassi-

fication guarantees that if a passive attackers may not distinguish between two

memories where the secret part is altered, then no active attackers may distin-

guish between these two memories [24].

We compare this paper with ANI without declassification, since robust declassi-

fication considers a programming language without explicit declassification and

does not characterize the information declassified. It simply derives robustness

of declassification by proving a security property that is equivalent to NANI

defined on trace semantics [9].

Let S = 〈Σ,→〉 be a transition system, and 〈|S|〉 the induced trace seman-

tics. Suppose the observational capability of the attacker is characterized by the

equivalence relation ≈, then the observation of a trace τ of S, through ≈ is

the trace τ/ ≈, such that for each i, (τ/ ≈)i
def

= [τi]≈
3, and the observation of

S is 〈|S|〉≈
def

=
{

τ/ ≈
∣

∣ τ ∈ 〈|S|〉
}

. The set of all the traces in S starting from a

state σ is denoted 〈|S|〉(σ) and two traces are equivalent if they are equal up to

stuttering, while two sets of traces are equivalent, i.e., ≡, if all their traces are

equivalent: X ≡ Y ⇔ ∀τ ∈ X ∃τ ′ ∈ Y. τ ≡ τ ′ and vice versa. The security

property for a system S, is S |= SP(≈), which holds iff S[≈] ⊇≈ (note that

≈⊇ S[≈] always holds), where

∀σ, σ′ ∈ Σ. σ S[≈] σ′ ⇔ 〈|S|〉(σ)≈ ≡ 〈|S|〉(σ′)≈

Hence, S |= SP(≈) holds iff ∀σ, σ′ ∈ Σ. σ ≈ σ′ ⇒ 〈|S|〉(σ)≈ ≡ 〈|S|〉(σ′)≈, namely

the set of the traces starting form σ and observed through ≈ is equivalent to

the set of the ≈-observable traces starting from σ′. A ≈-attack is a system

A = 〈Σ,→A〉 such that A |= SP(≈), which means that the attacker does not

know any secret before running with the program. At this point, given an attack

A and a system S, both specified in terms of the same set of states Σ, the attack

on S by A is the union of the systems: A ∪ S, and S is robust w.r.t. ≈, if for

all the ≈-attacks A, the system A ∪ S, observed through ≈, does not release

more information than what is released by S, always observed through ≈, i.e.,

S[≈] ⊆ (S ∪A)[≈]. Moreover, Theorem 4.1 in [26] says that S |= SP(≈) implies

the system is robust for all the possible ≈-attacks.

Consider narrow non interference defined in terms of trace semantics [12],

where the abstraction ρ of a trace τ is the trace ρ(τ) such that ∀i.ρ(τ)i
def

= ρ(τi).

Consider the attacker modeled by using partitioning closures, i.e., equivalence

relations [14], then it is straightforward to prove that narrow non-interference

|=〈|S|〉 [ρ≈]S(ρ≈)4, where ρ≈
def

=
{

[x]≈
∣

∣x ∈ VL
}

∪ {>,⊥}, is equivalent to the

property S |= SP(≈) [9]. This means that, by Theorem 4.1 [26], also NANI can

be used for characterizing robust declassification. Note that, in both these works

there is not explicit declassification in the language, the idea is simply that what

is naturally released from the semantics of the system has not to be exploited

for obtaining much more information.

Example 1. Consider the following program and its semantics:

P
def

= l := 2h + l and 〈|P |〉 =
{

〈h, l〉 → 〈h, 2h + l〉
∣

∣h ∈ VH, l ∈ VL
}

This program is neither robust nor satisfies non-interference, being S[=L] (=L

since 〈h, l〉 → 〈h, 2h + l〉 6≈ 〈0, l〉 → 〈h, l〉 when h 6= 0 and ≈ requires the

equality of the projection on the low values. On the other hand, if we consider

3 τi denotes the i-th element of the trace τ .
4 |=〈|P |〉 [η]P (ρ) denotes when NANI is checked by using the trace semantics 〈|P |〉.

the equivalence relation ≈Par

5, then ∀h1, h2. 〈h1, l〉 → 〈h1, 2h1 + l〉 ≈Par 〈h2, l〉 →

〈h2, 2h2 + l〉, since adding 2hi to l does not change l’s parity. Indeed, both

S[≈Par] =≈Par and narrow abstract non-interference hold. Hence, the program is

robust for all the attacks A |= SP(≈Par). For instance, the attack consisting in

the program A
def

= l := 2l cannot observe more than what a passive attacker can,

from the execution of P . Indeed,

〈|S ∪ A|〉 = {〈h, l〉 → 〈h, 2h + l〉 → 〈h, 4h + 2l〉, 〈h, l〉 → 〈h, 2l〉 → 〈h, 2h + 2l〉}

and the parity of the public output in all the possible executions does not depend

on the input h.

This example shows that, even if declassification in ANI may appear as “vac-

uously robust” [24] since we do not consider explicitly active attackers, also

narrow abstract non-interference can be used for proving robust declassification

of confidential data, without changing any definition.

5 Abstract Non-Interference for Declassification

In abstract non-interference we can also model more selective security proper-

ties. For example, “we may not care if output variable b reflects whether input

variable a is odd or even. However, we might like to show that b depends upon a

in no other way” [4]. We can also consider another point of view. Suppose that

we do want the output variable b does not reflect whether input variable a is

odd or even, but we do not care that b depends upon a in other ways. These are

two aspects of declassification: the first specifies what is admitted to flow, the

other specifies what cannot flow, admitting that something else may be released.

Abstract non-interference considers a confidential data property, modeled by

an upper closure operator φ, which represents the confidential property we are

interested in keeping secret. This notion is provided in the first definition in Ta-

ble 2, where (η)P (φ []ρ) means that the program P keeps secret φ when the at-

tacker is modeled by the I/O pair of observable properties 〈η, ρ〉 and is called de-

classified ANI via blocking . So for example the property (id)l := l∗h2(Sign []Sign)

is satisfied, since the public result’s sign does not depend on the private input

sign, which is kept secret. In this case, whenever a flow of information is revealed

this can only be due to the change of the property φ. In this way we model a

notion of non-interference which is parametric both on what the attacker can

observe of public data and on the confidential property that we want to keep

secret.

On the other hand, in ANI [9], we also provide a construction for characterizing

5 〈h1, l1〉 ≈Par 〈h2, l2〉 iff Par(l1) = Par(l2)

(η)P (φ []ρ) if ∀h1, h2 ∈ VH, ∀l ∈ VL . ρ(JP K(φ(h1), η(l))L) = ρ(JP K(φ(h2), η(l))L)

(η)P (φ ⇒ ρ) if ∀h1, h2 ∈ VH, ∀l ∈ VL . φ(h1) = φ(h2) ⇒ ρ(JP K(h1, η(l))L) = ρ(JP K(h2, η(l))L)

Table 2. Abstract Non-Interference

the maximal amount of confidential information that flows, for a fixed attacker

model. This corresponds to characterizing the most concrete property that has to

be declassified in order to make the program secure [11]. Declassification can be

made explicit also in abstract non-interference, following the idea of selective de-

pendency [4]. Namely, given the property φ that we want to declassify, we check

abstract non-interference only when the private input has the same property φ.

This notion is provided in the second definition in Table 2, where (η)P (φ ⇒ ρ)

means that the program P is secure when we let φ to flow in presence of an

attacker modeled by 〈η, ρ〉, and is called declassified ANI via allowing . So for ex-

ample, consider P
def

= l := l+(h mod 3), if we want to understand which property

flows, we have to characterize which values of the private input generate differ-

ent public outputs, and we can note that all the elements in
{

h
∣

∣h mod 3 = 0
}

generate the same output l, such as the elements in
{

h
∣

∣h mod 3 = 1
}

and in
{

h
∣

∣h mod 3 = 2
}

. In particular, this partition is such that each pair of val-

ues in the same set generates the same public output, while each pair of values

from different sets generates different public values. This is exactly the maximal

amount of information disclosed.

The basic idea of the construction is to collect, for each possible public input,

all the private inputs that give the same result as public output. In this way we

obtain a partition Π(η, ρ)|L for each possible property L in input:

Π(η, ρ)
def

=
{

〈
{

h ∈ VH
∣

∣ρ(JP K(h, η(l))L) = A
}

, η(l)〉
∣

∣ l ∈ VL, A ∈ ρ
}

Π(η, ρ)|L
def

=
{

H
∣

∣ 〈H, L〉 ∈ Π(η, ρ)
}

So, like delimited release [21], in presence of passive attacker, it is sufficient to

declassify the property depending on the public input we are observing. Hence

∀h1, h2 ∈ VH, where ∀L ∈ η.πL
def

= Π(η, ρ)|L , we have

[h1]πL
= [h2]πL

⇒ ρ(JP K(h1, L)L) = ρ(JP K(h2, L)L) (1)

Let us denote this policy as ∀L ∈ η. (η)P (πL ⇒ ρ). It is clear that checking Eq. 1,

could be considered sufficient in presence of only passive attackers, since the stan-

dard idea of non-interference compares only the outputs obtained from compu-

tations with a fixed public input. But is it a realistic notion of non-interference?

Namely, if we have an attacker that observes a system, then we cannot avoid

him to observe computations due also to different public inputs, but if this hap-

pens then the definition in Eq. 1 is no more a non-interference property. So, if

P
def

= if h = l then l := 0 else l := 1, then the declassified information should be

Π(id, id)l = {{l},
{

h
∣

∣h 6= l
}

, Z, ∅}. But if the attacker can control the public

input, or can observe computations of P with different public inputs for l, then

it could collect the results, deducing more than what is declassified about h. For

this reason we are interested in a unique property to declassify, which is inde-

pendent of the fixed public input, namely we derive the most abstract property

containing all the properties that should be declassified for each public input

and such that (η)P (φ ⇒ ρ) [9]:

φ
def

=
l

L∈η

M(Π(η, ρ)|L) (2)

5.1 Abstract Non-Interference vs Enforcing Robust Declassification

In [19] the notion of robust declassification [26] is expressed in a language-based

setting and is generalized in order to make untrusted code and data explicitly

part of the system rather than appearing only when the attacker is active. In this

work the skills of the attacker are made explicit distinguishing between what it

can observe and what it can modify. Hence, each variable on the program has

two security classifications, the first says who can observe and the second says

who can modify it, e.g., xLH means that the variable can be observed but cannot

be modified by a low level user.

More precisely, in [19], the authors consider a syntax, for defining programs,

which includes explicit declassification of expressions to the low security level,

and which allows to leave holes in the code:

e ::= v | x | e1op e2 | declassify(e)

c[−→•] ::= nil | x := e | if e then c1 else c2 | while e do c | [•]

In these holes the attacker can insert his own code, possibly modifying the com-

putation, i.e., c[a] is the program c under the attack a which means that each

hole [•] in c is substituted by the code a. The system c[−→•] is robust if ∀σ, σ′ ∈ Σ

(possible initial memories) and ∀a, a′, when both 〈|c[a]|〉(σ) and 〈|c[a]|〉(σ′) termi-

nate, and 〈|c[a]|〉(σ) ≈ 〈|c[a]|〉(σ′) then 〈|c[a′]|〉(σ) ≈ 〈|c[a′]|〉(σ′), where ≈ requires

the equality of low-level data. This definition says that a system is robust if any

attack cannot change the observable computations of the system.

By considering this view of the problem, we may conclude that it is implicit

in non-interference, and therefore also in abstract non-interference, that all the

secure systems, where only the input public data can be modified by an untrusted

user, are robust. Namely, if we consider the assumption that the attacker may

be able to change inputs, i.e., controls the inputs, but cannot change the code

itself [2], then declassification in ANI is precisely robust, as shown in the follow-

ing examples. Clearly it is a limitation on the possible attacks, and indeed the

extension of ANI to all the possible (active) attacks described in [19] deserves

further investigation. On the other hand, declassified ANI via allowing provides

the construction for deriving what is released by a program.

Example 2. 1. Consider P [−→•]
def

= [•]; l := l + declassify(h mod 3), where l : LL

and h : HH. This program satisfies robust declassification. On the other hand,

we can derive the maximal amount of information disclosed from the program

P ′ def

= l := l + h mod 3: φ = {>, 3Z, 3Z + 1, 3Z + 2,⊥}, i.e., it is the most

concrete property that has to be declassified in order to guarantee secrecy.

We can prove that (id)P (φ ⇒ id), namely for each possible observation, when

we declassify φ, the program is secure. This also prove that the program P [−→•]

is robust, since φ describes exactly the property h mod 3 declassified, and

non-interference cannot be violated even if the attacker controls the input l.

2. Let P [−→•]
def

= [•]; if declassify(h = l) then h := h − l; else l := l + h, where

l : LL and h : HH. In this case the program is not robust since the attacker can

modify the input of l and therefore can obtain the value of h. Indeed, if we

consider ANI for the program P ′ def

= if h = l then h := h− l; else l := l+h,

and we derive the most concrete property that has to be declassified in order

to guarantee secrecy, we obtain the identity:

Π(id, id)|l =
{

Z, {l},
{

h
∣

∣h 6= l
}

, ∅
}

and φ =
l

l∈Z

Π(id, id)|l = id

Namely, we proved that the program cannot be made secure unless we de-

classify the value of private data.

5.2 Abstract Non-Interference vs Delimited Release

The aim of delimited release [21] is to find a definition of non-interference which

takes into account explicit declassifications in the code of programs. However,

explicit declassification does not concern with what is actually leaked during

the execution of the program, but simply determines the downgrading policy to

check. Delimited release is a generalization of Cohen’s selective dependency [4].

In standard non interference we check the security property for all the possible

private inputs, this means that the private input can range over the whole domain

of possible values. In delimited release the idea is to select, by using the declassi-

fication explicitly given (consider the simplified declassify operation used in the

previous section), for which private inputs we have to check non-interference.

Let ≈e the equivalence relation induced by the evaluation of the expression e,

i.e., σ ≈e σ′ iff JeK(σ) = JeK(σ′), we can define σ ≈E σ′ iff ∀e ∈ E.σ ≈e σ′.

Delimited release is defined as follows: Let E be the set of all the declassified

expressions in the program P

∀σ, σ′ ∈ Σ.(σL = σ′L) ∧ σ ≈E σ′ ⇒ JP K(σ)L = JP K(σ′)L

This generalizes selective dependency because ≈E is applied to the whole state

and not only to the high component. But, whenever the expressions in E de-

pend only on the high input, then the two notions collapse, corresponding also

to declassified ANI via allowing. However, whenever the expression E depends

also on public inputs, then we obtain a notion of declassified non-interference

which depends on the fixed public input, as in Eq. 1, inheriting all the problems

expressed for Eq. 1.

At this point, let us see which analogies can be found between declassified ANI

and delimited release. In the following, we say that a closure φ models the set

of declassifications E if ≈E⊆≈φ, where σ ≈φ σ1 iff φ(σH) = φ(σH

1).

Example 3. 1. Consider P
def

= avg := declassify((h1 + h2 + . . . + hn)/n). This

program satisfies delimited release [21], and if we derive the maximal amount

of information disclosed in the program P ′ def

= avg = (h1 + h2 + . . . + hn)/n,

we obtain the following closure:

φ =
{ {

〈h1, . . . , hn〉
∣

∣h1 + . . . + hn = x
} ∣

∣x ∈ Z
}

∪ {Z, ∅}

which models exactly the declassified property (being n a known constant).

2. Consider the program

P
def

=

[

h1 := h1; h2 := h1; . . . hn := h1;

avg := declassify((h1 + h2 + . . . + hn)/n)

This program does not satisfy delimited release [21], and if we consider ANI

and we derive the maximal amount of information disclosed in the program

without the declassify operation, we obtain:

φ =
{ {

〈h, k2, . . . , kn〉
∣

∣∀i.ki ∈ VH
} ∣

∣h ∈ Z
}

∪ {Z, ∅}

namely the maximal amount of information disclosed is the identity on the

first private input. Hence the program is not secure, since φ does not model

the information explicitly declassified, e.g., 〈1, 0, . . . , 0〉 ≈e 〈0, 1, . . . , 0〉 while

φ(〈1, 0, . . . , 0〉) 6= φ(〈0, 1, . . . , 0〉).

3. Let P
def

= if declassify(h ≥ k) then (h := h − k; l := l + k) else nil. This

program does satisfy delimited release [21]. Consider now abstract non-

interference, the maximal information disclosed, for each public input is:

Π(id, id)|k = {
{

h
∣

∣h ≥ k
}

,
{

h
∣

∣h < k
}

, Z, ∅}

Therefore, if we consider the notion of abstract non-interference in Eq. 1,

we have that the program is secure, but if we suppose that the attacker

can control the public input, or can observe computations corresponding

to different public inputs, then we have to compute the maximal amount

of information disclosed, that in this case is φ = id. Namely, the program

cannot be made secure, unless we declassify the value of private data. For

these reasons, when we consider the program under an attack that can change

the value of k during the computation, as happens in the following program

[21], then it does no more satisfy delimited release.

P
def

=















l := 0;

while n ≥ 0 do

k := 2n+1;

if declassify(h ≥ k) then (h := h − k; l := l + k) else nil;

n := n − 1;

4. Consider the program

P
def

=

[

h := h mod 2;

if declassify(h = 0) then (l := 0; h := 0) else (l := 1; h := 1);

This program does not satisfy delimited release [21]. The maximal amount

of information disclosed in ANI is

φ = {
{

h
∣

∣h mod 2 = 0
}

,
{

h
∣

∣h mod 2 = 1
}

, Z, ∅} ≡ Par

The program is not secure, since the amount of information declassified is

less than the maximal amount of information released, e.g., 〈2, l〉 ≈e 〈3, l〉

(for each l) while φ(2) 6= φ(3), i.e, 〈2, l〉 6≈φ 〈3, l〉. The secure program is [21]:

if declassify(h mod 2) then (l := 0; h := 0) else (l := 1; h := 1).

These examples show that delimited release captures a notion of non-interference

which is weaker than declassified ANI, in the sense that it corresponds to a notion

of non-interference (Eq. 1) that holds only in presence of passive attackers unable

to collect results due to different public inputs.

5.3 Abstract Non-Interference vs Relaxed Non-interference

The notion of delimited release for λ-calculus is relaxed non-interference [17].

In this notion a λ-term t, cleaned from the security labels, is secure when it is

equivalent to, i.e., can be rewritten as f(n1σ1) . . . (nkσk), where f is a λ-term

without any secret variable, σi are all secret variables and ni are downgrading

policies (λ-terms) for σi such that, for each i, niσi is a public information on

σi. The term f(n1σ1) . . . (nkσk) satisfies non-interference since, when we fix the

public input, included all the niσi, we cannot observe any difference in the

public output, allowing the confidential information to be leaked in a controlled

way, i.e., controlled by the policies ni. Unfortunately, this definition has some

limitations, in particular, even if the authors do not prove that this is the only

failure situation, they note that this notion fails in presence of, for example, an

exponentially long time attack. However, this failure case is due to the same

problems arisen for Eq. 1. The interesting aspect of this paper is that they can

derive, from the program, the right downgrading policy that makes the program

secure. We show in the following example that this corresponds precisely to the

maximal amount of information disclosed for a fixed input [9]. Note that, even if

at a glance relaxed non-interference could seem to be a declassification more via

blocking than via allowing, this is not true since declassification via blocking is

characterized by checking non-interference for the semantics collecting the results

for all the private inputs that have the same property. Instead, declassification via

allowing is characterized by checking non-interference on the concrete semantics

but only for those private inputs with a fixed property. This is exactly what

happens in relaxed non-interference since the inputs niσi are considered public

(even if the σi’s are private), and therefore fixed, hence only the σi’s that give

the same result niσi are considered.

Example 4. Consider the program P [17] with sec, x, y : H, and in, out : L:

P
def

=

[

x := hash(sec); y := x mod 264;

if y = in then out := 1 else out := 0;

where hash is a function. The downgrading policy for sec in the corresponding λ-

program, is λsec.λin.(hash(sec) mod 264) = in [17]. Consider now the maximal

amount of information disclosed for each public input value in:

Π(id, id)in =
{ {

sec
∣

∣ JP K(sec, in)out = k
} ∣

∣k ∈ {0, 1}
}

=

{

{

sec
∣

∣ (hash(sec) mod 264) = in
}

,
{

sec
∣

∣ (hash(sec) mod 264) 6= in
}

}

where JP K(sec, in)out is the value resulting in the variable out, when the in-

puts are sec and in. Note that the closure φin
def

= Π(id, id)in ∪ {>,⊥} corre-

sponds, to the downgrading policy above. Moreover, in ANI we can derive the

maximal amount of information disclosed, independently of the public input

φ =
d

in∈VL Π(id, id)in, making the program also robust in presence of active

attackers.

Note that also relaxed non-interference inherits the problems expressed for

Eq. 1, since it depends on the particular fixed public input. This means that

relaxed non-interference requires the attacker not to be able to observe compu-

tations due to different public inputs and to control the public input.

6 Discussion

In [24] the authors provide a road map for classifying all the different approaches

to declassification, where declassification means weakening non-interference. They

distinguish among four categories, depending on what is released, who controls

the information released, where the information is released and when the infor-

mation is released. They introduce abstract non-interference as a particular case

of the PER model of information, while in [14] it is proved that, vice versa,

the PER model can be seen as a particular case of abstract non-interference.

Moreover, abstract non-interference is only in the what classification [24], since

only its partial release aspect is considered, but as we show in this paper, there

is also a who function that can be treated in terms of abstract non-interference,

which is made even more evident by the relation existing between abstract non-

interference analysis and robust declassification.

In this paper, we show that our point of view is quite different, in particular, as

regards the who and what distinction. Hence, for us the who class captures all the

weakenings of non-interference where the notion is weakened by modeling the

power of who is observing. For this reason, in this class we put the PER model

[23], the security policy for robust declassification [26], abstract non-interference

[9], and the complexity-based approaches [8, 16]. While the what class contains all

the weakenings consisting in modeling what can or cannot flow, independently

of who controls information release, and therefore it contains selective depen-

dency [4], enforced robust declassification [19], abstract non-interference [9], de-

limited release [21], relaxed non-interference [17], and information theory-based

approaches [3, 18]. Moreover, we explained the two different aspects of the what

class (here called declassification), one corresponds to fixing what can flow, and

the other to fixing what should not flow, and we show that both can be modeled

in abstract non-interference, while delimited release and relaxed non-interference

can only fix what is allowed to flow. Finally, since abstract non-interference is

in both the classes, we can study the relation between these two different ways

of weakening non-interference, and indeed in [11] the authors proved that the

derivation of what flows and the derivation of who can observe, is formalized in

terms of a Galois connection between the two constructors introduced in [9]. As

future work, in the same spirit of [11], we would like to understand the relation

existing between declassification via allowing and declassification via blocking, in

order, for example to derive the information to block from the maximal amount

of information disclosed, and vice versa.

In Table 3 we summarize the comparisons made in this paper. In particular we

use the notation ≡ for saying that two notions characterize the same end-to-end

security policy, and Id corresponds to the identity relation/closure.

Acknowledgments

I would like to thank Anindya Banerjee and Roberto Giacobazzi for their in-

sightful comments, and the anonymous referees for their helpful suggestions for

improvement.

Who PER model ≡ [Id]P (Id)

S |= SP(≈) ≡ |=〈|P |〉 [ρ≈]S(ρ≈)

What (via Allowing) Selective Dependency ≡ (Id)P (φ ⇒ Id)

Delimited Release ≡ ∀l ∈ VL. (Id)P (πl ⇒ Id)

Relaxed Non-interference ≡ ∀l ∈ VL. (Id)P (πl ⇒ Id)

What (via Blocking) (η)P (φ []ρ)

Table 3. Outline.

References

1. D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations

and model. Technical Report M74-244, MITRE Corp. Badford, MA, 1973.

2. S. Chong and A. C. Myers. Security policies for downgrading. In ACM Conf. on

Computer and Communications Security, pages 198–209. ACM-Press, NY, October

2004.

3. D. Clark, S. Hunt, and P. Malacaria. Quantified interference: Information theory

and information flow (extended abstract). In Workshop on Issues in the Theory

of Security, WITS, 2004.

4. E. S. Cohen. Information transmission in sequential programs. Foundations of

Secure Computation, pages 297–335, 1978.

5. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proc.

of Conf. Record of the 4th ACM Symp. on Principles of Programming Languages

(POPL ’77), pages 238–252. ACM Press, New York, 1977.

6. P. Cousot and R. Cousot. Systematic design of program analysis frameworks.

In Proc. of Conf. Record of the 6th ACM Symp. on Principles of Programming

Languages (POPL ’79), pages 269–282. ACM Press, New York, 1979.

7. D. E. Denning and P. Denning. Certification of programs for secure information

flow. Communications of the ACM, 20(7):504–513, 1977.

8. A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate non-interference. In

Proc. of the IEEE Computer Security Foundations Workshop, pages 1–17. IEEE

Computer Society Press, 2002.

9. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing

non-interference by abstract interpretation. In Proc. of the 31st Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’04), pages 186–197. ACM-Press, NY, 2004.

10. R. Giacobazzi and I. Mastroeni. Proving abstract non-interference. In Annual

Conference of the European Association for Computer Science Logic (CSL’04),

volume 3210, pages 280–294. Springer-Verlag, 2004.

11. R. Giacobazzi and I. Mastroeni. Adjoining declassification and attack models by

abstract interpretation. In Proc. of the European Symposium on Programming

(ESOP’05), volume 3444 of Lecture Notes in Computer Science, pages 295–310.

Springer-Verlag, 2005.

12. R. Giacobazzi and I. Mastroeni. Timed abstract non-interference. In Proc. of The

International Conference on Formal Modelling and Analysis of Timed Systems

(FORMATS’05), Lecture Notes in Computer Science. Springer-Verlag, 2005. To

appear.

13. J. A. Goguen and J. Meseguer. Security policies and security models. In Proc.

IEEE Symp. on Security and Privacy, pages 11–20. IEEE Computer Society Press,

1982.

14. S. Hunt and I. Mastroeni. The PER model of abstract non-interference. In Proc. of

The 12th Internat. Static Analysis Symp. (SAS’05), volume 3672 of Lecture Notes

in Computer Science, pages 171–185. Springer-Verlag, 2005.

15. R. Joshi and K. R. M. Leino. A semantic approach to secure information flow.

Science of Computer Programming, 37:113–138, 2000.

16. P. Laud. Semantics and program analysis of computationally secure information

flow. In In Programming Languages and Systems, 10th European Symp. On Pro-

gramming, ESOP, volume 2028 of Lecture Notes in Computer Science, pages 77–91.

Springer-Verlag, 2001.

17. P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In

Proc. of the 32st Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’05), pages 158–170. ACM-Press, NY, 2005.

18. G. Lowe. Quantifying information flow. In Proc. of the IEEE Computer Security

Foundations Workshop, pages 18–31. IEEE Computer Society Press, 2002.

19. A.C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. In

Proc. IEEE Symp. on Security and Privacy. IEEE Computer Society Press, 2004.

20. F. Ranzato and F. Tapparo. Strong preservation as completeness in abstract inter-

pretation. In D. Schmidt, editor, Proc. of the 13th European Symposium on Pro-

gramming (ESOP’04), volume 2986 of Lecture Notes in Computer Science, pages

18–32. Springer-Verlag, 2004.

21. A. Sabelfeld and A. C. Myers. A model for delimited information release. In Proc.

of the International Symp. on Software Security (ISSS’03), volume 3233 of Lecture

Notes in Computer Science, pages 174–191. Springer-Verlag, October 2004.

22. A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE J.

on selected ares in communications, 21(1):5–19, 2003.

23. A. Sabelfeld and D. Sands. A PER model of secure information flow in sequential

programs. Higher-Order and Symbolic Computation, 14(1):59–91, 2001.

24. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Proc.

of 18th IEEE Computer Security Foundations Workshop (CSFW-18). IEEE Comp.

Soc. Press, 2005.

25. D. Volpano. Safety versus secrecy. In Proc. of the 6th Static Analysis Symp.

(SAS’99), volume 1694 of Lecture Notes in Computer Science, pages 303–311.

Springer-Verlag, 1999.

26. S. Zdancewic and A. C. Myers. Robust declassification. In Proc. of the IEEE

Computer Security Foundations Workshop, pages 15–23. IEEE Computer Society

Press, 2001.

