
5

Non-Interference in Language-based Security

When we imagine, we can only see,
when we know we can compare.

Jean-Jacques Rousseau

In the last decades, an important task of language based security is to protect
confidentiality of data manipulated by computational systems. Namely, it is im-
portant to guarantee that no information, about confidential/private data, can be
caught by an external viewer. In many fields, where protection of confidentiality is
a critical problem, the standard way used to protect private data is access control:
special privileges are required in order to read confidential data. Unfortunately,
these methods allow to restrict accesses to data but cannot control propagation
of information. Namely once the information is released from its container, it can
be improperly transmitted without any further control. This means that the se-
curity mechanisms, such as signature, verification, and antivirus scanning, do not
provide assurance that confidentiality is maintained during the whole execution
of the checked program. This implies that, to ensure that confidentiality policies
are satisfied, it becomes necessary to analyze how information flows within the
executed program. In particular, if a user wishes to keep some data confidential,
he might state a policy stipulating that no data visible to other users is affected
by modifying confidential data. This policy allows programs to manipulate and
modify private data, as long as visible outputs of those programs do not reveal
information about these data. A policy of this sort is called non-interference policy
[68], since it states that confidential data may not interfere with public data. Non-
interference is also referred as secrecy [111], since confidential data are considered
private, while all other data are public [39]. The difficulty of preventing a program
P from leaking private information depends greatly on what kind of observations
of P are possible [109]. If we can make external observations of P ’s running time,
memory usage, and so on, then preventing leaks becomes very difficult. For exam-

86 5 Non-Interference in Language-based Security

ple, P could modulate its running time in order to encode the private information.
Furthermore, these modulations might depend on low level implementation de-
tails, such as caching behaviours. But this means that it is insufficient to prove
confinement with respect to an abstract semantics, every implementation detail,
that affects running time, must be addressed in the proof of confinement. If, in-
stead, we can only make internal observations of P ’s behaviour, the confinement
problem become more tractable [109]. Internal observations include the values of
program variables, and everything is observable internally, e.g. time in real-time
systems.

In this chapter, we provide an excursus on the different notions of non-
interference, in different computer science fields, and we describe the main ap-
proaches studied (see [104] for a survey). In the following, we first provide a brief
background of the notion of non-interference, from the Lampson’s formalization
of the confinement problem [80] to the Cohen’s strong dependency [19; 20], to
the Goguen and Meseguer’s definition of non-interference [68]. We conclude this
part, introducing the semantic approach to non-interference of Joshi and Leino
[78] and the PER model, applied to non-interference by Sabelfeld and Sands [106].
At this point, we provide a background about the existing techniques used for
enforcing non-interference. Starting from the initial access control methods, such
as the Bell and LaPadula model [13], we arrive to introduce the Denning and
Denning information flow static analysis [38]. We conclude this part describing
the Smith and Volpano security type system [114] and the axiomatic approaches
to non-interference [7, 6]. Afterwards, we describe how this notion has been ex-
tended in order to cope with richer and more complex computational systems
(e.g., non-deterministic and multi-threaded languages, process algebras and timed
automata). We also introduce the notion of covert channel and we describe some
existing solutions studied for avoiding this kind of information flows (e.g, timing
and probabilistic channels, termination channels, and so on). Finally, we describe
some existing weakenings of the notion of non interference, from the quantitative
approaches that measures the information released [17, 84], to the definition of
robust declassification [118], from the probabilistic approach characterizing how
much statistical tests are necessary to disclose secrets [41], to the complexity-based
approach which determines how complex is to disclose secrets [82].

5.1 Background: Defining non-interference

We have underlined above, how the problem of keeping confidential data private
can be modeled as a non-interference problem, by stating that secure programs
can manipulate and modify private data, as long as visible outputs of those pro-
grams do not reveal confidential information. In this section, we describe how
non-interference can be defined in different fields of computer science, depending

5.1 Background: Defining non-interference 87

on what the low level user is supposed to be able to observe. Before entering in
the specific of the non-interference notion, we want to define what is a security
property. Consider a set SC of security classes [38] (also called security domains
in [86]), corresponding to disjoint classes of information. Suppose that each object
e of a system is bound to a security class in SC, denoted dom(e), which specifies
the security class associated with the information represented by e. In general, a
security domain can be, e.g., a group of users, a collection of files or a memory sec-
tion. A security property is composed of a non-interference relation !!⊆ SC×SC,
which formalizes a security policy by stating which domains may not interfere with
others, with a definition of security [86]. In the following, we simplify and consider
only two domains, private/high H and public/low L , and the security policy which
demands that H must not interfere with L , i.e., H !! L .

In order to describe the background of the notion of security as absence of flows
from private to public we have to go back to the seminal paper [80] where the notion
of confinement problem is introduced (also known as secrecy). Consider a customer
program and a service (host) program, the customer would like to ensure that the
service cannot access (read or modify) any of his data, except those information
to which he explicitly grants access (said public). In other words, the confinement
problem consists in preventing the results of the computation from leaking even
partial information about confidential inputs. Clearly, if the public data depends,
in any way, on the private ones, then confinement becomes a problem. This strict
relation between the confinement problem and the dependencies among data allows
to describe the confinement problem as a problem of non-interference [68] by using
the notion of strong dependency introduced in [19]. In the latter, the transmission
of information is defined by saying that information is transmitted over a channel
when variety is conveyed from the source to the destination. Clearly, if we substitute
source with private and destination with public, then we obtain the definition
of insecure information flow. More formally speaking, Cohen in [19] says that
information can be transmitted from a to b during the execution of a system S, if
by suitably varying the initial value of a (exploring the variety in a), the resulting
value in b after S’s execution will also vary (showing the variety is conveyed to
b). The absence of strong dependency has been interpreted as non-interference in
[68], where non-interference is defined as:

“One group of users [...] is noninterfering with another group of users if
what the first group does [...] has no effect on what the second group of
users can see”.

Starting from this informal definition, a non-interference policy which states that
a group of users G does not interfere with another group of users G′ is defined by
saying that what any user u ∈ G can observe when the machine is in the state
representing the effect of an input string w on the states, starting from the initial
state of the whole system, denoted by !w"u, is the same of what it can observe by

88 5 Non-Interference in Language-based Security

erasing all the actions of users in G′.
Therefore, we have that security, defined as presence of only secure information
flows, is non-interference, which is absence of strong dependencies. These defini-
tions are general and can be applied to different kind of computational systems,
as we will see later on.
The notion of non-interference is used to stipulate policies of non-interference
whenever a user wishes to keep some data confidential. This policy allows pro-
grams to manipulate and modify private data so long as visible outputs of those
programs do not reveal confidential information. Therefore these policies stipulate
that no data visible to other users is affected by confidential data [68].

5.1.1 Cohen’s strong and selective dependency

Starting from the observation that in sequential programs information can be
transmitted among variables, Cohen noted that the approaches previously studied
were almost intuitionistic. His aim was that of providing a formal approach to
information transmission so that information paths can be determined precisely
given the formal semantics of a program. Moreover, the formal approach allows
to answer more selective questions about information transmission. For example,
we may not care if the output variable b reflects whether the input variable a
is odd or even. However we might like to show that b depends on a in no other
way. This leads clearly both to a semantic formalization of the problem and to
a way for weakening the problem itself. In information theory, information can
be transmitted from a source a to a destination b if a variety can be conveyed
from a to b, namely as the result of program execution [19, 20]. This is exactly
the idea used for defining strong dependency. The selective aspect of dependency,
called selective dependency, comes from the observation that assertions, constraints
on inputs of computation, can eliminate certain information paths, for example
making a test always true. Cohen considers a simple imperative language with the
usual semantics.

The idea for defining strong dependency is that of considering that if the input
a may initially take on a number of different values, resulting in a number of
different values in b after the execution of the program P , then we can say that
b strongly depends on a. To show that information transmission is possible, we
need only to find two different input values for a that yield different values for b
after the execution of P . Therefore, adapting Cohen’s definition to the security
framework, we consider L as the set of public variables and H as the set of private
ones. Then we say that the variables L are strongly dependant on H in the program
P , H "P L , namely the program is not secure, if

∃s1, s2 . sL1 = sL2 ∧ !P "(s1)L != !P "(s2)L

where s1 and s2 are states of P , namely tuples of values for the variables in P ,
and sL is the tuple of values in s for the variables in L .

5.1 Background: Defining non-interference 89

Cohen realized that this definition, in some situations, was too strong, more-
over he noted that adding input assertions reduces the information that can be
transmitted. In general, any addition or strengthening of an input assertion may
reduce (and never increase) information transmission [20]. This consideration leads
him to the definition of the selective dependency: Often we are not interested in
the fact that information is indeed transmitted from one object to another as
long as specific properties, portions of the information, are protected. Consider
the program

P
def= b := x + (a mod 4)

We can note that b does depend on a, i.e., a "P b, but only upon the last two
bits of a. We can prove that the rest of a is protected from b by using strong
dependency with a constraint, for example φ : a mod 4 = 3. We can note that,
even though P conveys variety from a to b, φ eliminates all the variety that is
conveyed. Therefore, we define selective dependency for security (with a simplified
notation). Consider as above H and L in a program P . We say that L is selectively
independent from H in P , as regards the assertion φ, i.e., H !"P

φ L , if:

∀s1, s2 . (φ(sH1) ∧ φ(sH2) ∧ sL1 = sL2) ⇒ !P "(s1)L = !P "(s2)L

The role of φ is clearly that of characterizing which information we admit to flow
from H to L , indeed in the previous example any possible constraint on the value
a mod 4 makes b selectively independent from a.

5.1.2 Goguen-Meseguer non-interference

In [68] the authors treat directly the problem of information transmission for
enforcing program’s security. Their approach to non-interference is intended to
deal with both the abstract conceptual level of the security problem, where general
concepts and methods are described, and the concrete modelling level, where actual
systems are modeled in order to prove that they are secure in any sense. The
definition introduced by Goguen and Meseguer is based on the notion of security
policy, which defines the security requirements for a secure system. Therefore, in
this context, security verification consists of showing that a given policy is satisfied
by a given model. In general, information flow techniques attempt to analyze how
users (or processes, or variables) can potentially interfere with other users. On the
other hand, the security policy wants to say when users (or processes, or variables)
must not interfere with other users. The purpose of a so-called security model is
to provide a basis for determining whether or not a system is secure, and if not,
for detecting its flaws.
In [68], the basic definition used to make non-interference precise considers systems
as machines having a set of users U , a set of commands (changing-states) C, a
set of read commands R, a set of outputs O and a set of internal states S, with
initial state s0. Moreover, there is a next function: do : S × U × C −→ S, where

90 5 Non-Interference in Language-based Security

do(s, u, c) gives the next state after the user u executes the command c in the
state s; and an output function: out : S×U×R −→ O where out(s, u, r) gives the
result of a user u executing a read command r in the state s. Therefore, output
commands have no effect on states, and state commands produce no output. The
history of a system is the sequence w = 〈(u1, c1) . . . (un, cn)〉 where all the pairs
are of commands ci ∈ C ∪ R with their users ui ∈ U , since the initial startup of
the system is in the state s0. When reasoning about states we can omit all output
commands from the history, since output commands do not affect states. Thus, the
state reached after the execution, in the system, of a sequence of state commands,
starting from the initial state s0, is given by the function do∗ : S × (U × C)∗

defined inductively by do∗(s, empty) = s, do∗(s, 〈w(u, c)〉) = do(do∗(s, w), u, c).
Let !w" denote the state reached from s0 after the execution of the sequence w,
i.e., !w" = do∗(s0, w).
A non-interference assertion expresses that a certain group G of users executing
a certain set H of state transition commands does not interfere with, i.e., cannot
be detected by, another group of users G′ executing a set L of output commands;
this is denoted G, H :|G′, L . This assertion holds if and only if for each sequence
w ∈ (U × C)∗, each v ∈ G′, and each l ∈ L we have:

out(!w", v, l) = out(!PG,H (w)", v, l)

where PG,H (w) is the sequence obtained from w by eliminating all occurrences
of pairs (u, c) with u ∈ G and c ∈ H . Intuitively, this means that whatever any
v ∈ G′ can tell by executing output commands in L , everything looks as if the
users in G had never executed any commands in H . This is mostly the core work in
[68] and it is a slightly different notion from the one introduced by Cohen. Indeed
here we require that whenever private actions are executed the output observable
behaviour has to be as if no private actions have been executed at all. In sequential
programs the private actions are those where private variables are modified, and
therefore in general it is a very strong requirement to extract computations where
the execution of private actions are avoided. This impose the definition of a weaker
notion of non-interference that we will call standard non-interference, and which is
defined as the negation of Cohen’s strong dependency, where private actions may
interfere with the output behaviour, unless they do not convey a variety.

5.1.3 Semantic-based security models

As we have seen in the formalization of the Cohen’s strong dependency, the prob-
lem of non-interference can be characterized by considering semantics of systems.
A semantic approach has several features. First, it gives a more precise character-
ization of security than other approaches. Second, it applies to any programming
constructs whose semantics are definable, for example, the introduction of non-
determinism poses no additional problems. Third, it can be used for reasoning
about indirect leaking of information through variation of the program behaviour

5.1 Background: Defining non-interference 91

(e.g., whether or not the program terminates). Finally, it can be extended to the
case where the high and the low security variables are defined abstractly, as func-
tion of the actual program variables [78]. We introduce here two main semantic
approaches.

A semantic approach to secure information flow.

As we said above, a program is secure if any observation of the initial and final
values of the low variables, denoted l : L , do not provide any information about
the initial value of the private variables, denoted h : H [78]. Assume that the
adversary has knowledge of the program text and of the initial and final values
of l. The idea of Joshi and Leino’s semantic-based approach to language-based
security is that of characterizing secure information flow as program equivalence,
denoted by .=. They introduce a program H H

def= “assign to h an arbitrary value”.
Consider a program P , for which we want to prove non-interference. The program
H H ;P corresponds to run P after having set h to an arbitrary value; while the
program P ; H H discards the final value of h resulting from the execution of P .
Then a program P is said to be secure if

H H ; P ; H H
.= P ; H H (5.1)

where .= is the relational input/output semantic equality between programs,
namely for each possible input the two programs have to show the same pub-
lic output behavior. In order to understand this characterization, note that the
occurrence of H H after P on both the sides of the equality indicates that only
the final values of l are of interest, whereas the occurrence of H H before P on
the left side of the equality indicates that the program starts with an arbitrary
assignment to h. Clearly, the two programs are input/output equivalent provided
that the final value of l, produced by P , does not depend on the initial value of h,
which is indeed standard non-interference.

PER’s model.

The semantic approach described above has also been equivalently formalized by
using partial equivalence relations (PER) [106]. In this paper, the authors show
how PER can be used to model dependencies in programs. Indeed, as we noted
above, the problem of non-interference can be seen as absence of dependencies
among data, where the meaning of dependency is given by Cohen [19]. The idea
behind this characterization consists in interpreting security types as partial equiv-
alence relations. In particular the variables H on D are interpreted by using the
equivalence relation AllD, and L by using the relation IdD, where for all x, x′ ∈ D:

x AllD x′ x IdD x′ ⇔ x = x′

The intuition behind the relations AllD and IdD is that they represent the per-
spective of the user who does not have access to the high information. This user

92 5 Non-Interference in Language-based Security

can see the difference between distinct low data, but any high datum is indistin-
guishable from any other. This perspective can simply be generalized to multilevel
security problems.

In order to use this model in the security framework, consider partial equiv-
alence relation, namely equivalence relation which can fail the reflexive property.
At this point, we can define a relation between functions. Let Per(D) be the set
of partial equivalence relations on D. Given P ∈ Per(D) and Q ∈ Per(E) we can
define (P # Q) ∈ Per(D −→ E):

f (P # Q)g ⇔ ∀x, x′ ∈ D . x P x′ ⇒ f(x) Q g(x′)

which is in general partial since it can fail reflexivity. Consider P ∈ Per(D), if
x ∈ D is such that x P x then we write x : P . Therefore, if f is such that
∀x, x′ ∈ D . x P x′ ⇒ f(x) Q f(x′) then we write f : P # Q . Finally for binary
relations P and Q , we define the relation P × Q by:

〈x, y〉 P × Q 〈x′, y′〉 ⇔ x P x′ ∧ y Q y′

At this point, we can formalize security in this model: let us distinguish, in the
state s of P the values for low and private variables, i.e., s = 〈sH , sL 〉 and let P
be a program and !P " its semantics, then P is secure iff

!P " : All×Id # All×Id ≡ ∀s, t.〈sH , sL 〉All×Id〈tH , tL 〉 ⇒ !P "(s)All×Id!P "(t)

where clearly !P "(s) returns a state which is again a tuple of low and private
values.

5.2 Background: Enforcing non-interference

Belief that a system is secure, with respect to confidentiality, should arise from a
rigorous analysis showing that the system, as a whole, enforces the confidential-
ity policies of its users. In particular, we are interested in enforcing information
flow policies. With the term enforcement we mean the checking process that en-
sures that a program does not reveal private information [80]. There are several
approaches for checking non-interference. The standard method used for checking
non-interference is to show that an attacker cannot observe any difference between
two executions that differ only in the confidential input [69]. Clearly information
flow analysis methods can be used for this purpose, but other approaches can be
studied and developed. Statically, we can enforce non interference by using a type
system. The idea is that of augmenting the type of variables and expressions with
annotations that specify policies on the use of typed data, in order to enforce
security policies at compile time. Other approaches define a semantic-based se-
curity model, providing powerful reasoning techniques. Checking non-interference
is indeed an abstraction of the rigorous notion of non-interference that we want
to enforce. In particular multi-level security can be expressed at three levels of
abstraction [69]:

5.2 Background: Enforcing non-interference 93

1. As a precise security policy, defined by a simple security requirement on lan-
guages, like the one given above;

2. As a set of general conditions on the transition function of the system that
inductively guarantees its multi-level security, as in Bell-LaPadula model [13];

3. As a finite set of lemmas obtained by syntactic analysis of system specifications,
such that if all the lemmas are true then any system satisfying these specifica-
tions is guaranteed multi-level secure with complete mathematical certainty.

The first formulation is the closest to intuition, since it expresses directly the con-
straints that should be enforced on the information flow, i.e., it expresses the policy
that has to be enforced. The second formulation, which is obtained as unwinding
[69] of the first one, reduces the proof of satisfaction of the policy to simpler con-
ditions that, by inductive argument, guarantee that the policy holds. Finally, the
third formulation is such that, if the process of derivation of lemmas from the
policy has been proved mathematically sound, then it reduces the problem of ob-
taining full mathematical certainty about the security of a system to a form that
can be checked by a theorem-prover.

5.2.1 Standard security mechanism

As we noted in the introduction, the standard mechanism used for checking non-
interference is access control. Access control, which consists in a collection of access
control lists and capabilities, is an important part of language-based security. For
instance, it can be used when a file may be assigned access control permissions
that prevent users, other than its owner, from reading the file. One of the most
famous models, based on access control, is the Bell and LaPadula model [13] (see
below).
The problem with access control is that it cannot control how data are propagated
after they have been read from the file. For this reason, access control is not
sufficient for guaranteeing certain kind of security policies, and information-flow
control has to be used. Other common mechanisms are, for example, firewalls,
encryption and antivirus software which can be used for protecting confidential
information. The problem with these mechanisms is that they do not provide end-
to-end security. For example, with encryption, we have not assurance that, after
decryption, the confidentiality of data is respected. Another problem, related to
access control mechanisms, is that it has been proved undecidable whether an
access right to an object will “leak” to a process in a system whose access control
mechanism is modeled by an access matrix [73].

Bell and LaPadula model.

Bell and LaPadula use finite-state machines to formalize their model [13]. They
define the various components of the finite state machine defining what it means
(formally) for a given state to be secure. In particular, they consider only the

94 5 Non-Interference in Language-based Security

transitions that can be allowed so that a secure state can never lead to an insecure
one. This model is based on the access matrix model which is composed by an
access matrix that decides in which mode each subject (user, program,...) can access
to an object (files, variables,...). In addition to subjects and objects of the access
matrix, the Bell and LaPadula model includes the security levels of the system:
each subject has a clearance and each object has a classification. Each object has
also a current security level which has not to exceed the subject’s clearance. At
this point, a set of rules, governing the transitions among states, is used in order
to preserve the given security properties. Each rule is formally defined and it is
provided together with a set of restrictions on the possible applications of the rule
itself.

5.2.2 Denning and Denning Information flow static analysis

One of the first work which aim is to provide a mathematical framework suitable
for formulating the requirement of secure information flow is [38]. The central
component of this model is a lattice structure derived from the security classes
and justified by the semantics of information flow. Security here means that no
unauthorized flow of information is possible, which is another formulation for non-
interference.

Consider an information flow model F , defined as F = 〈N,P,S,⊕,→〉, where
N = {a, b, . . .} is a set of objects, P = {p, q, . . .} is a set of processes, which
are active agents responsible of information flow. S = {A,B, . . .} is a complete
lattice of security classes corresponding to disjoint classes of information, with least
upper bound ⊕ and greatest lower bound denoted by ⊗. The idea behind these
classes is that of modeling the security classification of objects. Each object a is
bounded to a security class A which specifies the security class associated with the
information stored in a. There are two kinds of binding: static, where the security
classes associated with objects are constants, and dynamic, where the security
classes may vary during the execution. The operator ⊕ is the class-combining
operator, an associative and commutative binary operation that specifies, given
two operand classes, the class in which the result of any binary function on values
from the operand classes belongs. Finally→ is a flow relation among classes. Given
two classes A and B, we write A → B if information in class A is permitted to
flow into class B. Information is said to flow from class A to class B whenever
information associated with A affects the value of information associated with B.
At this point, a flow model F is secure if and only if the execution of a sequence
of operations cannot give rise to a flow that violates the relation →.

Enforcing security.

The primary problem in guaranteeing security lies in detecting (and monitoring)
all flows causing a variation of data [38]. Here, we find the first distinction between

5.2 Background: Enforcing non-interference 95

implicit and explicit flows. Consider the statement if a = 0 then b := 0 else nil;
if initially b != 0 then we can know something about a after the execution of the
statement. For this reason the authors distinguish between implicit and explicit
flows. Explicit flows are those due to the execution of any statement that directly
transfer information among variables. Implicit flows to b occur when the result of
executing or not a statement, that causes an explicit flow to b, is conditioned on
the value of a guard. At this point, in order to specify the security requirements of
programs causing implicit flows, it is convenient to consider an abstract represen-
tation of programs that preserves the flows but not necessarily the whole original
structure. The abstract program S is defined recursively:

1. S is an elementary statement, i.e., an assignment;
2. There exist S1 and S2 such that S = S1;S2;
3. There exist S1, . . . , Sm and an m-valued variable c such that S = c :

S1, . . . , Sm.

where the third point defines conditional structures in which the value of a variable
selects among alternative programs.
At this point, security is enforced by modeling implicit and explicit flows in the
lattice of security classes and checking if these flows are allowed by the security
policy chosen. Let us see how this is defined for the abstract program S described
above. An elementary statement S is secure if any explicit flow caused by S is
secure, namely if the value of b is derived in S from the values of a1, . . . , am then
A1 ⊕ . . .⊕ Am → B is allowed. S = S1;S2 is secure if both S1 and S2 are secure.
Finally S = c : S1, . . . , Sm is secure if each Sk is secure and all implicit flows from
c are secure, namely let b1, . . . , bm be the objects into which S specifies explicit
flows, then all the implicit flows are from c to each bk and they are secure if
C → B1 ⊗ . . .⊗Bm is allowed.
The authors use this model for generating a certification mechanism for secure
information flow [39]. In particular, in the hypothesis of static binding, they easily
incorporate the certification process into the analysis phase of a compiler and the
mechanism is presented in the form of certification semantics - actions for the
compiler to perform, together with usual semantic actions such as type checking
and code generation, when a string of a given semantic type is recognized. This
analysis has been widely studied and has been characterized as an extension of an
axiomatic logic for program correctness in [7] (see Sect. 5.2.4).

5.2.3 Security type systems

A security type system is a collection of inference rules and axioms for deriving
typing judgments, in particular it describes which security type is assigned to a
program (or expression), based on the types of subprograms (or subexpressions).
In [114] the Denning’s approach is formulated as a type system, in such a way
that all the well-typed programs are proved satisfy the non-interference property.
A typing judgment has the form:

96 5 Non-Interference in Language-based Security

γ ! n : τ γ ! x : τ var
γ ! e : τ var

γ ! e : τ

γ ! x : τ var γ ! e : τ

γ ! x := e : τ cmd

γ ! c1 : τ cmd γ ! c2 : τ cmd

γ ! c1; c2 : τ cmd

γ ! e : τ γ ! c : τ cmd γ ! c′ : τ cmd

γ ! if e then c else c′ : τ cmd

γ ! e : τ γ ! c : τ cmd

γ ! while e do c

Table 5.1. Security type system

τ ≤ τ ′

! τ ⊆ τ ′
! ρ ⊆ ρ

! ρ ⊆ ρ′, ! ρ′ ⊆ ρ′′

! ρ ⊆ ρ′′

! τ ⊆ τ ′

! τ cmd ⊇ τ ′ cmd

γ ! p : ρ, ! ρ ⊆ ρ′

γ ! p : ρ′

Table 5.2. Subtyping rules

γ 2 p : τ

which asserts that the program p has type τ with respect to the identifier typing
γ. An identifier typing is a map from identifiers to types; it gives the type of any
free identifier of p. So, for example, we have the inference rule γ 2 x : τ if γ(x) = τ .
Let’s start from the Denning’s model [38]. The types of a systems are stratified
into two levels. At one level are data types, denoted by τ , which are the security
classes of S, partially ordered by ≤. At the other level are phrase types, denoted
by ρ. These include data types, assigned to expression, variable types of the form
τ var and command types of the form τ cmd. As expected, a variable type τ var
stores information whose security class is τ or lower. Moreover, a command c
has type τ cmd only if it is guaranteed that every assignment within c is made
to a variable whose security class is τ var or higher. This is the confinement
property ensuring secure implicit flows. In order to formalize this relation we have
to extend the partial order ≤ on security classes to a subtype relation ⊆ among
types. A simplified version of the rules introduced in [114] are given in Table 5.1.
In Table 5.2 we can find the subtyping rules. This system has been proved to be
sound and therefore each program that can be typed in this system has only secure
information flow. On the other hand, the system is not complete, which means that
there are programs with only secure information flows and that cannot be typed
in this system. For instance, the program p

def= if h = 1 then l := 0 else l := 0 with
l : L , h : H and L ≤ H , has clearly only secure information flows but it cannot be
typed in the system in Table 5.1.

5.2 Background: Enforcing non-interference 97

5.2.4 The axiomatic approach

Another important approach for checking the existence of insecure information
flows is the axiomatic one introduced, for the first time, in [7]. This approach
uses a program flow proof constructed applying flow axioms and inference rules.
An important aspect of this technique is that it can certify flows in both parallel
and sequential programs. Moreover, once the flow proof for a program has been
constructed, the proof can be used to validate a variety of flow policies. The idea of
this work consists in using assertions of the kind {P}S {Q}, which means that if P
is true before the execution of S, then Q is true after the execution of S, provided
that S terminates. This is the standard notation used in correctness proofs, the
difference is that P and Q here refers to classes rather than to values. In order
to develop a flow proof of {P} S {Q}, the authors describe a deductive logic that
allows to characterize the information flow semantics of statements. The inference
rules used are of the form

A1, . . . , An

B

which means that if logical statements Ai are true, then so is B.
More recently, in [6], another Hoare-style logic has been defined in order to

analyze information flow for confidentiality. In this case, confidentiality is treated
as independency of variables [19], and program traces, potentially infinitely many,
are abstracted, in the standard framework of abstract interpretation [28], by a
finite set of variable independencies. The potentiality of this approach is that these
variable independencies can be statically checked against the logic. Moreover, this
method allows, once a program is deemed insecure, to explain why the program
is insecure by statically generating counterexamples. The basic idea of this paper
is to annotate the program in order to statically check independencies. This is
achieved by using the Hoare-like logic described in Table 5.3, where [x#w] denotes
that the current value of x is independent of the initial value of w, and where
judgements are of the form G 2 {T#

1 } C {T#
2 }. This judgement is interpreted by

saying that if the independencies described in T#
1 hold before execution of C, then

the independencies described in T#
2 will hold after the execution of C, provided

that C terminates. In [6], the authors provide also a correctness result, which can
be seen as the non-interference result for information flow. Indeed, with l and h
interpreted as low and high respectively, suppose that [l#h] appears in the final
set of independencies T#, after the execution of a program C. Then, any two
traces in the execution of C, that have initial values that differ only on h, must
agree on the current value of l. Moreover, if, on the other hand, the program is
deemed insecure, i.e, [l#h] does not appear in the final set of independencies, then
it means that l is dependant on h, and, in addition, the derived assertions allow to
find a counterexample, i.e., two initial values of h that produce two different final
values of l.

98 5 Non-Interference in Language-based Security

[Assign] G ! {T#
0 }x := e{T#}

If ∀[y#w] ∈ T# .

(x '= y ⇒ [y#w] ∈ T#
0),

(x = y ⇒ w /∈ G ∧ ∀z free variable in e. . [z#w ∈ T#
0])

[Seq]
G ! {T#

0 }C1{T#
1 }, G ! {T#

1 }C2{T#
2 }

G ! {T#
0 }C1; C2{T#

2 }

[If]
G0 ! {T#

0 }C1{T#}, G0 ! {T#
0 }C2{T#}

G ! {T#
0 }if e then C1 else C2{T#}

If G ⊆ G0,

w /∈ G0 ⇒ ∀x free variable in e . [x#w] ∈ T#
0

[While]
G0 ! {T#}C{T#}

G ! {T#}while e do C{T#}

If G ⊆ G0,

w /∈ G0 ⇒ ∀x free variable in e . [x#w] ∈ T#

[Sub]
G1 ! {T#

1 }C{T#
2 }

G0 ! {T#
0 }C{T#

3 }

If T#
0 ⊆ T#

1 , T#
2 ⊆ T#

3 , G0 ⊆ G1

Table 5.3. An axiomatic logic for independencies

5.3 Non-interference for different computational systems

A major line of research in information flow purses the goal of defining non interfer-
ence for the different computational models, and for accommodating the increased
expressiveness of modern programming languages.

5.3.1 Deterministic systems: Imperative languages

As we underlined before, non-interference for programs essentially means that any
possible variation of confidential (high/private) input does not cause a variation
of public (low) output. This in particular means that each variable has a static
attribute called security level. In [114] the confinement property for deterministic
languages is defined as follows.

Definition 5.1. A program P has the non-interference property if for all memories
µ and ν such that µ(l) = ν(l) for all low variables l, and such that P terminates

5.3 Non-interference for different computational systems 99

successfully starting both from µ and ν, yielding, respectively, to µ′ and to ν′, then
we have µ′(l) = ν′(l) for all low variables l.

Basically, it says that altering the initial contents of private variables does not
interfere with the final value of any low variable. For instance, if variable pin is
private and y is public then the following program does not preserve confinement,
exactly as the program y := pin:

while ¬(mask = 0)
if ¬(pin & mask = 0) (bitwise and)

y := y | mask; (bitwise or)
mask := mask/2;

If mask is a power of two, then it indirectly copies pin to y, one bit at time [114].
Starting from the Cohen’s seminal study of strong dependency [19], the notion

of non-interference can be rigorously formalized using the programming-language
semantics. Suppose that s ∈ Σ is the denotation for states of programs, and that
states, representing the tuples of values assigned to variables (i.e., representing
memories), can be partitioned in order to distinguish the values of private variables
from the values of public ones: s = 〈sH , sL 〉. In general a program, starting from a
state s can terminate in a state s′ or can diverge. The denotational semantics of
programs is the function that associates with each possible initial state the set of
all the corresponding terminal state together with ⊥, if the given initial state can
lead to non-termination. Moreover, we can define an equivalence relation among
states: s1 =L s2 iff sL1 = sL2 . Therefore, for a given semantic model !P " of the
program P , non-interference can be formalized as follows: P is secure iff

∀s1, s2 ∈ Σ . s1 =L s2 ⇒ !P "(s1) =L !P "(s2) (5.2)

which is exactly the absence of strong dependency of public data from private ones
[19]. For example the program

c
def= if h = 3 then l := 5 else nil

is clearly insecure since the high initial values 3 and 4 provides different results for
the variable l: 〈4, 1〉 =L 〈3, 1〉 but !c"(4, 1) = 〈4, 1〉 while !c"(3, 1) = 〈3, 5〉, where
〈4, 1〉 !=L 〈3, 5〉.
In general we can rewrite non-interference by saying that if two state share the
same low values, then the behaviours of the program executed on these states
are indistinguishable by the attacker. This means that the notion can be made
parametric on what the attacker can really see. This is a key observation in order
to abstract the notion of non-interference.

5.3.2 Non-deterministic and thread-concurrent systems

The natural extension of the notion of non-interference to non-deterministic sys-
tems is the notion of possibilistic non-interference [86]. As we have said before,

100 5 Non-Interference in Language-based Security

in order to prevent direct information flows, certain aspects of the system be-
haviour must not be directly observable by users who do not have the appropriate
clearance. However, in general, an observer might still be able to deduce confi-
dential information from other observations. In the worst case, the observer has
complete knowledge of the system and can construct all the possible system be-
haviours which generate a given observation, trying to deduce confidential infor-
mation from this set. The basic idea of possibilistic security is to demand that
this set is so large that the observer cannot deduce confidential information since
it cannot be sure which behaviour has actually occurred [86]. In [108] the con-
finement (non-interference) property for non-deterministic languages is defined as:

Definition 5.2. A non-deterministic program P satisfies the possibilistic non-
interference property if for all memories µ and ν such that µ(l) = ν(l) for all
low variables l, and P can terminate successfully starting from µ yielding to the
final state µ′, then there exists a state ν′ such that P can terminate successfully
starting from ν yielding ν′ and µ(l) = ν′(l) for all low variables l.

It says that altering the initial contents of high variables does not interfere with
the set of possible final values of any low variable [108]. The property rules out
concurrent programs with information channels that exploit thread synchroniza-
tion. In particular, we have a purely non-deterministic system if the scheduler of
the system, that activates the threads, is characterized by the simple rule: At each
step, any thread can be selected to run for one step. For instance, consider the
following system:

Thread α: Thread β: Thread γ:
y := x; y := 0; y := 1

Suppose that x is a private binary variable, while y is public. Then the program
satisfies the possibilistic non-interference property.

Possibilistic security properties.

Due the complex structure of non-deterministic systems, the notion of possibilistic
non-interference given above, is not the only confidentiality property that can be
defined on this kind of systems. The first attempts to provide a general theory
in which uniformly define possibilistic security properties was through the use of
selective interleaving functions [91]. In this paper, it is observed that possibilistic
security properties fall outside of the Alpern-Schneider safety/liveness domain [4],
since these properties are not properties of traces, i.e., trace sets, but properties
of trace sets, i.e., sets of trace sets. In particular, possibilistic security properties
are defined as closure properties with respect to some functions that takes two
traces and interleaves them to form a third trace [91]. This theory is then used for
studying how these security properties behave when systems are composed, i.e.,
if a system satisfying property X is composed with a system satisfying property

5.3 Non-interference for different computational systems 101

Y , using composition constructor Z, what properties will the composite system
satisfy? In the following we will recall the principal security properties treated in
this general theory.

Non-inference: Informally, non-inference requires that for any trace of the system,
removing all the high level events, we obtain a trace that is still valid. More
formally, if purge(τ) is the function that takes a trace τ and sets all high level
inputs and outputs in τ to the empty value λ, then a system satisfies non-
inference if the set of its traces is closed under the function purge, i.e., the
image of purge is always contained in the set of valid traces of computation.

Generalized Non-inference: Informally, generalized non-inference requires that for
any trace τ , it must be possible to find another trace σ such that the low level
events of τ are equal to σ and σ has not high level inputs. More formally, if
input-purge(τ) is the function that takes a trace τ and sets all high level inputs
in τ to the empty value λ, then a system satisfies non-inference if the set of
its traces is closed under the function input-purge.

Separability: Informally, separability holds if no interaction is allowed between high
level and low level events. It is like having two separate systems, one running
the high level processes, and one running the low level ones. More formally, if
interleave(τ1, τ2) is the function that takes two traces τ1 and τ2 and returns
the trace τ such that the high input and output of τ are taken in τ1 and low
input and output of τ are taken in τ2, then a system satisfies separability if
the set of its traces is closed under the function interleave.

Generalized Non-interference: Generalized non-interference holds if modifying a
trace τ , inserting or deleting high level input, results in a sequence σ that can
be transformed in a valid trace by inserting or deleting high level outputs.
More formally, if input-interleave(τ1, τ2) is the function that takes two traces
τ1 and τ2 and returns the trace τ such that the high input of τ are taken
in τ1 and low input and output of τ are taken in τ2, then a system satisfies
generalized non-interference if the set of its traces is closed under the function
input-interleave.

This framework has been made more intuitive and general in [117], in order to
model more security properties, such as perfect security property (PSP), which
allows high level outputs to be influenced by low level events [117]. More recently,
all these security properties have been modeled in a modular structure in [85],
where they are obtained as combination of basic security predicates.

5.3.3 Communicating systems: Process algebras

The possibilistic notions of non-interference introduced in the previous section
allows to consider non deterministic system, but are not adequate for treating
non-interference in systems with the synchrony assumption: a system is composed
of several components which have to proceed together at every time instant [47].

102 5 Non-Interference in Language-based Security

Synchrony is a basic feature, together with non-determinism, of process algebras,
and probably, the most famous representative of this class is CCS [92]. In partic-
ular, in [47], the problem of studying secure information flows is considered in a
particular process algebra, Spa (see Sect. 4.2.2), which is a slight extension of CCS.
At this point, we recall the principal notions of non-interference defined on Spa
in [47]. In particular there are two classes of definitions, depending on the equiv-
alence of processes chosen: trace-based or bisimulation-based. In order to better
understand the notions of non-interference that we are going to introduce, let’s re-
formulate the idea of non-interference as follows: Let G and G′ be two user groups,
given any input sequence γ, let γ′ be its subsequence obtained by deleting all the
actions of users in G; G is non-interfering with G′ iff for every input sequence γ,
the users of G′ obtain the same output after the execution of γ and of γ′.

Trace-based security properties.

Let us consider the trace-based equivalence of processes ≈T , i.e., A1 ≈T A2 iff
the set of traces associated with A1 is equal to the set of traces associated with
A2. Then the first extension of the notion of non-interference to Spa is the Non-
deterministic Non-Interference (NNI), defined as follows:

A ∈ NNI ⇔ (A\IActH)/ActH ≈T A/ActH

This notion requires that, when we avoid high level inputs, we obtain a trace whose
projection on low level actions (i.e., the hiding of high level actions) is equal to the
low level projection of a generic trace of actions of the system. A more restrictive
form of NNI requires that, for every trace γ, the sequence γ′, obtained deleting all
the high level actions (input and output), is still a trace. This property is called
Strong NNI (SNNI) and is defined as follows:

A ∈ SNNI ⇔ A/ActH ≈T A\ActH

The relation between these two notions is that, in Spa, SNNI ⊂ NNI. If, such
as in CSP, we don’t have distinction between inputs and outputs, then NNI =
SNNI.
Another interesting notion of non-interference is Non-Deducibility on Compositions
(NDC). A system is NDC if the set of its low level views cannot be modified by
composing the system with any high level process. This property can be defined
as follows:

A ∈ NDC ⇔ ∀Π ∈ EH . A/ActH ≈T (A ‖ Π)\ActH

In [47] it is proved that NDC = SNNI.

Bisimulation-based security properties.

All the security notions introduced so far are based on the assumption that the
semantics of a system is the set of its execution traces. In this section we show

5.3 Non-interference for different computational systems 103

that, in [47], these security properties have been rephrased on the finer notion
of system behaviour called weak bisimulation (or observational equivalence) [92].
This extension was considered since trace semantics is rather weak, as it is unable
to distinguish systems which give different observations to a user, even if they have
the same traces. Here we recall the definition of weak bisimulation over Spa agents
[47]. Let A

µ=⇒A′ a short hand for A
τ−→ ∗A1

µ−→A2
τ−→ ∗A′, where τ−→ ∗ means

zero or more times τ . In the following A
bµ=⇒ E′ stands for A

µ=⇒ A′ if µ ∈ L,
for A

τ−→∗A′ if µ = τ . The following example shows that trace-based equivalence
is weaker than bisimulation based equivalence. Indeed the two systems have the
same set of traces but they are not bisimilar.

!"#$%&'(a !"#$%&'(a

!!
!!

!!
!!

!

""
""

""
""

"

!"#$%&'(b

##
##

##
##

#

$$
$$

$$
$$

$
!"#$%&'(b !"#$%&'(b

)*+,-./0c !"#$%&'(d)*+,-./0c !"#$%&'(d

Fig. 5.1. Trace vs bisimulation equivalence

Definition 5.3. A relation R ⊆ E × E is a weak bisimulation if it satisfies:

• Whenever 〈A,B〉 ∈ R and A
µ−→A′, then there exists B′ ∈ E such that B

bµ=⇒
B′, and 〈A′, B′〉 ∈ R;

• Whenever 〈A,B〉 ∈ R and B
µ−→B′, then there exists A′ ∈ E such that A

bµ=⇒
A′, and 〈A′, B′〉 ∈ R;

Two Spa agents A,B ∈ E are observationally equivalent, A ≈B B, if there exists
a weak bisimulation containing the pair 〈A,B〉.

Note that ≈B is an equivalence relation, and that it is stronger than ≈T . At
this point in [47] the Bisimulation NNI (BNNI), Bisimulation SNNI (BSNNI)
and the Bisimulation NDC (BNDC) are introduced simply by substituting ≈B

for ≈T in their algebraic Spa-based characterizations. In particular we can give a
characterization of BNDC equivalent to the simple substitution of the equivalence
relation.

– A ∈ BNNI iff (A\IActH)/ActH ≈B A/ActH ;
– A ∈ BSNNI iff A/ActH ≈B A\ActH ;
– A ∈ BNDC iff ∀Π ∈ EH . A\ActH ≈B (A ‖ Π)\ActH .

All the relations among these notions are deeply studied in [47].

104 5 Non-Interference in Language-based Security

!"#$%&'()*+,-./0q0

false,H ,{}

!!

true,L ,{}

"" !"#$%&'()*+,-./0q0

true,L ,{}
##

true,H ,{xinterf} $$!"#$%&'()*+,-./0q1

xinterf≥n,H ,{xinterf}

%%

true,L ,{}

&&

Fig. 5.2. The automata InhibH and Interfn
H .

5.3.4 Real-time systems: Timed automata

The most widespread models for real-time systems are timed automata (see
Sect. 4.2.3). In [12], a new notion of non-interference for timed automata is intro-
duced. The notion is based on high-level action delays magnitude and on equiva-
lence of timed automata. Given a natural number n, the authors say that high-level
actions do not interfere with the system, considering minimum delay n, if the sys-
tem behaviour in absence of high-level actions is equivalent to the system behaviour,
observed on low-level actions, when high-level actions can occur with a delay be-
tween them greater than or equal to n. Thus, the environment of the system does
not offer high-level events separated by less that n times units, and if the property
holds, there is no way for low-level users to detect any high-level action. The main
improvement of this notion, if compared with untimed notions, is that time is ob-
servable and the property captures those systems in which the time delay between
high-level actions cannot be used to construct illegal information flows.
Let A be a timed automaton over the alphabet of actions Σ and 〈|A|〉 the accepted
language associated with A. We suppose that Σ is partitioned into two disjoint
sets of actions H and L such that H is the set of the high-level actions, while L
is the set of the low-level ones. First of all, consider an automaton A, we want to
observe its behaviour in absence of high-level actions. In order to obtain this, we
compose it in parallel with an automaton, called InhibH , that does not allow the
execution of high-level actions (see Fig. 5.2). In Fig. 5.2 we use the conventions
that double-circled states are final, and q0 is initial, moreover, an edge having as
label a set of actions represents a set of edges, one for each action in the set, with
the same clock constraint and clock reset. In the product A||InhibH the component
A cannot have transition labeled by h ∈ H since InhibH never performs high-level
actions (its constraints on high-level actions are false). Thus only low-level actions
are executed.
Consider Interfn

H in Fig. 5.2. This automaton allows the execution of high-level
actions only when they are separated by at least n time units. Indeed, both the
states can execute low-level actions without any restriction. But, if a high-level
action occurs, then the automaton goes in state q1 and reset the clock xinterf ,
which is reset by all high-level actions, and all high-level actions can be executed
if xinterf is greater or equal than n. Namely a high-level action can be executed
only if at least n time units have elapsed from the previous one.

5.4 Covert Channels 105

Then an automaton A is said to be n non-interfering if:

(A||Interfn
H)/H ≈ A||InhibH

where the operator /H hides high-level actions, namely whenever the label of an
edge is σ ∈ H it is replaced by ε, and ≈ is defined by: A1 ≈ A2 iff L(A1) = L(A2).

The notion of non-interference for timed automata can be equivalently char-
acterized on languages [12]. Let 〈|A|〉 be the timed language accepted by A on a
alphabet Σ and consider the following manipulation of languages:

〈|A|〉|L
def=

{
〈σ, t〉 ∈ 〈|A|〉

∣∣∣∀〈σi, ti〉 ∈ 〈σ, t〉 . σi ∈ L
}

〈|A|〉/H def=

{
ω

∣∣∣∣∣
∃〈σ, t〉 ∈ 〈|A|〉 such that ω is the projection of 〈σ, t〉
on the pairs

{
〈σ, t〉

∣∣σ ∈ L
}

}

〈|A|〉nH
def=

{
〈σ, t〉 ∈ 〈|A|〉

∣∣∣∣∣
∀〈σi, ti〉, 〈σj , tj〉 ∈ 〈σ, t〉 . i != j, σi,σj ∈ H
⇒ |ti − tj | ≥ n

}

Namely, 〈|A|〉|L avoids high-level actions, it takes only the traces of the system
that make only low-level actions. On the other hand, 〈|A|〉/H hides the high-level
actions, i.e., it executes them and then it hides them. Finally, 〈|A|〉nH selects only
those traces where the high-level actions are distant at least n.
Then, in [12], a system is said to be n-non-interfering iff

〈|A|〉nH /H = 〈|A|〉|L

5.4 Covert Channels

By covert channels we mean those channels that are not intended for information
transfer at all [80]. The importance of studying these kind of channels lies on the
fact that they pose the greatest challenge in preventing improper transmission
leaks. There are several kind of covert channels [104]:

Implicit channels : Channels of information flow due to the control structure of a
program;

Termination channels : Channels of information flow due to the termination or
non-termination status of a program;

Timing channels : Channels of information flow due to the time at which an action
occurs rather than due to the data associated with the action. The action may
be termination;

Probabilistic channels : Channels of information flow due to the change of the
probability distribution of observable data. These channels are dangerous when
the attacker can run repeatedly a computation and observe its stochastic be-
haviour;

106 5 Non-Interference in Language-based Security

Resources channels : Channels of information flow due to the possible exhaustion
of a finite, shared resource, such as disk memory;

The kind of covert channel, that may be created, depends on what the at-
tacker/user can view of the computational system. This means that a compu-
tational system can be said to protect confidential information only with respect
to a model of what attackers/users are able to observe of its execution.

5.4.1 Termination channels

Consider Definition 5.1 of non-interference for deterministic languages. In this
definition it is said that the program has to “terminate successfully”, starting
from the given states. It is clear that, changes in high variables may cause the
program to diverge, leaving unchanged the fact that the program can still satisfy
the definition. This may make the property unsuitable in situations where this
sort of behaviour can be observed. If, such as for PER model, the denotational
semantics is used for defining non-interference, then we note that in case of non-
termination denotational semantics associates with each state, leading to non-
termination, the symbol ⊥. In this way, Eq. 5.2 can be used also for defining
termination-sensitive non-interference. Therefore, the PERs model can be simply
adapted by considering domains of values enriched with the symbol ⊥, i.e., D⊥,
and extending relations R ∈ Per(D) to R ⊥ ∈ Per(D⊥) naturally by adding the
relation ⊥R ⊥⊥. In this way we make the definition insensitive to non-termination
[106]. Namely termination channels are avoided simply by enriching the semantics.
Note that, also in [1], where for the first time dependencies were given in term of
PERs, for a calculus based on a variation of λ calculus, was shown that PERs
capture termination sensitive security.
When non-interference is checked on the syntax, by typing secure programs (see
Sect. 5.2.3), then it become necessary to enrich the type system in order to avoid
termination channels [112]. In this paper, the authors show that termination flows
can be handled with just a simple modification of the original type system in
[114], based on the notion of minimum type. They say that a type τ is minimum
if τ ≤ τ ′ for every type τ ′, to handle the covert flow arising from non-termination
they merely change the typing rule for while b do c endw to require that b has
minimum type. In other words, this means that this type system disallows high
loops and require high conditionals have no loops in the branches.

5.4.2 Timing channels

Note that, in practice, non-termination cannot be distinguished from a very time-
consuming computation, thus the termination channel can be viewed as an in-
stance of the timing channel. Timing-sensitive non-interference can be formalized
by considering Eq. 5.2, where the low view relation =L is substituted by ≈L , which
relates two behaviour iff both diverges or both terminate in the same number of

5.5 Weakening non-interference 107

execution steps in low-equal final states [104]. In [113] the authors avoid timing
channels in the type system by restricting high conditionals to have no loops in
the branches and wrapping each high conditional in a protect statement whose
execution is atomic. In [2] program transformation is used in order to close tim-
ing leaks. In particular, the “type” of a program C is its low slice CL , which is
syntactically identical to C but only contains assignments to low level variables.
All the assignments to high level variables are replaced with appropriate dummy
commands with no effect on variables, therefore the low slice has the same ob-
servational behaviour as the original program with respect to low level variables.
Finally, the usual type system is considered and, either the original program C is
rejected (in case of a potential explicit or implicit insecure information flow) or
accepted and transformed into the program CL free of timing leaks.

5.4.3 Probabilistic channels

Probability-sensitive non-interference can be formalized in the Eq. 5.2 by replacing
=L with an equivalence relation ≈L that relates two behaviours iff the distribu-
tion of low output is the same. Indeed, as we can see in the following example,
possibilistic non-interference is not sufficient to prevent probabilistic information
flows [90]. Consider, for example, the following multi-threaded system:

Thread α: Thread β:
y := x; y := random(100)

where random(100) returns a random number between 1 and 100, and x ∈ [1, 100].
Then the program satisfies the possibilistic non-interference since regardless the
initial value of x, the final value of y is a random number between 1 and 100. But
with a probabilistic semantics, this is not good enough, because the final values of y
are not equally probable, indeed the more probable value for y is the initial value
of x [109]. Moreover, in multi-threaded systems, also the scheduler of processes
may be probabilistic. In [113] the authors define a notion of probabilistic non-
interference that captures the probabilistic information flows that may result from
a uniform scheduler in a multi-threaded language. In [106] the authors considers
PERs on probabilistic powerdomains in order to catch probabilistic flows. While
in [105] the authors connect probabilistic security with probabilistic bisimulation
[81], improving the precision of the previous probability-sensitive notions.

5.5 Weakening non-interference

The limitation of the notion of non-interference described so far, is that it is
an extremely restrictive policy. Indeed, non-interference policies require that any
change upon confidential data has not to be revealed through the observation of
public data. There are at least two problems with this approach. On one side,

108 5 Non-Interference in Language-based Security

many real systems are intended to leak some kinds of information. On the other
side, even if a system satisfies non-interference, some kinds of tests could reject
it as insecure. These observations address the problem of weakening the notion
of non-interference both characterizing the information that is allowed to flow,
and considering weaker attackers that cannot observe any property of public data.
Clearly, as we will show in this thesis, these are dual aspects of the same problem,
and in the following sections we will describe the most relevant works in this
direction.

5.5.1 Characterizing released information

As we have addressed above, real systems often do leak confidential information,
therefore it seems sensible to try to measure that leakage as best as possible.
The first work on this direction is [19], where the notion of selective dependency
(see Sect. 5.1.1) is introduced. Selective dependency consists in a weaker notion
of dependency, and therefore of non-interference, that identifies what flows during
the execution of programs. More recently, in literature we can find several works
that attack this problem from different points of view. A first approach consists
in a quantitative (information theoretic) definition of information flows [17, 84].
Another relevant approach models the attacker’s power by using equivalence rela-
tions, and by transforming these equivalence relations it characterizes the released
information [118]. Afterwards, several papers treated the declassification of confi-
dential information [83,96,103].

An information theory approach.

In [17], Shannon’s information theory is used to quantify the amount of information
a program may leak and to analyze in which way this depends on the distribution
of inputs. In particular, the authors are interested in analysing how much an at-
tacker may learn (about confidential information) by observing the input/output
behaviour of a program. The basic idea is that all information in the output of a
deterministic program has to come from the input, and what it is not provided by
the low input has to be provided by the high input. Therefore, this work wants to
investigate how much of the information carried by the high inputs to a program
can be learned by observation of the low outputs, assuming that the low inputs are
known. Now, since the considered language is deterministic, any variation of the
output is due to a variation of the input. Hence, once we account for knowledge
of the program’s low inputs, the only possible source of surprise in an output is
the interference from the high inputs. So, given a program variable X (or a set
of program variables), let Xι and Xω be, respectively, the corresponding random
variables on entry and exit from the program. In [17] the authors take as measure
of the amount of leakage into X due to the program: L(X) = H(Xω|Lι), where L
is the set of low variables, this Lι is the random variable describing the distribu-

5.5 Weakening non-interference 109

tion of the program’s non-confidential inputs, and H is the entropy1. Moreover, in
[17], it is shown that there exists a more general characterization of the amount
of information released that is appropriate even for languages with an inherently
probabilistic semantics. In this case, they say that a natural definition of the leak-
age into X is the amount of information shared between the final value of X and
the initial value of H, given the initial value of L: L′ = I(Hι;Xω|Lι), where I
is the conditional mutual information2 between Hι and Xω given knowledge of
Lι. This is essentially the definition used by Gray [71], specialized in a simpler
semantic setting. In [17] it is also proved that, for deterministic languages L = L′.

Shannon’s information theory is not the only approach, existing in literature,
for quantifying information flow. Indeed in [84] the capacity of covert channels,
i.e., the information flow quantity, is measured in terms of the number of high level
behaviours that can be accurately distinguished from the low level point of view.
The idea is that if there are N such distinguishable behaviours, then the high level
user can use the system to encode an arbitrary number in the range 0, . . . , N−1 to
send it to the low level user, in other words log2 N bits of information are passed.

Declassification.

In the previous paragraph, we described a method that allows to quantify the
amount of information released. In literature, there exists another important, more
qualitative, approach whose aim is to discover which is the information that flows
in order to declassify it for guaranteeing non-interference. Declassifying informa-
tion means downgrading the sensitivity of data in order to accommodate with
(intentional) information leakage3. Robust declassification has been introduced in
[118] as a systematic method to drive declassification by characterizing what infor-
mation flows from confidential to public variables. In particular, the observational
attacker’s capability is modeled by using equivalence relations as in PER models,
and declassification of private data is obtained by manipulating these relations
in a semantic-driven way. The semantics considered is the operational semantics,
defined on a transition system. The idea is to consider views of the computational
traces determined by the observational capability of the attacker. Hence, given a
trace τ of computations of the system S, and given the ≈-view of τ (where ≈ is an
equivalence relation), a view of τ is τ/≈ defined as follows: ∀i < |τ |.(τ/≈)i = [τi]≈.
The intuition is that a passive attacker (that cannot modify computations), who is

1 Recall that, given a random variable X, let x ranges over the set of values which X may

take and let p(x) the probability that X take x, then H(X) = Σxp(x) log 1
p(x) . The

conditional entropy measuring the uncertainty in the variable X given the knowledge

of the variable Y is H(X|Y) = H(X, Y)−H(X).
2 Recall that, given the random variables X, Y and Z, the conditional mutual in-

formation between X and Y given the knowledge of Z is defined as I(X; Y |Z) =

H(X|Z) + H(Y |Z)−H(X, Y |Z).
3 Note that this is similar to the Cohen’s notion of selective dependency [19].

110 5 Non-Interference in Language-based Security

able to distinguish states up to ≈, will see the trace τ as a sequence of equivalence
classes. Then, an observation of the system S, with respect to starting state σ and
view ≈, is defined as: Obsσ(S,≈) def=

{
τ/≈

∣∣ τ trace of S starting in σ
}
. This is

the set of all the possible sequences of equivalence classes under ≈, that might be
observed by watching the system whenever it starts in state σ. At this point, the
information that might be learned by observing S through the view ≈ is obtained
by transforming ≈, in function of the set Obsσ(S,≈). In particular, the authors
define a new equivalence relation S[≈], called observational equivalence, such that
two states are equivalent only if the possible traces leading from these states are
indistinguishable under ≈:

∀σ,σ′ ∈ Σ . 〈σ,σ′〉 ∈ S[≈] ⇔ Obsσ(S,≈) ≡ Obsσ′(S,≈)

Hence, in the paper a system is said secure if all the ≈-equivalent states are obser-
vationally equivalent. In other words, there is no information flow to an observer
with view ≈. This characterization is then used in order to declassify data in the
system. The basic idea of declassification is that any system that leaks information
can be thought of as containing declassification. A passive attacker may be able
to learn some information by observing the system but, by assumption, that in-
formation leakage is allowed by the security policy [118]. In this way, the attacker
is made blind , i.e., all the the information that the attacker can get from the exe-
cution of the program is declassified. Note that, in [118], robust declassification is
defined in the more general case where the attacker can be active, namely it can
interfere in the execution, for example being a program running concurrently. This
work has been recently generalized in [96] in three ways. First, it is shown how to
express the property in a language-based setting, for a simple imperative language.
Second, the property has been generalized so that untrusted code and data are
explicitly part of the system rather than appearing only when there is an active
attacker. Third, a security guarantee, called qualified robustness has been intro-
duced. This provides untrusted code with a limited ability to affect information
release. The key point of this paper is the proof that both robust and qualified
declassification can be enforced by a compile-time program analysis based on a
simple type system.

More recently, explicit declassification is allowed by weakening the notion of
non-interference, in particular in [103] the notion of delimited information release is
introduced in order to type as secure also systems that admit explicit confidential
information release. The idea behind this notion is that a given program is secure
as long as updates to variables that are later declassified occur in a way that does
not increase the information visible by the attacker [103]. In order to solve the
same problem, in [83] the authors define the notion of relaxed noninterference .
The basic idea is to treat downgrading policies as security levels in traditional
information flow systems. Instead of having only two security classes, i.e., H and
L the authors consider a much richer lattice of security levels where each point
corresponds to a downgrading policy, describing how the data can be downgraded

5.5 Weakening non-interference 111

from this level. Afterwards, the authors define a type system for enforcing the new
notion of non-interference.

5.5.2 Constraining attackers

As noted before, the notion of non-interference introduced in this chapter, is based
on the assumption that an attacker is able to observe public data, without any
observational or complexity restriction. In particular, for some computational sys-
tems, disclose any kind of confidential properties require a particular number of
statistical tests [41], or a particular computational complexity [82]. The idea is to
characterize, in some ways, which has to be the power of the attacker that can
disclose certain confidential properties form a given program.

A probabilistic approach.

The notion of non-interference is based on the concept of indistinguishability of
behaviours: In order to establish that there is no information flow between two
objects A and B, it is sufficient to establish that, for any pair of behaviours of
the system that differ only in A’s object, B’s observations cannot distinguish
these two behaviours. This suggest that it is possible to weaken this notion by
approximating this indistinguishability relation [41]. In this paper, the authors
replace the notion of indistinguishability by the notion of similarity. Therefore,
two behaviours, though distinguishable, might still be considered as effectively
non-interfering, provided that they are similar, i.e., their difference is below a
threshold ε. A similarity relation can be defined by means of an appropriate notion
of distance and provides information on how much two behaviours differ from each
other. The power of the attacker is then measured since this quantitative measure
of differences between behaviours is related with the number of statistical tests
needed to distinguish the two behaviours.

A complexity-based approach.

As noted above, the standard notion of non-interference requires that the public
output of the program do not contain any information (in the information-theoretic
sense) about the confidential inputs. This corresponds to an all-powerful attacker
who, in his quest to obtain confidential information, has no bounds on the re-
sources (time and space) that it can use. Furthermore, in these definitions an
“attacker” is represented by an arbitrary function, which does not even have to
be a computable function; the attacker is permitted essentially arbitrary power
[82]. The observation made in this paper is that, instead, realistic adversaries are
bounded in the resources that they can use. For this reason the author provides
a definition of secure information flow that corresponds to an adversary working
in probabilistic polynomial time, together with a program analysis that allows to
certify these kinds of information flows.

