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Floating-point numbers (defined by the IEEE 754
norm)

Normalized floating-point numbers

(−1)s1.x1x2 . . . xn × 2e (radix 2 in general)

implicit 1 convention (x0 = 1)
n = 23 for simple precision, n = 52 for double precision
exponent e is an integer represented on k bits (k = 8 for
simple precision, k = 11 for double precision)

Denormalized numbers (gradual underflow),

(−1)s0.x1x2 . . . xn × 2emin
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ULP : Unit in the Last Place

ulp(x) = distance between two consecutive floating-point
numbers around x = maximal rounding error of a number
around x

A few figures for simple precision floating-point numbers :

largest normalized ∼ 3.40282347 ∗ 1038

smallest positive normalized ∼ 1.17549435 ∗ 10−38

largest positive denormalized ∼ 1.17549421 ∗ 10−38

smallest positive denormalized ∼ 1.40129846 ∗ 10−45

ulp(1) = 2−23 ∼ 1.19200928955 ∗ 10−
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Some difficulties of floating-point computation

Representation error : transcendental numbers π, e, but
also

1

10
= 0.00011001100110011001100 · · ·

Floating-point arithmetic :

absorption : 1 + 10−8 = 1 in simple precision float
associative law not true :
(−1 + 1) + 10−8 6= −1 + (1 + 10−8)
cancellation : important loss of relative precision when two
close numbers are subtracted

Some more trouble :

re-ordering of operations by the compiler
storage of intermediate computation either in register or in
memory, with different floating-point formats
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Example of cancellation : surface of a flat
triangle

(a, b, c the lengths of the sides of the triangle, a close to
b + c):

A =
√

s(s − a)(s − b)(s − c) s =
a + b + c

2

Then if a,b, or c is known with some imprecision, s − a is very
inaccurate. Example,

real number floating-point number

a = 1.9999999 a = 1.999999881...

b = c = 1 b = c = 1

s − a = 5e − 08 s − a = 1.19209e − 07

A = 3.16...e − 4 A = 4.88...e − 4
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In real world : a catastrophic example

25/02/91: a Patriot missile misses a Scud in Dharan and
crashes on an american building : 28 deads.

Cause :

the missile program had been running for 100 hours,
incrementing an integer every 0.1 second
but 0.1 not representable in a finite number of digits in
base 2

1

10
= 0.00011001100110011001100 · · ·

Truncation error ∼ 0.000000095 (decimal)
Drift, on 100 hours ∼ 0.34s

Location error on the scud ∼ 500m
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But also some other costly errors ...

Explosion of Ariane 5 in 1996 (conversion of a 64 bits
float into a 16 bits integer : overflow)

Vancouver stock exchange in 1982

index introduced with initial value 1000.000
after each transaction, updated and truncated to the 3rd
fractional digit
within a few months : index=524.881, correct value
1098.811
explanation : biais. The errors all have same sign

Sinking of an offshore oil platform in 1992 : inaccurate
finite element approximation

Collection of Software Bugs at url
http://www5.in.tum.de/∼huckle/bugse.html
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Validation of accuracy “by hand” ?

A popular way : try the algorithm with different precision
(using matlab for example) and compare the results

Example (by Rump) : in FORTRAN on an IBM S/370,
computing with x = 77617 and y = 33096 and x1 = 61.0

11
,

f = 333.75y6+x2(11x2y2−y6−121y4−2)+5.5y8+x/(2y)

gives :

in single precision, f = 1.172603...
in double precision, f = 1.1726039400531...
in extended precision, f = 1.172603940053178...

We would deduce computation is correct ?

True value is f = −0.82739... !!!
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IEEE 754 norm : correct (or exact) rounding

The user chooses one among four rounding modes
(rounding to the nearest which is the default mode,
rounding towards +∞, rounding towards −∞, or rounding
towards 0)

The result of x ∗ y , ∗ being +,−,×, / or of
√

x , is the
rounded value of the real result (thus the rounding error is
less than the ulp of the result)

→ Allows to prove some properties on programs using
floating-point numbers
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Static Analysis

Analysis of the source source, for a set of inputs and
parameters, without executing it

The program is considered as a discrete dynamical system

Find in an automatic, and guaranteed way :

invariant properties (true on all trajectories - for all
possible inputs or parameters).
Example : bounds on values of variables
liveness properties (that become true at some moment on
one trajectory).
Examples : state reachability, termination
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But undecidable in general

Thus abstraction to compute over-approximations of sets of
values : Abstract Interpretation

var x

var y

intervalles

var x

var y

Octogones
var x

var y

Polyèdres

The analysis must terminate, may return an over-approximated
information (“false alarm”), but never a false answer

12
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Abstract Interpretation (Cousot & Cousot 77)

Theory of semantics approximation (operators, fixpoint
transfers)

−2 −1 0 1 2
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Fixpoint computation

To automatically find local invariants :

Abstract domain (lattice) for sets of value

The semantic is given by a system of equations, of which
we compute iteratively a fixpoint :

X =





X1

. . .
Xn



 = F





X1

. . .
Xn





F is non-decreasing, least fixpoint is the limit of Kleene
iteration X 0 = ⊥, X 1 = F (X 0), . . . , X k+1 = X k ∪ F (X k),
. . .

Iteration strategies, extrapolation (called widenings) to
reach a fixpoint in finite time
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Example : lattice of intervals

Intervals [a, b] with bounds in R with −∞ and +∞
Smallest element ⊥ identified with all [a, b] with a > b

Greatest element ⊤ identified with [−∞,+∞]

Partial order : [a, b] ⊆ [c , d ] ⇐⇒ a ≥ c and b ≤ d

Sup : [a, b] ∪ [c , d ] = [min(a, b),max(c , d)]

Inf : [a, b] ∩ [c , d ] = [max(a, b),min(c , d)]
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Example

int x=0; // 1

while (x<100) { // 2

x=x+1; // 3

} // 4

x1 = [0, 0]
x2 = ] −∞, 99] ∩ (x1 ∪ x

x3 = x2 + [1, 1]
x4 = [100,+∞[∩(x1 ∪ x3

- Iterate i + 1 (i < 100) [Kleene/Jacobi/Gauss-Seidl] :

x1
2 = [0, 0]

x1
3 = [1, 1]

x1
4 = ⊥

x i+1
2 = [0, i ]

x i+1
3 = [1, i + 1]

x i+1
4 = ⊥

- Fixpoint (after 101 Kleene iterates or widening/narrowing) :

x∞
2 = [0, 99]; x∞

3 = [1, 100]; x∞
4 = [100, 100]
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Analysis of programs using floating-point
numbers

What is a correct program when using floating-point numbers ?

No run-time error, such as division by 0

But also the program does compute what is expected with
respect to some tolerance (the programmer usually thinks
in real numbers)

For that, we need :

Bounds of floating-point values (ASTREE, FLUCTUAT)

Bounds on the discrepancy error between the real and
floating-point computations (FLUCTUAT)

If possible, the main source of this error (FLUCTUAT)

17



Abstract In-
terpretation
of Floating-

Point
Computa-

tions

Sylvie Putot
and Eric
Goubault
MEASI,
CEA-

LIST/X/CNRS

Related work and tools

The ASTREE static analyzer (see references)

Detection of run-time error for large synchronous
instrumentation software
Using in particular octogons and domains specialized for
order 2 filters (ellipsoids)
Taking floating-point arithmetic into account

http://www.astree.ens.fr/

CADNA : estimation of the roundoff propagation in
scientific programs by stochastic testing
http://www-anp.lip6.fr/cadna/

GAPPA : automatic proof generation of arithmetic
properties http://lipforge.ens-lyon.fr/www/gappa/
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Analysis for the floating-point value

First natural idea : Interval Arithmetic (IA) with
floating-point bounds, where min bound computed with
rounding to −∞ and max bound computed with rounding
to +∞

[a, b] + [c , d ] = [a + c , b + d ]
[a, b] − [c , d ] = [a − d , b − c]
[a, b] × [c , d ] = [min(ac , ad , bc , bd), max(ac , ad , bc , bd)]

Defect : too conservative, non relational

extreme example : if X = [−1, 1], X − X computed in
interval arithmetic is not 0 but [−2, 2]

A solution : Affine Arithmetic, an extension of IA that
takes linear correlations into account

but correlations true only for computations on real numbers
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Affine Arithmetic for real numbers

Proposed in 1993 by Comba, de Figueiredo and Stolfi as a
more accurate extension of Interval Arithmetic

A variable x is represented by an affine form x̂ :

x̂ = x0 + x1ε1 + . . . + xnεn,

where xi ∈ R and εi are independent symbolic variables
with unknown value in [−1, 1].

x0 ∈ R is the central value of the affine form
the coefficients xi ∈ R are the partial deviations

the εi are the noise symbols

The sharing of noise symbols between variables expresses
implicit dependency
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Concretization as a center-symmetric convex
polytope

Concretization (x,y) for the two affine forms

x = 20 − 4ε1 + 2ε3 + 3ε4

y = 10 − 2ε1 + ε2 − ε4

21
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Affine arithmetic : arithmetic operations

Assignment of a of a variable x whose value is given in a
range [a, b] introduces a noise symbol εi :

x̂ =
(a + b)

2
+

(b − a)

2
εi .

Addition is computed componentwise (no new noise
symbol):

x̂ + ŷ = (αx
0 + αy

0) + (αx
1 + αy

1)ε1 + . . . + (αx
n + αy

n)εn

For example, with real (exact) coefficients , f − f = 0.

Multiplication : we select an approximate linear form, the
approximation error creates a new noise term :

x̂ × ŷ = αx
0α

y
0 +

n
∑

i=1

(αx
i α

y
0 + αy

i αx
0)εi + (

n
∑

i=1

|αx
i |.|

n
∑

i=1

|αy
i |)εn+1.
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Affine forms define implicit relations : example

Consider, with a ∈ [−1, 1] and b ∈ [−1, 1], the expressions

x = 1 + a + 2 * b;

y = 2 - a;

z = x + y - 2 * b;

The representation as affine forms is x̂ = 1 + ǫ1 + 2ǫ2,
ŷ = 2 − ǫ1, with noise symbols ǫ1, ǫ2 ∈ [−1, 1]

This implies x ∈ [−2, 4], y ∈ [1, 3]

It also contains implicit relations, such as
x + y = 3 + 2ǫ2 ∈ [1, 5] or x + y − 2b = 3: we thus get

z = x + y − 2b = 3

Whereas we get with intervals

z = x + y − 2b ∈ [−3, 9]
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Affine forms and existing relational domains

More expressive (less abstract) than zones or octogons [A.
Mine]

Close to dynamic templates [Z. Manna]

Provides Sub-polyedric relations (there is a concretization

to center-symmetric bounded convex polyedra)

But by some aspects better than polyhedra [P. Cousot/N.
Halbwachs]

for example, to interpret non-linear computations :

dynamic linearization of non-linear computations

much more efficient in computation time and memory

dynamic construction of relations
no static packing of variables needed
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Comparative example

x = [0,2]
y = x+[0,2]

z = xy;
t = z-2*x-y;

Zones/polyhedra (with a simple semantics):















0 ≤ x ≤ 2
0 ≤ y − x ≤ 2
0 ≤ z ≤ 8
−8 ≤ t ≤ 8

Affine forms:















x = 1 + ε1 ∈ [0, 2]
y = 2 + ε1 + ε2 ∈ [0, 4]
z = 2.5 + 3 ε1 + ε2 + 1.5 ε3 ∈ [−3, 8]
t = −1.5 + 1.5 ε3 ∈ [−3, 0]

(in practice coupled with intervals, thus z ∈ [0, 8])
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Concretisation of affine forms (x,y,z)

concretization of affine form with classical polyhedron
finds z − 2x − y ∈ [−3, 0]
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Concretisation of affine forms (x,y,t)

concretization of affine form with classical polyhedron
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Implementation using floating-point numbers

For the computation of the affine form for the real value,
the analyzer also uses finite precision arithmetic :

Affine form with floating point coefficients (with higher
precision floating-point numbers, using the MPFR library)
Uncertainty in the computation of coefficients is handled
by creating new noise terms
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Join (and meet) operations on affine forms

Let [αx
i ∪ αy

i ] = [αx
i , α

y
i ] if αx

i ≤ αy
i else [αy

i , αx
i ]

A natural join between x̂ and ŷ is

x̂ ∪ ŷ = [αx
0 ∪ αy

0 ] +
∑

i∈L

[αx
i ∪ αy

i ] εi

Result might be greater than the union of enclosing
intervals, but may be more interesting to keep correlations

But with interval coefficients (x̂ ∪ ŷ) − (x̂ ∪ ŷ) 6= 0

we get back to the defects of intervals
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Join (and meet) operations on affine forms

For an interval i, we note

mid(i) =
i + i

2
, dev(i) = i − mid(i)

the center and deviation of the interval.

A better join is then

x̂∪ŷ = mid([αx
0 , α

y
0 ])+

∑

i∈L

mid([αx
i , α

y
i ]) εi+

∑

i∈L∪{0}

dev([αx
i , α

y
i ]) εu

k

Then we have affine forms with real coefficients again

Order on affine forms considers noise symbols due to join
operations differently than noise symbols due to arithmetic
operations

30
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Example (join)

Let x̂ = 1 + 2ε1 + ε2 and ŷ = 2 − ε1.

Join on intervals : [x ] ∪ [y ] ∈ [−2, 4]

First join on affine forms :

x̂ ∪ ŷ = [1, 2] + [−1, 2]ε1 + [0, 1]ε2 ⊂ [−2, 5]
larger enclosure than on intervals but it may still be
interesting for further computations to keep relations

Second join on affine forms :

x̂ ∪ ŷ = 1.5 + 0.5ε1 + 0.5ε2 + 2.5εu
3 ⊂ [−2, 5]

same enclosure, but (x̂ ∪ ŷ ) − (x̂ ∪ ŷ) = 0
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Order on affine forms with real coefficients

For variable x , let αx
i , i ∈ L denote terms due to

“classical” noise symbols and βx
k denote terms due to

“union” noise symbols :

x̂ ≤ ŷ iff
∑

i∈L∪{0}

|αx
i − αy

i | ≤
∑

k

|βy
k
| −

∑

k

|βx
k |

Projection of “union” noise symbols on “classical” noise
symbols in arithmetic operations

Then we have a complete partial order (under some
restrictions)

32
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Correctness of the semantics on affine forms

Affine forms define implicit relations

the concretization of an affine form representing a variable
must contain the concrete values of the variable
and in whatever expression using the affine forms, the
concretization as interval of the expression must contain
the concrete values it can take

we must not introduce non-existing relations by undue
sharing of noise symbols
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Control of the cost of the computation

The number of noise symbols must be controlled to avoid
a too costly analysis, for example :

relations introduced inside a loop are useful for an accurate
result at the end of the loop
may be no longer useful after the loop

34



Abstract In-
terpretation
of Floating-

Point
Computa-

tions

Sylvie Putot
and Eric
Goubault
MEASI,
CEA-

LIST/X/CNRS

From real to floating-point computation

Affine arithmetic uses symbolic properties of real number
computation, such as associativity and distributivity of
+,×
These properties do not hold exactly for floating-point
numbers, thus affine arithmetic can not be directly used
for floating-point estimation

Example :

let x ∈ [0, 2] and y ∈ [0, 2], we consider ((x + y) − x) − y .
with affine arithmetic : x = 1 + ε1, y = 1 + ε2

((x + y) − x) − y = ((2 + ε1 + ε2) − 1 − ε1) − 1 − ε2 = 0
false in floating-point numbers : take x = 2 and y = 0.1,
then in simple precision
((x + y) − x) − y = −9.685755e − 08
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Overview for floating-point computation

Affine arithmetic for real number estimation

Estimation of the loss of precision due to the use of
floating-point numbers

using ideas from affine arithmetic
decomposition of errors on their provenance in the program

We deduce bounds for the floating-point value

36
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Representation of values (concrete)

The set of floating-point values that a variable x can take is
expressed as:

f x = r x + ex
1 + ex

ho

= r x +
⊕

i∈I αx
i + ex

ho

where:

r x is the real-number value that would have been
computed if we had exact arithmetic available

αx
i is the coefficient expressing the first-order error

introduced by the arithmetic operation labelled i in the
program, propagated on x

ex
ho is the higher-order error

37



Abstract In-
terpretation
of Floating-

Point
Computa-

tions

Sylvie Putot
and Eric
Goubault
MEASI,
CEA-

LIST/X/CNRS

Example

float x = 0.1; // [1]

float y = 0.5; // [2]

float z = x+y; // [3]

float t = x*z; // [4]

x = 0.1 + 1.49011612e−9 [1]
y = 0.5
z = 0.6 + 1.49011612e−9 [1]+

2.23517418e−8 [3]
t = 0.06 + 1.04308132e−9 [1]

+2.23517422e−9 [3]
−8.94069707e−10 [4]
−3.55271366e−17 [ho]
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Abstraction

Affine Arithmetic for the real part r x as already presented

First natural idea: use interval arithmetic for coefficients
αx

i and ex
ho

Rounding errors given by the IEEE 754 standard:

in general, an interval of width ulp(x) when x is not just a
singleton

But of course, we run into dependency problems : affine
arithmetic on errors also
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First-order errors

ex
1 =

⊕

l∈L tx
l +

⊕

l∈L t ′
x
l ηl

tx
l : center of the first-order error associated to the

operation l

t ′
x
l ηl : deviation on the first-order error associated to

operation l
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First-order errors

ex
1 =

⊕

l∈L tx
l +

⊕

l∈L t ′
x
l ηl+

tx
l : center of the first-order error associated to the

operation l

t ′
x
l ηl : deviation on the first-order error associated to

operation l

the other terms are useful for modelling the propagation of
the first-order error terms after non-linear operations
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First-order errors

ex
1 =

⊕

l∈L tx
l +

⊕

l∈L t ′
x
l ηl+

⊕

i∈I t ′′
x
i εi+

tx
l : center of the first-order error associated to the

operation l

t ′
x
l ηl : deviation on the first-order error associated to

operation l

the other terms are useful for modelling the propagation of
the first-order error terms after non-linear operations

For instance, the term t ′′
x×y
i εi comes from the

multiplication of tx
l by αy

i εi , and represents the uncertainty
on the first-order error due to the uncertainty on the value,
at label i
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First-order errors

ex
1 =

⊕

l∈L tx
l +

⊕

l∈L t ′
x
l ηl+

⊕

i∈I t ′′
x
i εi+ βx

0 +
⊕

p∈P βx
p ϑp

tx
l : center of the first-order error associated to the

operation l

t ′
x
l ηl : deviation on the first-order error associated to

operation l

the other terms are useful for modelling the propagation of
the first-order error terms after non-linear operations

For instance, the term t ′′
x×y
i εi comes from the

multiplication of tx
l by αy

i εi , and represents the uncertainty
on the first-order error due to the uncertainty on the value,
at label i

The multiplications of noise symbols εiηl cannot be
represented in our linear forms: we use a new affine form
ϑp
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First example : an amazing scheme by Kahan
and Muller

Compute, with x0 = 11/2.0 and x1 = 61/11.0, the sequence

xn+2 = 111 −
(1130 − 3000

xn
)

xn+1

If computed with real numbers, converges to 6. If
computed with any approximation, converges to 100.

Results with Fluctuat :
for x10 : finds the floating-point value of xn equal to
f10 = 100, with an error e10 in [-94.1261,-94.1258], and
thus a real value r10 in [5.8812,5.8815]
for x100 :

with default precision of the analysis (fp numbers with 60
bits mantissa), or even 400 mantissa bits numbers, finds
f100 = 100, e100 = ⊤ and r100 = ⊤ : indicates high
unstability
with 500 mantissa bits numbers, finds f100 = 100,
e100 = −94 and r100 = 5.99...
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Example : a non linear Newton scheme

Computes the inverse of A, that can take any value in [20,30] :

double xi, xsi, A, temp;

signed int *PtrA, *Ptrxi, cond, exp, i;

A = __BUILTIN_DAED_DBETWEEN(20.0,30.0);

/* initial condition = inverse of nearest power of 2 */

PtrA = (signed int *) (&A);

Ptrxi = (signed int *) (&xi);

exp = (signed int) ((PtrA[0] & 0x7FF00000) >> 20) - 1023;

xi = 1; Ptrxi[0] = ((1023-exp) << 20);

temp = xsi-xi; i = 0;

while (abs(temp) > e-10) {

xsi = 2*xi-A*xi*xi;

temp = xsi-xi;

xi = xsi;

i++;

}
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Analysis of the inverse computation

Symbolic execution

A = 20.0 : i = 5, xi = 5.0e-2 + [-2.82e-18,-2.76e-18]
A = 30.0 : i = 9, xi = 3.33e-2 + [-5.28e-18,6.21e-18]

Static analysis for A in [20.0,30.0] :

Non relational : analysis does not prove termination of the
Newton algorithm
Relational (with 10000 subdivisions) : analysis finds

i in [5,9], xi in [3.33e-2,5.0e-2]+ [-4.21e-13,4.21e-13]

Study of this algorithm is not obvious (for example, execution of
the same algorithm but with simple precision float variables
does not always terminate)
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Example : second-order filter

A new independent input E at each iteration of the filter:

double S,S0,S1,E,E0,E1;

int i;

S=0.0; S0=0.0;

E=__BUILTIN_DAED_DBETWEEN(0,1.0);

E0=__BUILTIN_DAED_DBETWEEN(0,1.0);

for (i=1;i<=170;i++) {

E1 = E0;

E0 = E;

E = __BUILTIN_DAED_DBETWEEN(0,1.0);

S1 = S0;

S0 = S;

S = 0.7 * E - E0 * 1.3 + E1 * 1.1 + S0 * 1.4 - S1 * 0.7 ;

}
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Second-order filter

Relational analysis on values and errors :

Values in [-1.09,2.76] Error in [-1.1e-14,1.1e-14]
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Second-order filter

Propagation of an error on the input:

Each input has now an error in [0,0.001]

Relational on errors : S in [-1.09,2.76], with a stabilized
error in [-0.00109,0.00276]
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