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ABSTRACT
Extreme teams, large-scale agent teams operating in dynamic envi-
ronments, are on the horizon. Such environments are problematic
for current task allocation algorithms due to the lack of locality in
agent interactions. We propose a novel distributed task allocation
algorithm for extreme teams, called LA-DCOP, that incorporates
three key ideas. First, LA-DCOP’s task allocation is based on a
dynamically computedminimum capability threshold which uses
approximate knowledge of overall task load. Second, LA-DCOP
uses tokens to represent tasks and further minimize communica-
tion. Third, it createspotential tokens to deal with inter-task con-
straints of simultaneous execution. We show that LA-DCOP con-
vincingly outperforms competing distributed task allocation algo-
rithms while using orders of magnitude fewer messages, allowing a
dramatic scale-up in extreme teams, upto a fully distributed, proxy-
based team of 200 agents. Varying threshold are seen as a key to
outperforming competing distributed algorithms in the domain of
simulated disaster rescue.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Algorithms

Keywords
Task Allocation, Distributed Constraint Optimization

1. INTRODUCTION
Distributed task allocation is a fundamental research challenge in

multiagent systems, with recent results reporting significant progress
in task allocation in teams[13, 7, 22, 19, 9]. However, a significant
large class of practical applications — that we callextreme teams
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— has emerged, imposing new requirements for task allocation in
teams. Extreme teams include mobile sensor or UAV teams[6],
robot teams for Mars colonies[5], disaster rescue scenarios, as well
as large-scale future integrated manufacturing and service organi-
zations (e.g., hospitals)[15]. Extreme teams require teammem-
bers, each with limited resources, to act in real-time dynamic en-
vironments. More importantly, team members possess overlapping
functionality, but differing capabilities to perform different tasks.
For instance, in disaster rescue simulations, different fire fighters
and paramedics comprise an extreme team; and while fire fighters
and paramedics have overlapping functionality to rescue civilians,
for a specific rescue task, one set of paramedics may have a higher
due to their specific training and current context.

The problem of task allocation in teams is one of optimally as-
signing tasks in a team plan to agents to maximize overall team
utility[12, 22]. Extreme teams emphasize four key constraints on
task allocation: (i) domain dynamics may cause tasks to appear and
disappear; (ii) agents may perform multiple tasks within resource
limits; (iii) many agents have overlapping functionality to perform
each task, but with differing levels of capability; and (iv)inter-task
constraints (such as simultaneous execution requirements) may be
present. This task allocation challenge in extreme teams will be
referred to as E-GAP, as it subsumes the generalized assignment
problem (GAP), which is NP-complete[21].

The first two constraints in E-GAP above (dynamics and mul-
tiple tasks) make approximations necessary, since it is extremely
difficult to obtain optimal solutions in a timely fashion. The re-
maining two constraints emphasizelack of locality in agent inter-
actions, e.g., due to overlapping agent functionality, in assigning
a specific task, an agent must potentially consider all otheragents
(and not a small subset). However, in practical extreme teamdo-
mains agents will frequently possess reasonable estimatesof the
overall team capabilities or the situation. For example, fire fighter
team members may know the number of fire trucks to an order of
magnitude, and have (only) a probability distribution on the loca-
tions of fires. This imperfect team knowledge is a key property of
extreme teams, and provides a valuable way to restrict the search
space to good (if suboptimal) solutions.

This paper builds on Distributed Constraint Optimization (DCOP)[11,
4] for task allocation, as DCOP offers the key advantages of dis-
tributedness, presence of fast/approximate algorithms and a rich
representational language which can consider costs/utilities of tasks.
Despite these advantages, previous DCOP approaches to taskallo-
cation suffer from three key weaknesses. First, DCOP algorithms
are unable to use imperfect team knowledge to efficiently andef-
fectively allocate tasks. Second, constraints exist between any team
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members with overlapping functionality, resulting in dense con-
straint graphs that dramatically increase communication within DCOP
algorithms; even approximate DCOP algorithms. Third, DCOPal-
gorithms handle interdependencies between tasks (such as require-
ments of simultaneous execution) very inefficiently, as these are, in
effect, non-binary constraints.

We propose a novel DCOP algorithm called LA-DCOP (Low-
communication Approximate DCOP) to meet the requirements of
E-GAP. LA-DCOP uses a representation where agents are variables
that can take on values from a common pool, i.e., the pool of tasks
to be assigned. The mechanism for allocating tasks to agentsencap-
sulates three novel ideas. First, LA-DCOP improves efficiency by
not solving for an exact optimal reward; instead, it focuseson max-
imizing the team’s expected total reward, given available proba-
bilistic information, by computing a minimum capabilitythreshold
for each task. This threshold is dynamically computed and altered
based on dynamic knowledge of the team and task environment.
Second,token-based access to values reduces the communication
overhead due to constraint graph denseness by allowing at most one
agent to perform each task at any given time. Third, to deal with
groups of interdependent tasks, we introduce the idea of allowing
values to be represented bypotential tokens. By accepting a po-
tential token, an agent confirms that it will perform the taskonce
the interdependencies have been worked out. In the meantime, the
agent can perform other tasks.

We have extensively, empirically evaluated the LA-DCOP al-
gorithm using a mixture of high and low fidelity simulation en-
vironments. Experiments on a simplified testbed illustratefour key
points. First, the key features of the algorithm, includingthresh-
olds and potential tokens, significantly improve its performance.
Second, when compared to other approximate DCOP algorithms,
LA-DCOP finds better task allocations, while using up to six or-
ders of magnitude fewer messages. Third, we illustrate thatthe
algorithm performs well on two realistic domains, by embedding it
in teamwork proxies. LA-DCOP has allowed a dramatic scale up
in feasible task allocation for proxy teams, from 20 agents to 200
agents. We also illustrate effective task allocation in a large-scale
disaster rescue application and illustrate LA-DCOP significantly
outperforming its competitors.

2. PROBLEM STATEMENT
A static task allocation problem is an example of a GAP instance

with a setΘ = {θ1, . . . , θm} of tasks to be performed and a set
E = {e1, . . . , en} of team members to perform them[21]. Each
team memberei ∈ E has a capability to perform each taskθj ∈ Θ,
and a limited amount of resources with which to perform all ofits
tasks. Capability reflects the quality of the output or the speed of
task performance or other factors affecting output, and is amea-
surement of the reward the team receives for the agent performing a
task. Mathematically, the capability ofei to performθj is given by:
Cap(ei, θj) → [0, 1]; if Cap(ei, θj) > 0, we say thatei is func-
tional for θj . In extreme teams,Cap(ei, θj) > 0 for a significant
proportion (or even all)ei for eachθj , to model overlapping func-
tionality. We assume that each agent has a single type of resource
with which to perform tasks, and denote the amount of resources
available toei by ei.res; ei must spendRes(ei, θj) to performθj .

Following convention, we define an allocation matrixA, where
aij is the value of theith row andjth column given by

aij =

{

1 if ei is performingθj

0 otherwise

The goal in GAP is to findA that maximizes team reward:

A = arg max
A′

∑

ei∈E

∑

θj∈Θ

Cap(ei, θj) × a
′

ij

such that all agents’ resource limitations are respected:

∀ei ∈ E,
∑

θj∈Θ

Res(ei, θj) × aij ≤ ei.res

and at most one team member performs each task:

∀θj ∈ Θ,
∑

ei∈E

aij ≤ 1

While GAP captures many aspects of task allocation, its sim-
plistic relationship between capability and reward does not capture
interdependencies between tasks. Also, the solutionA corresponds
to a single static allocation, and thus is not suited for dynamic do-
mains. We tackle both shortcomings next by extending GAP.

Extended GAP
Coordination constraints,./, are interdependencies between tasks.

For example, in anAND constraint, the team only receives reward
for each task if all the constrained tasks are simultaneously exe-
cuted. AnAND constrained set of tasks can be used to represent a
task that requires multiple agents to successfully perform(such as
extinguishing a large fire). More complex coordination constraints
such asXOR or XOR-K may specify that exactly one or ex-
actly K of the constrained tasks be simultaneously performed, or
else the team suffers a penalty. We explicitly focus onAND con-
straints here, but the formalization can be extended to these other
constraint types as well.

Let ./= {α1, . . . , αp}, whereαk = {θk1 , . . . , θkq} denotes the
kth set ofAND constrained tasks. The number of tasks inαk that
are being performed is then

xk =
∑

ei∈E

∑

θkj
∈αk

aikj

Lettingvij = Cap(ei, θj) × aij , we then have that the value ofei

performingθj given./ is

V al(ei, θj , ./) =









vij if ∀αk ∈./, θj /∈ αk

vij if ∃αk ∈./ with θj ∈ αk ∧ xk = |αk|

0 otherwise

where the first case is the reward for unconstrained tasks andthe
last two are for constrained tasks.

To introduce the dynamics of extreme teams into GAP, we index
Θ, E, Cap, Res, ./ andV al by time. The most important conse-
quence of this is that we no longer seek a single allocationA; rather
we need a sequence of allocations,A→, one for each discrete time
step. A delay cost function,DCt(θt

j), captures the cost of not per-
forming θt

j at timet. Thus, the objective of the E-GAP problem is
to maximize:

f(A→) =
∑

t

∑

et
i
∈Et

∑

θt
j
∈Θt

(V al
t(et

i, θ
t

j , ./
t) × a

t

ij)

−
∑

t

∑

θt
j
∈Θt

(1 −
∑

et
i
∈Et

a
t

ij) × DC
t(θt

j)

such that

∀t,∀e
t

i ∈ E
t
,

∑

θt
j
∈Θt

Res
t(et

i, θ
t

j) × a
t

ij ≤ e
t

i.res

and

∀t,∀θ
t

j ∈ Θt
,

∑

et
i
∈Et

a
t

ij ≤ 1

Thus, extreme teams must allocate tasks rapidly to accrue rewards,
or else incur delay costs at each time step.
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3. LA-DCOP
LA-DCOP is a DCOP algorithm that attempts to solve E-GAP

in an approximate fashion, since high delay costs and dynamic
changes in costs precludes an optimal response. In the DCOP
framework, each agent is provided with a variable to which itmust
assign values[4, 23, 11] which correspond to tasks the agentwill
perform. Since agents can execute multiple tasks at once, vari-
ables can take on multiple values simultaneously, as in graph multi-
coloring. LA-DCOP exploits key properties of extreme teamsthat
arise due to their large scale and similar agent functionality. The
task allocation algorithms run by each agent is shown in Algorithms
1 and 2

A central requirement of E-GAP is that at most one team mem-
ber performs each task, or, in DCOP terms, the same value is not
assigned to two distinct variables. Thus, there is a ”not-equal” con-
straint between every agent with functionality for the sametask,
which results in dense graphs due to the overlapping functional-
ity of extreme team members. Dense graphs are problematic for
DCOP algorithms[11, 4] because of the large amount of communi-
cation required to remove conflicts. To avoid this communication,
we create atoken for each value. The holder of a token has the ex-
clusive right to assign the corresponding value to its variable, and
must either do so or pass the token to a teammate. In this way,
conflicts cannot occur and so communication is reduced.

Given the token-based access to values, the decision for theagent
becomes whether to assign to its variable values represented by to-
kens it currently has or to pass the tokens on. First, a team member
must decide whether it is in the best interests of the team forit to as-
sign the value represented by a token to its variable (Alg 1, line 8).
Algorithms like DSA and DBA[23] attempt hill-climbing at each
step by enabling an agent to change its value to enable maximum
gain to the team, given knowledge of neighboring agents. However,
communication of neighboring agents’ values is expensive (section
5 provides detailed experimental results). Instead, LA-DCOP uses
a threshold on the minimum capability an agent must have in or-
der to assign the value. This threshold is attached to the token.
If the agent computes that its own capability is less than themin-
imum threshold, it passes it randomly to a teammate. (To avoid
agents passing tokens back and forth, each token maintains the list
of agents it has visited; if all agents have been visited, thetoken can
revisit agents, but only after a small delay.) In this way, LA-DCOP
performs a search for a local maximum similar to DBA and DSA,
but without additional communication beyond passing the token;
the threshold guides the tokens towards agents with higher capabil-
ities to perform them.

The burden of finding a good allocation thus rests with comput-
ing good thresholds. Computing thresholds that maximize expected
utility is a key part of this algorithm and is described in Section
4. The threshold is calculated once (Alg 1, line 7), when the task
arises due to team plan instantiation. A token’s threshold therefore
reflects the state of the world when it was created. As the world
changes, agents will be able to respond by changing the threshold
for newly-created tokens. This allows the team great flexibility in
dealing with dynamics by always seeking to maximize expected
utility based on the most current information available.

Once the threshold is satisfied, the agent must check whetherthe
value can be assigned while respecting its local resource constraints
(Alg. 1, line 15). If the value cannot be assigned within the resource
constraints of the team member, it must choose a value(s) to reject
and pass on to other teammates in the form of a token(s) (Alg. 1,
lines 20 and 22). The agent chooses the set of values that maxi-
mize the sum of its capabilities for those values, while respecting
its resource constraints (performed in the MAX CAP function, Alg.

1, line 16), and so acts in a locally optimal manner.

Algorithm 1: VarMonitor
(1) V ← ∅, PV ← ∅
(2) while true
(3) msg ← getMsg()
(4) if msg is token
(5) token← msg
(6) if token.threshold = NULL
(7) token.threshold← CALCTHRESHOLD(token)
(8) if token.threshold < Cap(token.value)
(9) if token.potential
(10) PV ← PV ∪ token.value
(11) SENDMSG(token.owner, “retained”)
(12) else
(13) V ← V ∪ token.value

(15) if
∑

v∈V
Resources(v) ≥ agent.resources

(16) out← V− MAX CAP(V )
(17) foreach v ∈ out
(18) if v.potential
(19) SENDMSG(pv.owner, “release”)
(20) PASSON(new token(v, potential))
(21) else
(22) PASSON(new token(v))
(23) V ← V − out

(25) else
(26) PASSON(token) /* threshold< Cap */
(27) else ifmsg is “lock v a∗”
(28) if v ∈ PV
(29) PV ← PV − v
(30) V ← V ∪ v
(31) else
(32) ∀a ∈ a∗ SENDMSG(a, “released”)
(33) else ifmsg is “releasev”
(34) PV ← PV − v

AND Constrained Tasks
In addition to dynamics, E-GAP presented the difficulty of co-

ordination constraints between tasks. When there areAND con-
straints between tasks there is the potential fordeadlocks or, at best,
severe inefficiencies. To avoid such problems we introduce the idea
of potential values. A second algorithm, shown in Algorithm 2,
runs alongside Algorithm 1 and works as follows. The tokens for
all tasks in anAND constrained set are given to one team member.
For each of the tokens the team member sends out a small number
of potential tokens (Alg. 2, line 3). The potential tokens work in
exactly the same way as “normal” tokens except that when a team
member accepts a potential token it agrees to accept the taskrep-
resented by the token (Alg. 1, line 10),only if a potential token
for each of the other real tokens is accepted by another agentand
may perform other tasks in the meantime. Thus, LA-DCOP allows
agents to continue working on individual tasks while subteams are
formed for constrained tasks. This parallelism is not available to
other DCOP algorithms and is a major advantage of LA-DCOP.

When the team member holding the real tokens is informed that
at least one potential token for each real token has been accepted
by a team member itlocks the group. Locking is done by selecting
the holder of one potential token for each real token and sending
them the real token (Alg. 2, line 15). A list of agents accepting
the other real tokens is also sent. Note that this mechanism guards
against deadlocks: if an agenta sends a “Release” message first and
then receives a “Lock” message,a is now responsible for sending
messages to other receivers of the “Lock” message to also release
(Alg. 1, line 32). Holders of potential tokens that are not replaced
with real tokens are also released (Alg. 2, line 19).
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Algorithm 2: ANDMonitor
(1) foreach v ∈ V
(2) for 1 to No. Potential Values
(3) PASSON(new token(v,potential))

(5) /* Wait to accept potential tokens */
(6) while Πv∈V |Retained[v]| = 0
(7) msg ← getMsg()
(8) if msg is “retainedv”
(9) Retained[v] ← Retained[v] ∪msg.sender
(10) else ifmsg is “releasev”
(11) Retained[v] ← Retained[v] −msg.sender

(13) /* Send real tokens */
(14) foreach v ∈ V
(15) a∗ = ∀a ∈ Retained[v] Cap(a∗, v) > Cap(a, v)
(16) foreach a ∈ a∗
(17) SENDMSG(a, { “lock v”, a∗ })
(18) foreach a ∈ Retained[v]− a∗
(19) SENDMSG(a, “releasev”)

(21) /* Watch out for agent releasing after lock */
(22) while true
(23) msg ← getMsg()
(24) if msg is “releasev”
(25) Retained[v] ← Retained[v] −msg.sender
(26) goto 6

Observe that a similar approach would be sufficient for other
constraints such asXOR − K. Instead of waiting for all agents
to respond, a lock could be issued as soon as potential tokensfor
the first K tasks are accepted, and any agents not part of the locked
group could be released. The flexibility to deal with multiple types
of constraints demonstrates the generality of the potential token ap-
proach.

4. CALCULATING THRESHOLDS
In this section, we present a model which allows calculationof

themaximum expected utility (MEU) threshold for one simple class
of problems. This type of calculation can be done by a team mem-
ber to determine the best threshold for a newly-created token, as
described in the previous section. Our calculation is basedon the
expected utility (EU ) to the team of using that threshold. Specifi-
cally, we calculate an expectation of which tasks will be executed
and the capability of the agents that will be executing thosetasks
when the algorithm settles into a steady state. Abstractly,we can
write the EU of using a particular threshold,T , as:

EU(T ) = E(# tasks executed|T )×

E(capability of capable agent|T )

= E(# capable agents|T )×

E(# tasks per capable agent|T ) ×

E(capability of capable agent|T )

where a capable agent has at least one capability above the thresh-
old. Notice that since we are using expectations for each value, the
result is an expectation of the utility to the team, not a precise cal-
culation of the utility it will receive. While the above equation is
the most general, calculating the values of the the terms forspecific
teams is non-trivial. Below we look at class of models that covers
a wide range of extreme team domains.

We assume thatclasses of tasks require the same capability and
that there areM tasks,N agents andK classes of tasks (M

K
tasks

of each class). Each agent has a capability for a class of tasks cho-
sen from a uniform, random distribution over[0, 1]. An agent’s

capability to perform one type of task is independent of its ability
to perform any other type.

We also assume that each agent has one normalized unit of re-
sources (i.e.,∀e, e.res = 1). Tasks within a class require different
amounts of resources. Specifically, we discretize the resource re-
quirements of tasks to0 < r1 < r2 < . . . < rq ≤ 1 and say that a
proportionpi of the tasks requires an amountri of resources. To ex-
ecute all tasks requiring a specific amount of resource,ri, requires
number of agentsNri

= pi × ri × M (which is an approximation
of b 1

ri
c × Nri

= pi × M ).
Due to the independence and uniformity of the capability distri-

butions, we can writeE(#capable agents|T ) = (1−T K)×N =
NT . Due to the independence between capability distributions, if
all tasks cannot be performed, a good approximation of the highest
utility is received when the tasks requiring the most resources are
not performed. Thus we can write a calculation based on assigning
tasks requiring least resources first, as shown in Eqn. 1. Given the
uniform capability distribution, the capability of an agent perform-
ing a task will be1+T

2
. Hence, substituting forNT andNri

, we get
the equation for EU given T shown in Eqn. 2. Since this is a con-
tinuous, piecewise function, if we take the maximum of each of the
pieces, we see that the maximum of these is the maximum of the
overall function. We can readily determine the maximizing value
of T on each of the pieces via linear time numeric methods, and so
find the maximizing value forT . In the next section, we show that
the MEU threshold determined via this approach yields a reward
that is very close to the experimentally determined maximum.

5. EXPERIMENTS AND RESULTS
We have tested LA-DCOP extensively in three environments.

The first is an abstract simulator that allows us to run many ex-
periments with very large numbers of agents[14]. We simulate five
different classes of task. Each of the agents had randomly assigned
capabilities uniformly drawn from zero to one for each of thedif-
ferent classes of task. For each time step that the agent has the
task and has the resources to execute it, the team receives a re-
ward equal to the agent’s capability. The team aims to maximize
the sum of total reward over the length of the simulation. Mes-
sage passing is simulated as perfect (lossless) communication in
a fully connected network. During each simulation step, each to-
ken was allowed to move from one agent to another only once. As
the simulation progresses, new tasks arise spontaneously and the
corresponding tokens are distributed randomly. The new tasks ap-
pear at the same rate that old tasks disappear, thus keeping the total
number of tasks constant. This allows a single, fixed threshold for
all tasks to be used throughout the experiment. Each data point in
the Figures below represents the average from 20 runs. Notice that
the experiments below are based on this specific setup of the sim-
ulation. However, a large number of additional experimentswith
other configurations were performed, e.g., more different classes of
task or different distributions of capabilities, and whilethere were
some differences, the results below are representative of the results
achieved.

The first set of experiments tested LA-DCOP against three com-
petitors. The first is DSA, which is shown to outperform other
approximate DCOP algorithms in a range of settings [11, 4]; we
choose optimal parameters for DSA [23]. As a baseline we also
compare against a centralized algorithm that uses a “greedy” as-
signment[3]. Results are shown for LA-DCOP using two differ-
ent thresholds, T=0.0, i.e., keep a token if functional and have
available resources, and T=0.5 which was determined to givegood
performance for these configurations. Figure 1(a) shows therel-
ative performance of each algorithm as the number of agents is
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E(# tasks executed|T ) =













1

r1
NT if NT < Nr1

1

ru
NT +

u−1∑

i=1

(1− ri

ru
)PiM if for any u ∈ {2, q},

u−1∑

i=1

Nri
< NT <

u∑

i=1

Nri

M otherwise

Eqn 1: Calculation of the number of tasks executed.

EU(T ) =





















1

r1
(1 − T K)N 1+T

2
if T > (1− r1p1M

N
)

1
K

( 1

ru
(1− T K)N +

u−1∑

i=1

(1− ri

ru
)piM) 1+T

2
if for any u ∈ {2, q}, (1−

u∑

i=1
ripiM

N
)

1
K < T < (1−

u−1∑

i=1
ripiM

N
)

1
K

M 1+T

2
if (1 −

q∑

i=1
ripiM

N
)

1
K > T

Eqn 2: Calculation of the expected utility of a particular threshold, T .

increased. The experiment used 2000 tasks over 1000 time steps.
The y-axis shows the total reward, while the x-axis shows thenum-
ber of agents. Not surprisingly, the centralized algorithmperforms
best. LA-DCOP performs significantly better with a threshold of
0.5 than with no threshold. LA-DCOP with either threshold statis-
tically outperforms DSA (with probability greater than 99.9%, as
determined by a t-test).

The real key to the comparison, however, is the amount of com-
munication used, as shown in Figure 1(b). Notice that the y-axis is
a logarithmic scale; thus LA-DCOP uses approximately four orders
of magnitude fewer messages than the greedy algorithm and six or-
ders of magnitude fewer messages than DSA. LA-DCOP performs
better than DSA despite using only a tiny fraction of the number of
messages and only marginally worse than a centralized approach,
despite using far less communication. We can also see a tradeoff
in the volume of messages that LA-DCOP uses compared to its
reward; with no thresholds, LA-DCOP uses fewer messages than
with a threshold of 0.5, at the cost of reduced reward.

To validate the calculation of MEU threshold, Figure 2a shows
the reward found experimentally versus the expected rewardas cal-
culated via the theory when the ratio of tasks to agents (theload)
is 1. The data points have a correlation coefficient of 0.9679. The
close match of the theory and experimental results illustrates that
we can rely on mathematical analysis to approximate MEU thresh-
olds.

Figure 2b shows the reward obtained using different thresholds
over experiments with loads of 0.2, 0.5, and 2.0, averaged over 20
runs each. Such load variance models expected dynamic events
in extreme team domains, e.g., the spread of fires causing an ex-
plosion in disaster rescue. As load is increased, the threshold that
yields maximal reward decreases. However, no single fixed thresh-
old is able to maximize reward under all three loads. The firstbar,
labeled DC, shows the reward obtained using the MEU threshold
for each load (as calculated by Equation 2), as is done in LA-DCOP.
The figure clearly shows that the LA-DCOP approach of dynami-
cally computing thresholds outperforms fixed, static thresholds un-
der varying load.

Even when load does not change dynamically in an extreme team
domain, tasks will often turn over at a rapid rate. In Figure 3a, we
show that LA-DCOP performs well even when this change is very
rapid. The four lines represent different rates of change, with 0.01
meaning that every time step (i.e., the time it takes to send one mes-
sage) 1% of all tasks are replaced with tasks potentially requiring
a different capability. The x-axis measures the probability that an
agent is functional in type of task. When this value is 50%, with
1% dynamics, LA-DCOP loses 10% of reward/agent on average,
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Figure 1: (a) comparing the reward versus the number of agents. (b)
the number of messages sent versus the number of agents
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Figure 2: (a) comparison between theoretical and experimental re-
ward versus threshold. (b) effect of thresholds on total reward for dif-
ferent loads of tasks/agents.

(a)
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Figure 3: (a) the effects of different proportions of tasks changing
each step. The y-axis shows the output, x-axis shows the percentage of
agents with capability > 0. (b) the effect of retainers, with the lines
representing no retainers, one retained task per agent and five retained
tasks per agent.
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Figure 4: (a) the number of fires extinguished by 200 fire trucks versus
threshold (b) the number of targets hit by UAVs versus threshold.

but when more agents are likely to be functional, the loss dueto
even high dynamics is within 10% reward/agent.

Finally, Figure 3b shows the utility of potential tokens when
groups of tasks are AND constrained. In the figure, 60% of all
tasks (900 tasks) are AND constrained into groups of five tasks.
Unless a functional agent is assigned to each task in the group, the
team receives no reward. It is clear that potential tokens help since
the lowest output is received without the potential tokens (labeled
“None”). Moreover, allowing agents to have up to five potential to-
kens (labeled “Retain 5”) leads to better performance than allowing
them to have only one potential token (labeled “Retain 1”). The ef-
fect is most pronounced when about 40% of agents are functional
because this is the case when most deadlocks and idleness occur
otherwise.

In our second set of experiments, we used 200 LA-DCOP en-
hanced versions of Machinetta proxies[19], distributed over a net-
work, executing plans in two simple simulation environments. The
proxies execute sophisticated teamwork algorithms as wellas LA-
DCOP and thus provide a realistic test of LA-DCOP. The first envi-
ronment is a version of a disaster response domain where fire trucks
must fight fires. Capability in this case is the distance of thetruck
from the fire, since this affects the time until the fire is extinguished.
Hence, in this case, the threshold corresponds to the maximum dis-
tance the truck will travel to a fire. Figure 5(a) shows the number of
fires extinguished by the team versus threshold. Increasingthresh-
olds initially improves the number of fires extinguished, but too
high a threshold results in a lack of trucks accepting tasks and a
decrease in performance. In the second domain, 200 simulated un-
manned aerial vehicles (UAVs) explore a battle space, destroying
targets of interest. While in this domain LA-DCOP effectively al-
locates tasks across a large team, thresholds are of no benefit. The
key point of these experiments is to show that LA-DCOP can work
effectively, in a fully distributed environment with realistic domains
and large teams.

RoboCup Rescue Experiments
We also tested our approach in the RoboCup Rescue environ-

ment [8]. RoboCup Rescue provides an ideal, realistic testing ground
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for LA-DCOP in allocating roles to an extreme team comprisedof
fire engines. Our experimental setting features 10 fire fighters and
18 ignition points. We considered different distributionsof agents
and fires, testing our approach in situations where fires are clustered
in one, three, and four regions of the map (Clusters-1, Clusters-3,
and Clusters-4, respectively). Figure 5 shows the RoboCup Rescue
simulator with three clusters of fires.

Figure 5: RoboCup Rescue environment with three clusters of
fires

In previous work, researchers have documented the failure of
auction based algorithms for role allocation in RoboCup Rescue[12],
due to the high communication requirements. To test whetherLA-
DCOP can allocate roles within the communication and time lim-
itations of RoboCup Rescue, we compared against a shortest dis-
tance based strategy, which exploits domain characteristics and is
similar to that used by top-performing RoboCup Rescue teams.
Agents’ capabilities are computed considering whether theagent
is blocked or not and its current distance from the fire. Because the
number and strength of fires varies with time, we also compared
against LA-DCOP run with fixed thresholds.
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Figure 6: LA-DCOP outperforms SD

Figure 6 compares the different strategies, averaged over 20 runs.
LA-DCOP with dynamically computed thresholds (LA-DCOP-DC)
is seen to outperform (i.e., extinguish fires faster than) competi-
tors for the Clusters-1 and Clusters-3. Indeed, in Clusters-3, LA-
DCOP-DC extinguishes fires in 100 time units, while SD is unable
to extinguish the fires within even 300 units (our cutoff). InClus-
ter4, fires spread throughout the city, creating a scenario that is very
difficult for LA-DCOP-DC. The key to note is that even in this dif-

ficult cluster4 scenario, LA-DCOP-DC is performing similarly to
SD.
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Figure 7: average threshold versus time

Figure 7 shows how the thresholds in LA-DCOP-DC change
with time. The thresholds averaged over all tokens are plotted for
each of the three scenarios. Average thresholds begin high,then fall
as load increases. Since thresholds stay constant once assigned to
tokens, this means that as new tasks arise, the MEU thresholds cal-
culated for them are lower than at previous times. This ability under
LA-DCOP to compute thresholds based on current conditions gives
it valuable flexibility in dealing with the dynamic domains in which
extreme teams must operate.

6. SUMMARY AND RELATED WORK
In this paper, we have described a novel approach to task allo-

cation in extreme teams. Our DCOP based approach substantially
outperforms other approximate DCOP algorithms, both in total re-
ward and in communication, where we demonstrated a dramatic
six orders of magnitude reduction in messages. It allows a scaling
up in team size by an order of magnitude, while coping with ad-
ditional challenges of extreme team domains that other algorithms
cannot address. In particular, the ability to use team knowledge
to dynamically compute MEU thresholds allows LA-DCOP to find
good allocations even in dynamic domains. The strengths andlimi-
tations of LA-DCOP will be thoroughly tested in coming months as
in plays a key role in some major projects. The DEFACTO project
is aimed at developing high fidelity simulation environments for
training of rescue response teams (see Figure 8) and LA-DCOP
must perform task assignment for a large, dynamic rescue response
team[20]. The CAMRA project is focused on coordination of un-
manned aerial vehicles and LA-DCOP will feature in a major flight
test in late 2005[18].

Task allocation is an extensively studied area with work rang-
ing from high complexity, forward looking optimal models[12], to
symbolic matching that ignores cost[22, 16], to centralized auc-
tions[7], to swarm techniques[17, 1, 2], to distributed constraint op-
timization[23, 11, 10]. Among these, the forward looking optimal
models and centralized auctions are not only highly centralized, but
their computationally expensive considerations of optimality lead
to difficulties in their application in highly dynamic extreme team
domains. The symbolic matching models ignore costs completely,
which is highly detrimental. Swarm techniques use local sensing
to modulate flexibility, but LA-DCOP permits additional global
knowledge to factor into thresholds. Finally, we have discussed
the DCOP models, particularly incomplete DCOP algorithms,in
detail throughout the paper and presented comparison of ourwork
to these algorithms. Complete DCOP algorithms like ADOPT[11]
and OptAPO[10] are appropriate in key domains where optimal-
ity is critical, but the significant amount of communicationengen-
dered would be highly problematic in densely connected constraint
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Figure 8: A view of a disaster response scenario in the DE-
FACTO project.

graphs in extreme teams, and they are unable to handle dynamics
of extreme team domains.
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