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ABSTRACT

Extreme teams, large-scale agent teams operating in dgreamir
ronments, are on the horizon. Such environments are praiiem
for current task allocation algorithms due to the lack ofldy in
agent interactions. We propose a novel distributed tasication
algorithm for extreme teams, called LA-DCOP, that incogtes
three key ideas. First, LA-DCOP’s task allocation is basedo
dynamically computedninimum capability threshold which uses
approximate knowledge of overall task load. Second, LA-IFCO
uses tokens to represent tasks and further minimize conmauni
tion. Third, it createpotential tokens to deal with inter-task con-
straints of simultaneous execution. We show that LA-DCO#R co
vincingly outperforms competing distributed task alléaatalgo-
rithms while using orders of magnitude fewer messagesyaitpa
dramatic scale-up in extreme teams, upto a fully distrithupeoxy-
based team of 200 agents. Varying threshold are seen as a key t
outperforming competing distributed algorithms in the d@mof
simulated disaster rescue.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Algorithms

Keywords

Task Allocation, Distributed Constraint Optimization

1. INTRODUCTION

Distributed task allocation is a fundamental researchehgé in
multiagent systems, with recent results reporting sigaifiprogress
in task allocation in teams[13, 7, 22, 19, 9]. However, aiicgmt
large class of practical applications — that we @atleme teams
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— has emerged, imposing new requirements for task allatatio
teams. Extreme teams include mobile sensor or UAV teams[6],
robot teams for Mars colonies[5], disaster rescue scenamowell

as large-scale future integrated manufacturing and senvigani-
zations (e.g., hospitals)[15]. Extreme teams require tesm-
bers, each with limited resources, to act in real-time dyinan-
vironments. More importantly, team members possess @&rg
functionality, but differing capabilities to perform diffent tasks.
For instance, in disaster rescue simulations, differeatffghters
and paramedics comprise an extreme team; and while fire fighte
and paramedics have overlapping functionality to rescuéasis,

for a specific rescue task, one set of paramedics may havéarhig
due to their specific training and current context.

The problem of task allocation in teams is one of optimally as
signing tasks in a team plan to agents to maximize overathtea
utility[12, 22]. Extreme teams emphasize four key conatsabn
task allocation: (i) domain dynamics may cause tasks toapgrel
disappear; (ii) agents may perform multiple tasks withisotece
limits; (iii) many agents have overlapping functionalityperform
each task, but with differing levels of capability; and (mjer-task
constraints (such as simultaneous execution requireinesp be
present. This task allocation challenge in extreme teanisbei
referred to as E-GAP, as it subsumes the generalized assignm
problem (GAP), which is NP-complete[21].

The first two constraints in E-GAP above (dynamics and mul-
tiple tasks) make approximations necessary, since it ieedly
difficult to obtain optimal solutions in a timely fashion. &he-
maining two constraints emphasilaek of locality in agent inter-
actions, e.g., due to overlapping agent functionality, $eigning
a specific task, an agent must potentially consider all cdigents
(and not a small subset). However, in practical extreme téam
mains agents will frequently possess reasonable estimétie
overall team capabilities or the situation. For example, fighter
team members may know the number of fire trucks to an order of
magnitude, and have (only) a probability distribution oa tbca-
tions of fires. This imperfect team knowledge is a key propeft
extreme teams, and provides a valuable way to restrict thelse
space to good (if suboptimal) solutions.

This paper builds on Distributed Constraint OptimizatiDCOP)[11,
4] for task allocation, as DCOP offers the key advantagesisf d
tributedness, presence of fast/approximate algorithnasaarich
representational language which can consider costtiegiof tasks.
Despite these advantages, previous DCOP approaches tallask
cation suffer from three key weaknesses. First, DCOP dlyos
are unable to use imperfect team knowledge to efficientlyefnd
fectively allocate tasks. Second, constraints exist betvesy team



members with overlapping functionality, resulting in dercon-
straint graphs that dramatically increase communicatioimmDCOP
algorithms; even approximate DCOP algorithms. Third, DGOP
gorithms handle interdependencies between tasks (sueljaisa-
ments of simultaneous execution) very inefficiently, as¢hare, in
effect, non-binary constraints.

We propose a novel DCOP algorithm called LA-DCOP (Low-
communication Approximate DCOP) to meet the requiremehts o
E-GAP. LA-DCOP uses a representation where agents ardlesia
that can take on values from a common pool, i.e., the poolsidsta
to be assigned. The mechanism for allocating tasks to agaosgp-
sulates three novel ideas. First, LA-DCOP improves effydny
not solving for an exact optimal reward; instead, it focusesnax-
imizing the team’s expected total reward, given availablebp-
bilistic information, by computing a minimum capabilitigreshold
for each task. This threshold is dynamically computed ateted
based on dynamic knowledge of the team and task environment.
Second token-based access to values reduces the communication
overhead due to constraint graph denseness by allowingsitone
agent to perform each task at any given time. Third, to det wi
groups of interdependent tasks, we introduce the idea ofvady
values to be represented pgtential tokens. By accepting a po-
tential token, an agent confirms that it will perform the tasice
the interdependencies have been worked out. In the mearttime
agent can perform other tasks.

We have extensively, empirically evaluated the LA-DCOP al-
gorithm using a mixture of high and low fidelity simulation-en
vironments. Experiments on a simplified testbed illustfate key
points. First, the key features of the algorithm, includthgesh-
olds and potential tokens, significantly improve its parfance.
Second, when compared to other approximate DCOP algorjthms
LA-DCORP finds better task allocations, while using up to six o
ders of magnitude fewer messages. Third, we illustrate ttreat
algorithm performs well on two realistic domains, by embaddt
in teamwork proxies. LA-DCOP has allowed a dramatic scale up
in feasible task allocation for proxy teams, from 20 ageat2a0
agents. We also illustrate effective task allocation inrgdescale
disaster rescue application and illustrate LA-DCOP sigaiitly
outperforming its competitors.

2. PROBLEM STATEMENT

A static task allocation problem is an example of a GAP instan
with a set® = {6.,...,0,} of tasks to be performed and a set
E = {e1,...,e,} of team members to perform them[21]. Each
team membee; € E has a capability to perform each taske ©,
and a limited amount of resources with which to perform alitef
tasks. Capability reflects the quality of the output or theespof
task performance or other factors affecting output, and risea-
surement of the reward the team receives for the agent parfgra
task. Mathematically, the capability ef to performd; is given by:
Cap(e;, ;) — [0,1]; if Cap(es,0;) > 0, we say that; is func-
tional for 6;. In extreme teams;ap(e;, 0;) > 0 for a significant
proportion (or even allg; for eaché;, to model overlapping func-
tionality. We assume that each agent has a single type afimeso
with which to perform tasks, and denote the amount of resmurc
available toe; by e;.res; e; must spendRes(e;, ;) to performd;.

Following convention, we define an allocation matrdx where
a;i; is the value of theth row and;jth column given by

{1 if e; is performingd;
Q5 =

0 otherwise
The goal in GAP is to findA that maximizes team reward:
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A = arg max Z Z Cap(ei, ;) x ai;
e;€E0,€0
such that all agents’ resource limitations are respected:

Ve, € E, Z Res(ei, 0;) X aij < e;.res
0,€0
and at most one team member performs each task:

V@jG@,Zaijfl
e, €F

While GAP captures many aspects of task allocation, its sim-
plistic relationship between capability and reward dodscapture
interdependencies between tasks. Also, the solutiaorresponds
to a single static allocation, and thus is not suited for dyicado-
mains. We tackle both shortcomings next by extending GAP.

Extended GAP

Coordination constraintsy, are interdependencies between tasks.
For example, in ad N D constraint, the team only receives reward
for each task if all the constrained tasks are simultangoemst-
cuted. AnAN D constrained set of tasks can be used to represent a
task that requires multiple agents to successfully perfiaush as
extinguishing a large fire). More complex coordination ¢oaigts
such asXOR or XOR-K may specify that exactly one or ex-
actly K of the constrained tasks be simultaneously performed, or
else the team suffers a penalty. We explicitly focusoN D con-
straints here, but the formalization can be extended tcetbéser
constraint types as well.

Leta= {o,...,ap}, Whereay = {0k, ..., 0k, } denotes the
kth set of AN D constrained tasks. The number of taskajnthat
are being performed is then

n= 3 Y an,
e, €E Ok]. €ay
Lettingv;; = Cap(es, 0;) x ai;, we then have that the value of
performingf; givenr< is

Vij if Vo €, 9]' ¢ Qg
Val(ei,é?j,bd) = { Vij if o, € with 9(7' car NTr = |O¢k|
0  otherwise

where the first case is the reward for unconstrained taskshend
last two are for constrained tasks.

To introduce the dynamics of extreme teams into GAP, we index
O, E, Cap, Res, < andV al by time. The most important conse-
guence of this is that we no longer seek a single allocatiprather
we need a sequence of allocatiods; , one for each discrete time
step. A delay cost functio)C* (¢%), captures the cost of not per-
forming 9§ at timet. Thus, the objective of the E-GAP problem is
to maximize:

FATY=Y" )" > (Val'(el, 05,0<) x alj)

t eteE? 9§eet

-2 2. (=) aiy) x DCY(E)

t oieo! eleE!
such that
vt Vel € EY, Z Rest(e§79§) X aﬁj <elres
«9;6@'
and

V05 €O, Y al; <1
eﬁEEt

Thus, extreme teams must allocate tasks rapidly to accwarde,
or else incur delay costs at each time step.



3. LA-DCOP

LA-DCOP is a DCOP algorithm that attempts to solve E-GAP
in an approximate fashion, since high delay costs and dymami
changes in costs precludes an optimal response.
framework, each agent is provided with a variable to whichust
assign values[4, 23, 11] which correspond to tasks the agiint
perform. Since agents can execute multiple tasks at once, va
ables can take on multiple values simultaneously, as inhgrayti-
coloring. LA-DCOP exploits key properties of extreme tedhat
arise due to their large scale and similar agent functionalihe
task allocation algorithms run by each agent is shown in Allgms
land 2

A central requirement of E-GAP is that at most one team mem-
ber performs each task, or, in DCOP terms, the same valud is no
assigned to two distinct variables. Thus, there is a "noa&gcon-
straint between every agent with functionality for the saaek,
which results in dense graphs due to the overlapping fumatio
ity of extreme team members. Dense graphs are problematic fo
DCOP algorithms[11, 4] because of the large amount of conmmun
cation required to remove conflicts. To avoid this commutbcg
we create d@oken for each value. The holder of a token has the ex-
clusive right to assign the corresponding value to its \deiaand
must either do so or pass the token to a teammate. In this way,
conflicts cannot occur and so communication is reduced.

Given the token-based access to values, the decision fagtre
becomes whether to assign to its variable values represbytm-
kens it currently has or to pass the tokens on. First, a teambae
must decide whether it is in the best interests of the teaihtoas-
sign the value represented by a token to its variable (Aling,8).
Algorithms like DSA and DBA[23] attempt hill-climbing at ek
step by enabling an agent to change its value to enable maximu
gain to the team, given knowledge of neighboring agents. é¥ew
communication of neighboring agents’ values is expensieet{on
5 provides detailed experimental results). Instead, LAGBQIses
a threshold on the minimum capability an agent must have in or-
der to assign the value. This threshold is attached to thentok
If the agent computes that its own capability is less thamtire
imum threshold, it passes it randomly to a teammate. (Todavoi
agents passing tokens back and forth, each token maintenist
of agents it has visited; if all agents have been visitedtdken can
revisit agents, but only after a small delay.) In this way-DEOP
performs a search for a local maximum similar to DBA and DSA,
but without additional communication beyond passing tHeto
the threshold guides the tokens towards agents with higipatil-
ities to perform them.

The burden of finding a good allocation thus rests with comput
ing good thresholds. Computing thresholds that maximipeeted
utility is a key part of this algorithm and is described in @t
4. The threshold is calculated once (Alg 1, line 7), when #ekt
arises due to team plan instantiation. A token’s threshtoédefore
reflects the state of the world when it was created. As thedvorl
changes, agents will be able to respond by changing thehitices
for newly-created tokens. This allows the team great fléighin
dealing with dynamics by always seeking to maximize expkcte
utility based on the most current information available.

Once the threshold is satisfied, the agent must check whisther
value can be assigned while respecting its local resourtsti@ints
(Alg. 1, line 15). If the value cannot be assigned within theaurce
constraints of the team member, it must choose a value(gjdotr
and pass on to other teammates in the form of a token(s) (Alg. 1
lines 20 and 22). The agent chooses the set of values that maxi
mize the sum of its capabilities for those values, while eesipg
its resource constraints (performed in th@ MCAP function, Alg.
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In the DCOP

1, line 16), and so acts in a locally optimal manner.

Algorithm 1: VarMonitor

1) V<—0,PV—0
(2) while true
(3 msg — getMsg()
4) if msg is token
(5) token «— msg
(6) if token.threshold = NULL
(@) token.threshold «— CALCTHRESHOLD(token)
8) if token.threshold < Cap(token.value)
9) if token.potential
(10) PV — PV U token.value
(11) SENDMSG(token.owner, “retained”)
(12) else
(13) V «— V U token.value
(15) if > ,cy Resources(v) > agent.resources
(16) out «+— V— MAXCAP(V)
a7 foreachv € out
(18) if v.potential
(29) SENDMSG(pv.owner, “release”)
(20) PrssON(new tokeng, potential))
(21) else
(22) PrssSON(new tokeng))
(23) V —V —out
(25) else
(26) PASSON(token) /* threshold< Cap */
(27)  elseifmsgis “lock v ax”
(28) if ve PV
(29) PV «— PV —u
(30) V—Vuu
(31) else
(32) Ya € ax SENDMSG(a, “released”)
(33) elseifmsgis “releasev”
(34) PV — PV —w
AND Constrained Tasks

In addition to dynamics, E-GAP presented the difficulty of co
ordination constraints between tasks. When thereaxeD con-
straints between tasks there is the potentiatiéad| ocks or, at best,
severe inefficiencies. To avoid such problems we introdueédea
of potential values. A second algorithm, shown in Algorithm 2,
runs alongside Algorithm 1 and works as follows. The tokeors f
all tasks in anA N D constrained set are given to one team member.
For each of the tokens the team member sends out a small number
of potential tokens (Alg. 2, line 3). The potential tokens work in
exactly the same way as “normal” tokens except that whenra tea
member accepts a potential token it agrees to accept theapsk
resented by the token (Alg. 1, line 1@nly if a potential token
for each of the other real tokens is accepted by another ageht
may perform other tasks in the meantime. Thus, LA-DCOP allow
agents to continue working on individual tasks while suirteare
formed for constrained tasks. This parallelism is not améd to
other DCOP algorithms and is a major advantage of LA-DCOP.

When the team member holding the real tokens is informed that
at least one potential token for each real token has beemptacte
by a team member fbcks the group. Locking is done by selecting
the holder of one potential token for each real token andiegnd
them the real token (Alg. 2, line 15). A list of agents acaegpti
the other real tokens is also sent. Note that this mechanismdg
against deadlocks: if an agensends a “Release” message first and
then receives a “Lock” messagejs now responsible for sending
messages to other receivers of the “Lock” message to alsasel
(Alg. 1, line 32). Holders of potential tokens that are nqilaged
with real tokens are also released (Alg. 2, line 19).



Algorithm 2: ANDMonitor

(1) foreachv eV

2) for 1to No. Potential Values

3) PassON(new tokeng,potential))

(5) /* Wait to accept potential tokens */

(6) while IT,cv | Retained[v]| = 0

(M msg — getMsg()

(8) if msg is “retainedv”

9) Retained|v] < Retained|v] U msg.sender
(20) else ifmsg is “releasev”

(11) Retained|v] < Retained[v] — msg.sender
(13) /* Send real tokens */

(14) foreachv € V

(15) ax = Va € Retained[v] Cap(ax,v) > Cap(a,v)
(16) foreacha € ax

a7 SENDMSG(a, { “lock v”, ax })

(18) foreach a € Retained[v] — ax

(29) SENDMSE(a, “releasev”)

(21) /> Watch out for agent releasing after lock */

(22) while true

(23) msg «— getMsg()

(24) if msg is “releasev”

(25) Retained|v] < Retained[v] — msg.sender
(26) goto 6

Observe that a similar approach would be sufficient for other
constraints such a¥OR — K. Instead of waiting for all agents
to respond, a lock could be issued as soon as potential té&ens
the first K tasks are accepted, and any agents not part of¢chedo
group could be released. The flexibility to deal with mukipypes
of constraints demonstrates the generality of the potdntan ap-
proach.

4. CALCULATING THRESHOLDS

In this section, we present a model which allows calculatibn
the maximum expected utility (MEU) threshold for one simple class
of problems. This type of calculation can be done by a team-mem
ber to determine the best threshold for a newly-createdntoae
described in the previous section. Our calculation is basethe
expected utility (EU) to the team of using that threshold. Specifi-
cally, we calculate an expectation of which tasks will becexed
and the capability of the agents that will be executing thasks
when the algorithm settles into a steady state. Abstrastycan
write the EU of using a particular thresholH, as:

EU(T)

E(# tasks executed|T) x
E(capability of capable agent|T)
E(# capable agents|T) x

E(# tasks per capable agent|T) x
E(capability of capable agent|T)

where a capable agent has at least one capability abovertdsith
old. Notice that since we are using expectations for eaakeydhe
result is an expectation of the utility to the team, not a jzecal-
culation of the utility it will receive. While the above edian is
the most general, calculating the values of the the termsgfecific
teams is non-trivial. Below we look at class of models thatece
a wide range of extreme team domains.

We assume thatlasses of tasks require the same capability and
that there aré\/ tasks,NV agents andy classes of tasks%é tasks
of each class). Each agent has a capability for a class of thek
sen from a uniform, random distribution ovg, 1]. An agent’s
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capability to perform one type of task is independent of kit
to perform any other type.

We also assume that each agent has one normalized unit of re-
sources (i.eYe, e.res = 1). Tasks within a class require different
amounts of resources. Specifically, we discretize the resoe-
quirements of taskstd < r1 <72 < ... <71y < 1andsay thata
proportionp; of the tasks requires an amounbf resources. To ex-
ecute all tasks requiring a specific amount of resourgaequires
number of agent®V,, = p; x r; x M (which is an approximation
of [L] x Ny, = pi x M).

Due to the independence and uniformity of the capabilityridis
butions, we can writd (#capable agents|T) = (1-T*)x N =
Nr. Due to the independence between capability distributidns
all tasks cannot be performed, a good approximation of thledst
utility is received when the tasks requiring the most recesirare
not performed. Thus we can write a calculation based onrisgig
tasks requiring least resources first, as shown in Eqn. lerGie
uniform capability distribution, the capability of an aggerform-
ing a task will bel£L. Hence, substituting faN' and .., , we get
the equation for EU given T shown in Egn. 2. Since this is a con-
tinuous, piecewise function, if we take the maximum of eadhe
pieces, we see that the maximum of these is the maximum of the
overall function. We can readily determine the maximiziradue
of T' on each of the pieces via linear time numeric methods, and so
find the maximizing value fof". In the next section, we show that
the MEU threshold determined via this approach yields a réwa
that is very close to the experimentally determined maximum

5. EXPERIMENTS AND RESULTS

We have tested LA-DCOP extensively in three environments.
The first is an abstract simulator that allows us to run many ex
periments with very large numbers of agents[14]. We sinauise
different classes of task. Each of the agents had randorsigraed
capabilities uniformly drawn from zero to one for each of ttie
ferent classes of task. For each time step that the agenhhas t
task and has the resources to execute it, the team receives a r
ward equal to the agent’s capability. The team aims to madmi
the sum of total reward over the length of the simulation. Mes
sage passing is simulated as perfect (lossless) commiamdat
a fully connected network. During each simulation stepheae
ken was allowed to move from one agent to another only once. As
the simulation progresses, new tasks arise spontaneondlyha
corresponding tokens are distributed randomly. The nelsstap-
pear at the same rate that old tasks disappear, thus keapitotal
number of tasks constant. This allows a single, fixed thiestoo
all tasks to be used throughout the experiment. Each dat# ipoi
the Figures below represents the average from 20 runs. éNibiat
the experiments below are based on this specific setup ofrthe s
ulation. However, a large number of additional experimenits
other configurations were performed, e.g., more differbagses of
task or different distributions of capabilities, and whitere were
some differences, the results below are representativeatsults
achieved.

The first set of experiments tested LA-DCOP against three com
petitors. The first is DSA, which is shown to outperform other
approximate DCOP algorithms in a range of settings [11, 4; w
choose optimal parameters for DSA [23]. As a baseline we also
compare against a centralized algorithm that uses a “gtessly
signment[3]. Results are shown for LA-DCOP using two differ
ent thresholds, T=0.0, i.e., keep a token if functional aageh
available resources, and T=0.5 which was determined toggioe
performance for these configurations. Figure 1(a) showsehe
ative performance of each algorithm as the number of agents i



LNp if Nr < Ny,

T1

u—1 u—1 u
E(# tasks executed|T) = ¢ = Np + Y (1— Z)P;M ifforany u € {2,q}, ¥ Ny, <Np < Y Ny,
u “ i=1

i=1
M otherwise

Eqn 1: Calculation of the number of tasks executed.

. ML
%(17TK)N—1+2T it T > (1— netyw

U
> ripi M

u—1 R R
EUT) ={ (A1 -TK)N+ ¥ (1 - Z)p, M) L itforany u € {2,q}, (1 - )% < T < (1 - =)
u 7/:1 u

q
>oripeM

ML if(1—-=f—)% > 7T

Eqn 2: Calculation of the expected utility of a particular threkh 7.

increased. The experiment used 2000 tasks over 1000 tippg. ste
The y-axis shows the total reward, while the x-axis showstha-

ber of agents. Not surprisingly, the centralized algorigherforms
best. LA-DCOP performs significantly better with a threshof

0.5 than with no threshold. LA-DCOP with either thresholatist
tically outperforms DSA (with probability greater than 9%, as
determined by a t-test).

The real key to the comparison, however, is the amount of com-

i=1

u—1

> ripiM

A=

munication used, as shown in Figure 1(b). Notice that theig-a 000000

a logarithmic scale; thus LA-DCOP uses approximately fodecs 1800000 4
of magnitude fewer messages than the greedy algorithm ama-si 1600000

W—O——Q—Q—Q_H

TR A A A A A A A A

ders of magnitude fewer messages than DSA. LA-DCOP performs g 1400000
better than DSA despite using only a tiny fraction of the nemf 12000007 /

W

\A\A\A\Mﬂ—ﬁ—ﬁ—é

. . 2 1000000 R R ]
messages and only marginally worse than a centralized agipro T 500000 1 ~+ Greedy
despite using far less communication. We can also see aoffade ¥ 600000 { = DSA

in the volume of messages that LA-DCOP uses compared to its 400000 1

-4 LA-DCOP, T=0.5

reward; with no thresholds, LA-DCOP uses fewer messages tha 200000

0 +—————

—-LA-DCOP, T=0.0

with a threshold of 0.5, at the cost of reduced reward. 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

To validate the calculation of MEU threshold, Figure 2a sbiow

Number of agents

the reward found experimentally versus the expected reasoal-
culated via the theory when the ratio of tasks to agents| (i)
is 1. The data points have a correlation coefficient of 0.96#8

(a)

Vasstunsitt

close match of the theory and experimental results illtesréhat L1.0E+11
we can rely on mathematical analysis to approximate MEUstire o 13;;2
olds. & 1.0E+08
Figure 2b shows the reward obtained using different thiesho g LoEs07 ey

. . £ 1.0E+06 -

over experiments with loads of 0.2, 0.5, and 2.0, averaged 2 S 1.0E405 4

runs each. Such load variance models expected dynamicsevent B 1.0E+04 1
£ 1.0E+03 1 —#—Greedy

in extreme team domains, e.g., the spread of fires causing-an e 3 omron | |-m-osA

plosion in disaster rescue. As load is increased, the tbleshat 1.0E+01 || A~ LADCOP, T=05

—— LA-DCOP, T=0.0

yields maximal reward decreases. However, no single fixegskh LOB+00 +=—r—
old is able to maximize reward under all three loads. The thiast

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of agents

labeled DC, shows the reward obtained using the MEU threshol
for each load (as calculated by Equation 2), as is done in IGOP.
The figure clearly shows that the LA-DCOP approach of dynami-
cally computing thresholds outperforms fixed, static thodds un-
der varying load.

Even when load does not change dynamically in an extreme team
domain, tasks will often turn over at a rapid rate. In Figuae\8e
show that LA-DCOP performs well even when this change is very
rapid. The four lines represent different rates of changty @01
meaning that every time step (i.e., the time it takes to seeces-
sage) 1% of all tasks are replaced with tasks potentiallyiremg
a different capability. The x-axis measures the probahbiliait an
agent is functional in type of task. When this value is 50%hwi
1% dynamics, LA-DCOP loses 10% of reward/agent on average,
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(0)

Figure 1: (a) comparing the reward versus the number of agents. (b)
the number of messages sent versus the number of agents
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Figure 3: (a) the effects of different proportions of tasks changing
each step. The y-axis shows the output, x-axis shows the pentage of
agents with capability > 0. (b) the effect of retainers, with the lines
representing no retainers, one retained task per agent andve retained
tasks per agent.
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Figure 4: (a) the number of fires extinguished by 200 fire trucks versus
threshold (b) the number of targets hit by UAVs versus threslold.

but when more agents are likely to be functional, the losstdue
even high dynamics is within 10% reward/agent.

Finally, Figure 3b shows the utility of potential tokens whe
groups of tasks are AND constrained. In the figure, 60% of all
tasks (900 tasks) are AND constrained into groups of fivestask
Unless a functional agent is assigned to each task in thegtioe
team receives no reward. It is clear that potential tokeiys $iace
the lowest output is received without the potential tokdabdled
“None”). Moreover, allowing agents to have up to five potakti-
kens (labeled “Retain 5”) leads to better performance thlawig
them to have only one potential token (labeled “Retain 1He &f-
fect is most pronounced when about 40% of agents are furattion
because this is the case when most deadlocks and idlenass occ
otherwise.

In our second set of experiments, we used 200 LA-DCOP en-
hanced versions of Machinetta proxies[19], distributedravnet-
work, executing plans in two simple simulation environnserithe
proxies execute sophisticated teamwork algorithms asagdlA-
DCOP and thus provide a realistic test of LA-DCOP. The first-en
ronment is a version of a disaster response domain whereuilest
must fight fires. Capability in this case is the distance oftthek
from the fire, since this affects the time until the fire is egtiished.
Hence, in this case, the threshold corresponds to the maxidis+
tance the truck will travel to a fire. Figure 5(a) shows the hanof
fires extinguished by the team versus threshold. Incredbiegh-
olds initially improves the number of fires extinguishedt o
high a threshold results in a lack of trucks accepting tasksa
decrease in performance. In the second domain, 200 sirdulate
manned aerial vehicles (UAVs) explore a battle space, agnty
targets of interest. While in this domain LA-DCOP effechjwal-
locates tasks across a large team, thresholds are of notbdrefi
key point of these experiments is to show that LA-DCOP carkwor
effectively, in a fully distributed environment with restiic domains
and large teams.

RoboCup Rescue Experiments

We also tested our approach in the RoboCup Rescue environ-
ment [8]. RoboCup Rescue provides an ideal, realistiatgsfiound



for LA-DCOP in allocating roles to an extreme team compriséd
fire engines. Our experimental setting features 10 fire fighaad
18 ignition points. We considered different distributiamfsaagents
and fires, testing our approach in situations where fireslaséered
in one, three, and four regions of the map (Clusters-1, €tas3,
and Clusters-4, respectively). Figure 5 shows the RoboGgz ke
simulator with three clusters of fires.
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Figure 5: RoboCup Rescue environment with three clusters of
fires

In previous work, researchers have documented the failire o
auction based algorithms for role allocation in RoboCupdgefl 2],
due to the high communication requirements. To test whetAer
DCOP can allocate roles within the communication and time li
itations of RoboCup Rescue, we compared against a shoitest d
tance based strategy, which exploits domain charactesiatid is
similar to that used by top-performing RoboCup Rescue teams
Agents’ capabilities are computed considering whetheratjent
is blocked or not and its current distance from the fire. Beedhe
number and strength of fires varies with time, we also contpare
against LA-DCOP run with fixed thresholds.
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Figure 6: LA-DCOP outperforms SD

Figure 6 compares the different strategies, averaged Oveni3.
LA-DCOP with dynamically computed thresholds (LA-DCOP-PC
is seen to outperform (i.e., extinguish fires faster thampeti-
tors for the Clusters-1 and Clusters-3. Indeed, in Clus3etsA-
DCOP-DC extinguishes fires in 100 time units, while SD is u@ab
to extinguish the fires within even 300 units (our cutoff).Ghus-
ter4, fires spread throughout the city, creating a scenlaaidg very
difficult for LA-DCOP-DC. The key to note is that even in thig-d
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ficult cluster4 scenario, LA-DCOP-DC is performing simijato
SD.
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Figure 7: average threshold versus time

Figure 7 shows how the thresholds in LA-DCOP-DC change
with time. The thresholds averaged over all tokens areeqadibr
each of the three scenarios. Average thresholds beginthigifall
as load increases. Since thresholds stay constant ongaedso
tokens, this means that as new tasks arise, the MEU thresbald
culated for them are lower than at previous times. Thistghilder
LA-DCOP to compute thresholds based on current conditioresg
it valuable flexibility in dealing with the dynamic domaimswhich
extreme teams must operate.

6. SUMMARY AND RELATED WORK

In this paper, we have described a novel approach to task allo
cation in extreme teams. Our DCOP based approach sub#iiantia
outperforms other approximate DCOP algorithms, both ial te-
ward and in communication, where we demonstrated a dramatic
six orders of magnitude reduction in messages. It allowshrgr
up in team size by an order of magnitude, while coping with ad-
ditional challenges of extreme team domains that otherigfgos
cannot address. In particular, the ability to use team kedge
to dynamically compute MEU thresholds allows LA-DCOP to find
good allocations even in dynamic domains. The strengthdimmird
tations of LA-DCOP will be thoroughly tested in coming masitis
in plays a key role in some major projects. The DEFACTO pijec
is aimed at developing high fidelity simulation environneeifr
training of rescue response teams (see Figure 8) and LA-DCOP
must perform task assignment for a large, dynamic rescpenss
team[20]. The CAMRA project is focused on coordination of un
manned aerial vehicles and LA-DCOP will feature in a majghti
test in late 2005[18].

Task allocation is an extensively studied area with workgran
ing from high complexity, forward looking optimal model&[1 to
symbolic matching that ignores cost[22, 16], to centralizeic-
tions[7], to swarm techniques[17, 1, 2], to distributedstoaint op-
timization[23, 11, 10]. Among these, the forward lookingioml
models and centralized auctions are not only highly ceim&rd) but
their computationally expensive considerations of oplitpdead
to difficulties in their application in highly dynamic extre team
domains. The symbolic matching models ignore costs cowlglet
which is highly detrimental. Swarm techniques use locaksen
to modulate flexibility, but LA-DCOP permits additional dial
knowledge to factor into thresholds. Finally, we have dised
the DCOP models, particularly incomplete DCOP algorithins,
detail throughout the paper and presented comparison ofiodk
to these algorithms. Complete DCOP algorithms like ADOHRT[1
and OptAPQJ[10] are appropriate in key domains where optimal
ity is critical, but the significant amount of communicatiengen-
dered would be highly problematic in densely connectedtcaimns



Figure 8: A view of a disaster response scenario in the DE-
FACTO project.

graphs in extreme teams, and they are unable to handle dgmami
of extreme team domains.
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