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Abstract We consider multi-robot applications, where a team
of robots can ask for the intervention of a human operator to
handle difficult situations. As the number of requests grows,
team members will have to wait for the operator attention,
hence the operator becomes a bottleneck for the system. Our
aim in this context is to make the robots learn cooperative
strategies to decrease the idle time of the system by model-
ing the operator as a shared resource. In particular, we con-
sider a balking queuing model where robots decide whether
or not to join the queue and use multi-robot learning to es-
timate the best cooperative policy. In more detail, we for-
malize the problem as Decentralized Markov Decision Pro-
cess and provide a suitable state representation, so to apply
an independent learners approach. We evaluate the proposed
method in a robotic water monitoring simulation and empir-
ically show that our approach can significantly improve the
team performance, while being computationally tractable.

1 Introduction

In many multi-robot scenarios, such as environmental mon-
itoring [26] or search and rescue [27, 13], one or few opera-
tors are required to interact with a team of robots to perform
complex tasks in challenging environments. Robots, spe-
cially at field sites, are often subject to unexpected events,
that can not be managed without the intervention of opera-
tors. For example, in an environmental monitoring applica-
tion, robots might face extreme environmental events (e.g.,
water currents) or moving obstacles (e.g., animal approach-
ing the robots). In such scenarios, the operator often needs
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to interrupt the activities of individual team members to deal
with particular situations.

The operator’s monitoring and supervisory role in these
scenarios becomes critical, particularly when the team size
grows larger. To decrease the operator’s monitoring task and
give him/her more time to focus on robots that need atten-
tion, several approaches consider the concept of self-reflection
[21], where robots are able to identify their potential issues
and ask for the intervention of the operator by sending a
request. However, large teams can easily overwhelm the op-
erator with several requests, hence hindering the team per-
formance. Consequently, team members have to wait for the
operator’s attention, and the operator becomes a bottleneck
for the system. Queuing is a natural way to manage and ad-
dress this problem. Previous research try to enhance the per-
formance of the system (i.e., decreasing the time spent by
robots waiting for the operator) considering various queue
disciplines (e.g. First in First Out (FIFO) and Shortest Job
First (SJF)) [15, 5] or prioritizing such requests [19]. In both
cases, the queue size may grow indefinitely as no robot will
leave the queue before receiving the operator’s attention.

To deal with this problem, we focus on balking queue
model [16], in which the users/agents (i.e robots requesting
attention) can decide either to join the queue or balk. Such
decisions are typically based on a threshold value, that is
computed by assigning a generic reward for receiving the
service and a cost for waiting in the queue to each agent.
When applying this model to a robotic application, there is
no clear indication how such thresholds can be computed.
More important, this model does not consider the cost of
balking (i.e. the cost of a potential failure that robots can
suffer by trying to overcome difficult situations without hu-
man intervention). Considering this, our focus is to devise
an approach that allows the team of robots to learn coopera-
tive balking strategies to make better use of a shared queue.
Therefore, we frame the above problem as a Decentralized
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Fig. 1 Water monitoring simulation tool.

Markov Decision Process (Dec-MDP) in which, the team of
robots must cooperate to optimize the team idle time. Find-
ing optimal decentralized policies is often hard due to the
partial observability and limited communications. Thus, our
goal is to provide a scalable state representation by adding
the state of the queue as an extra feature to the robots’ lo-
cal states and solve the underlying Dec-MDP problem using
multiple independent learners 1. We illustrate that, this ad-
ditional feature will improve the team performance over our
main evaluation metric (i.e. team idle time). In more detail,
this paper provides the following contributions to the state
of the art: (i) We model the human operator as a shared re-
source that robots can access using a balking queue; robots
identify their needs and decide whether to join the queue
(hence waiting to have access the resource) or not. (ii) We
formalize the problem as Dec-MDP and provide a tractable
state representation to learn the balking policies for each
robot. (iii) Finally, we evaluate the performance of our model
by comparing the team idle time to the state-of-the-art queue
disciplines. Overall, the experimental results show that, the
use of our model decreases the total idle time up to 68% over
FIFO (without balking) and increases the team reward up to
56% comparing to the other learning models.

2 Background

In this section, first we review the state of the art in robotic
studies, where robots ask for operator’s attention. Afterwards,
we present a brief introduction to the Balking Queue[16]
model in which, users/agents decide to join the queue or
not. Then, we present a brief review of Dec-MDP[1, 9] as
the basis model for decision making under uncertainty in
multi-robot scenarios.

1 Some part of this work appears in [18]. That work describes basic
ideas and preliminary results, here we provide a more detailed descrip-
tion of the methodologies, and more extensive empirical analysis.

2.1 Human-Multi-Robot Interaction

Human-multi robot interaction is an active field of research
with many different research issues, including team plan rep-
resentation [25, 14], multi-modal interaction [22, 10] and
mixed initiative planning [2]. Here, we consider approaches,
which focus on how to allocate operator attention to a set of
robots. Many work in this area consider that, the robots can
perceive their situations and inform or ask the operator for
help. For example, the work by [20] proposes the idea of a
single service robot asking for the help of humans.

Considering larger multi-robot teams with small number
of operators, several robots may need the operator’s atten-
tion at the same time. Hence, the requests must be queued
for being processed later on. Authors in [5, 15] explore dif-
ferent queue disciplines to enhance the performance of the
system. However, keeping robots idle until the operator be-
comes available might decrease the overall team efficiency.
In contrast, we focus on a specific queuing model with balk-
ing property [16], where robots decide either to join the
queue or not.

The concept of Adjustable Autonomy or mixed initiative
has been the basis of many research in the field of human-
multi-robot interaction. The key issue in this setting is to
devise effective techniques to decide whether a transfer of
control should occur and when this should happen. Differ-
ent techniques have been proposed to address this challenge,
for example, [12, 6, 24] consider that the robot will ask for
human help/intervention when the expected utility of do-
ing so is higher than performing the task autonomously, or
when the uncertainty of the autonomous decision is high
[11, 4] or when the autonomous decision can cause signif-
icant harm [7]. However, these decision making solutions
usually have been considered as individual one-step deci-
sions without considering the long-term cost or the conse-
quences of decisions on other team members (if any). Plan-
based approaches to mixed initiative systems [29, 3, 2] do
consider long term costs of actions. However, in this work
we focus on a specific interaction modality between the op-
erator and the multi-robot system (i.e., a queuing system)
and we aim at explicitly addressing uncertainty in action ex-
ecution (i.e., probability of failures when acting autonomously).
In more detail, our focus is on a specific queuing model with
balking property [16] and on finding cooperative strategies
where all robots learn concurrently to minimize the idle time
of the system.

2.2 Balking Queue Model

The first mathematical model of a queuing system with ra-
tional users was formulated by Naor [16]. In his model, users
upon their arrival decide according to a threshold value whether
to join the queue or not (balk). The individual’s optimizing
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strategy is straightforward, a customer will join the queue
while n other customers are already in the system if

R−n ·C 1
µ
≥ 0 (1)

where a uniform cost C for staying in the queue and a
similar reward R for receiving service are assigned to each
user and µ is the intensity parameter of exponentially dis-
tributed service time. In more detail, following a standard
approach in literature the model proposed in [16] assumes
that the time required to service a request follows an expo-
nential distribution with parameter µ , hence the probability
density function for the service time is given by f (x; µ) =

µe−µx where x≥ 0 and 0 otherwise.
Thus, n = bRµ

C c serves as a threshold value for balking,
that is if the number of users waiting in the queue is greater
than n, the newly arrived user will not join the queue. In
a multi-robot application, this threshold and decision must
be computed carefully. Our focus is on showing how the
elements (i.e. reward and cost) of balking strategy should be
adjusted according to a practical robotics scenario.

2.3 Decentralized Markov Decision Process (Dec-MDP)

The decision of whether to join the queue or not for each
situation of each robot will impact the future decisions of the
entire team. As a result, we are concerned here with team
sequential decision making problems, in which the team’s
utility depends on a sequence of decisions.

A Dec-MDP is defined by a tuple 〈S,A,P,R〉 where: S is
the set of world states which is factored into n components,
S = S1× ...×Sn. In a special case (i.e. Factored n-agent Dec-
MDP), Si refers to the local state of agent i. In Dec-MDP, the
state is jointly fully observable which means that the aggre-
gated observations made by all agents determines the global
state. A =×iAi is the set of joint actions, where Ai is the set
of actions for agent i. P = S×A×S→ [0,1] is the state tran-
sition probability. R = S×A→ R is the immediate reward.
The complexity of Dec-MDP is nondeterministic exponen-
tial (NEXP) hard [1], hence learning is crucial.

2.4 The cooperative water monitoring scenario

We consider a water monitoring scenario, where several au-
tonomous surface vessels are supervised by a human opera-
tor (see Fig. 1).

Each boat is capable of autonomous navigation and is
equipped with an Android OS smartphone, custom electron-
ics board, and sensor payload. The Android smartphone pro-
vides communication, through a wireless local area network,
GPS, compass, and multi-core processor.

An Arduino Mega based electronics board receives com-
mands from the Android phone over USB OTG and inter-
faces with the propulsion mechanism and sensor payload.
The electronics board supports a wide variety of devices in-
cluding acoustic doppler current profilers and sensors that
measure electroconductivity, temperature, dissolved oxygen,
and pH level. All sensor data is logged with time and loca-
tion and streamed to a cloud based system that allows for
real time visualization of the data.

The robot team is controlled from a nearby base station
via wireless communitcation. The operator uses a plan mon-
itoring tool based on colored petri nets [8]. Such plan moni-
toring framework allows to define high level team plans that
specify sub-plans for each platform. A key feature of the
framework is the ability to smoothly handle interrupt during
plan execution, i.e., to change the sub-plans or part of the
sub-plans that each platform is executing based on events
that occur during the mission.

Such events include boats running out of battery power,
possible loss of connection with the base station and travers-
ing a dangerous area where GPS based navigation may fail.
Each event may affect the normal behavior of the platforms
and hinder their performance. Each event has a different
probability of failure (see Table 1), where requests with the
higher probability of failure are more crucial to receive the
operator’s attention. The relative values for the probability
of failures associated with such events reflect knowledge
gained from real deployments: it is extremely difficult for a
boat that is running out of power to find an effective path that
will ensure the platform to safely reach a recharge station. It
is difficult to traverse a dangerous area using only autonomy,
this of course is environment dependent but for standard en-
vironments such as lakes where boats are usually deployed
this is a reasonable estimate; also consider that failures in
this case does not refer to minor bumps into obstacles but
situations that prevent the boat from moving autonomously
(i.e., the boat being trapped by vegetation). Finally it is usu-
ally not an issue for a boat to operate without having a con-
nection with the human operator but it could prove risky in
some cases.

In this work we assume that the operator will always
succeed to correctly handle an intervention request from the
robotic platforms, however the operator can only process
one request at a time, and this is why we use a queuing
model to represent the interaction with the multi-robot sys-
tem. Consequently, the time to service a specific request de-
pends on how many requests are present in the queue and on
the operator’s speed (represented by the parameter µ).

3 Problem Formulation

Following previous works [5, 15], a central queue is pro-
vided to both the operator and the boats, where the oper-
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Table 1 Different event types used in the experiments.

Event Type (E j) Prob. of Fail

Battery-Recharge (E1) 0.9
Traversing-Dangerous-Area (E2) 0.4
Losing-Connection (E3) 0.2

ator can select one request at a time (i.e., in FIFO order)
and assigns a specific sub-mission to resolve that request. A
sub-mission is a plan specific recovery procedure, and this
often requires a human interaction (i.e., the human directly
selects which platforms should execute the interrupt sub-
mission). We used three sub-missions, one for each class
of requests, including: (i) sending a boat to the closest sta-
tion to change/charge its battery. (ii) allowing/not-allowing
a boat to go further (to the area that it might lose connec-
tion), and (iii) teleoperating a boat for traversing a specific
area.

We assume that, whenever an event happens, the plat-
form can detect the event. For example, a robot can perceive
that its battery level is in a critical state, it must then decide
whether to join the queue (i.e. sending the request and wait-
ing for the operator) or balk (i.e., not sending the request) 2.
The consequences or costs of balking are problem specific.
In our model, when a failure happens, the operator should
spend more time to fix the problem, hence failure as a result
of balking, increases the idle time of the system. Our goal is
to minimize the idle time for the robot team, which is given
by the time spent in the queue and the time required by the
operator to address possible failures.

Our proposal is then to train the robots in a stationary en-
vironment (i.e., stationary distribution functions with fixed
arrival rate and service time), so that the robots can learn
appropriate balking policies. Then, by applying the learned
policies in similar scenarios, they will be able to optimize
the team objective. More specifically, we consider the fol-
lowing model in our domain: The state space S = S1×S2×
...× Sn. n is the number of boats. The local state of each
boat Si is a tuple 〈Sb,Ntasks〉. Ntasks shows the number of
remaining tasks of boat i. In this application domain, each
task is a location that should be visited by a specific boat.
Sb is the current internal state of boat i. More specifically
Sb ∈ {E j,Waiting,Failed,Autonomy}, where E j refers to
on of the request/event type in Table 1. For example, the
state tuple of a boat when it has 3 tasks to finish and the
event Battery Recharge occurs, would be s = 〈E1,3〉. Ai is
the set of actions for boat i where Ai ∈ {Join,Balk}. The re-
ward function is designed to decrease the idle time (i.e. the
time spent waiting for the operator).

2 While this may be a significant challenge in some domains, this is
not the focus of our work.

In general, there are two major approaches for learning
in multi-robot scenarios [17]. The first approach is called
team learning and uses a single learner to learn the behav-
ior for the entire team. In contrast, the second approach uses
multiple concurrent learners, usually one for each robot, where
each learner tries to learn its behavior. Each of these meth-
ods has its own advantages and disadvantages which make
it preferable in different domains [28, 17]. In particular, the
major problems with team learning approach are the explo-
sion of the state space (i.e., it keeps the states of the en-
tire team), and the centralization of the learning approach
that needs to access the states of all team members. Using
the team learner in our application, the state space will be
very large which decelerates the convergence to the opti-
mal value. For example, for 5 boats with the above state
representation, the state space will include more than one
million states, hence requiring a prohibitively long time to
estimate the optimal strategies for each state and action per-
mutations. The main advantage of independent learners in
our domain is that, this domain can be decomposed into sub-
problems (e.g. each boat holds its own state space) and each
subproblem can be solved by one boat. In general, two main
loosees arise in concurrent learning: credit assignment and
non-stationary dynamics of the environment [17]. However,
our application scenario has some special properties, that
can be exploited to design a tractable model. First, the ac-
tion selection at each step (i.e. when an event happens) only
requires one agent to select either to join or balk. Hence, the
reward can go directly to that agent. It is different from the
situations, where all agents should decide at each step (i.e.
joint actions), which results in the well-known credit assign-
ment issue. However, when each boat considers only its lo-
cal state without knowing the state of the queue, finding the
optimal behavior for the team may become impossible, or
the model may compute lower quality solutions. Therefore,
we add the state of the queue to the local state of each boat,
and then we use independent learners approach. To sum up,
we consider three possible models:
Team Learner (TL): a team learner has access to the joint
state of all robots which is S = S1× S2× ...× Sn. When an
event happens to a boat, the action 〈Join,Balk〉 for the cor-
responding boat will be selected and the state of the system
will be updated. The update will only change the part of the
state related to the corresponding boat. The Q-value of the
team learner will be updated accordingly.
Independent Learners - Unobservable Queue (IL-U): an
independent learner) is used for each boat. Each boat ob-
serves only its local state Si = 〈Sb,Ntasks〉. In this model,
each boat updates its local Q-values interacting to the sys-
tem and receiving the reward.
Independent Learners - Observable Queue (IL-O): in this
model, each boat in addition to observing its local state, has
access to the size of the queue. The queue size shows the
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number of waiting boats inside the queue. The state repre-
sentation of each boat in this model is: Si = 〈Sb,Ntasks,Sq〉.

These models are different in their state representation,
while the reward structure is the same for all of them:
(i) R(St = Si,At = Join) = RS− (Nqµ̄ + tserv).
(ii) R(St = Si,At = Balk) = RF(

µ̄

λ̄
)+Nq; if St+1 = F .

(iii) R(St = Si,At = Balk) = RT ; if St+1 = A.
The general rule for immediate reward in this model is

the following: when a boat joins the queue it receives a pos-
itive reward RS (this is because we assume that if the op-
erator serves the request he/she will succeed) and a penalty
that considers the size of the queue (Nq), the average service
time (µ̄) and average time needed to resolve the request tserv,
this is to incentivize the minimization of the idle time (and
specifically the waiting time in this case). When the boat
balks, it may fail and in this case it receives a penalty RF to
represent the time that the operator will require to help the
boat, this is multiplied by µ̄

λ̄
to normalize for the speed of

operator and event arrival rate (λ̄ ). Finally, if the boat balks
but it does not fail, a reward RT will be assigned to the boat.
The parameters RS, RF and RT are domain specific param-
eters that must be tuned empirically, in our experiment we
have RS = 1, RF =−2 and RT = 0.3.

Notice that, the above function is expressed with respect
to events that happen to specific agents (i.e., the agent joins
or balks). Hence it may not be straightforward to see how
such reward function can be used for the team learner ap-
proach that considers the joint state of all agents. The key
point is that in our application scenario it is reasonable to
assume that only one join or balk action will happen at any
given time in the agent team (for more details see the discus-
sion at the end of this section). Hence the reward structure
can be directly used also for the team learner approach.

Finally, we use Q-Learning as the basis learning approach,
while the same reward structure, same distribution functions
for generating events and same distribution function for the
service time are used for all models. We use Q-Learning
because of its simplicity and good real time performance.
Moreover, our goal is to propose the use of reinforcement
learning in this novel context and not to provide a novel
learning algorithm. In Q-Learning, each learner interacts with
the environment (i.e. selects an action), receives the immedi-
ate reward and updates its state-action values (i.e. Q-values)
as Eq.2:

Qi(si,ai)← Qi(si,ai)+α(ri + γ maxa′∈Ai Qi(s′,a′)−Qi(si,ai)) (2)

where ri and s′ are respectively the reward and the state
observed by robot i after performing action ai in state si; a′

is the action in state s′ that maximizes the future expected
rewards; α is the learning rate and γ is the discount factor.
Notice that, for Team Learner, there is only one Q-table (i.e.,
table of state-action values) to be updated, where, si refers

Fig. 2 Team accumulated reward in each episode of the learning phase
(better viewed in color).

to full state representation (i.e. state of all robots) and ai is
the action selected by learner for the specific robot with a
request. This action will either add the event to the queue
or not. As mentioned before, by exploiting specific feature
of our domain, we can use an independent learner approach
that is tractable and scalable.

In the simulation, λ̄ and µ̄ in the reward function are
the same as λ and µ for generating the requests and ser-
vice. However, for a field deployment, these two parameters
should be estimated by considering the average number of
events being generated during an interval as lambda (e.g.
20 events have been generated in 1 hour (or 60 minutes)),
and the average time spent to fix each request as 1

µ
(e.g. 5

minutes to fix each request, hence 12 events can be fixed in
60 minutes).

The state of the queue, Sq, can be modified by robots’
action (joining the queue) and the operator’s action (leav-
ing the queue). However, under the reasonable assumption
that an arrival and a departure cannot happen exactly at the
same time, only one entity can change the value of Sq at
a time. Moreover, the possibility of having more than one
event at the exact same time is very low. In particular, for
our scenario, it is safe to assume that, the time to change
the state of the queue, is much lower than the time for a new
event arrival. Under this assumption, even if two events hap-
pen within a short time interval, the first one will affect the
state of the queue before the second arrives, hence the other
robots will base their decisions on the updated queue size.

4 Experimental Evaluation

4.1 Learning Phase

The learning phase of balking models starts by defining a
list of locations (i.e., to be visited), and assigning those loca-
tions to boats. We consider 30 locations and 5 boats. Events,
as in table 1, will be generated within an exponential distri-
bution with parameter λ = 0.25. The operator’s speed, for
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Fig. 3 Team accumulated reward in each episode of the learning phase
(better viewed in color). From episode 2150, the service rate has been
changed from 0.27 to 0.37 and 0.17.

Fig. 4 Team accumulated reward in each episode of the learning phase
(better viewed in color). After episode 2150, we vary the rate of each
event type.

resolving a request is selected from an exponential distribu-
tion with parameter µ = 0.27. An episode (i.e., a run of the
algorithm beginning from a start state to a final state) ends
after the system encounters 20 events. For action selection in
our model, we use ε greedy method with parameter ε = 0.1.
Our algorithm uses the learning rate α = 0.1 and discount
factor γ = 0.9 throughout the experiments, which are tuned
empirically. Each episode of the learning phase starts with
all boats in their Autonomy state (i.e. they do not need the
attention of the human operator), then with arrival rate λ an
event may happen to one boat. We used values for λ and µ

that define well the type of scenarios we are interested in,
where boats can operate most of the time in autonomy, but
frequently need user intervention.

Fig. 2 shows the team rewards of each model, TL, IL-U
and IL-O, during the learning phase. The oscillation in the
reward is due to the fact that, the robots learn their policies
by trying new potentially sub-optimal actions. The training
time (the sum over 4000+ episodes) for each model was
about 88-95 hours. As we expected, the convergence rate of
IL-O is much faster than the TL, while they both reach a sim-
ilar team reward. This is due to the larger state space of TL
which needs more iterations to estimate the value for each
state and action. Results also clearly show the importance
of having access to the state of the queue to make better de-

cisions. Since, the reward given to each action is related to
the parameters λ and µ , we expect our policy to be depen-
dent on these two parameters. Fig. 3 shows how IL-O adapts
to changes in µ , where we increase and decrease its value
by 40% during the learning phase. Possible variations of µ

are important elements to consider because µ represents the
speed of the operator and this is an important feature for
the queuing policy. Since in general having a precise and
accurate model of how fast the user can service different re-
quests is not easy (particularly for robotics applications) we
decided to use a standard model for service time (i.e., an ex-
ponential distribution with parameter µ) and show that our
learning method can generalize to different operator speeds
(i.e., different values of µ). In more detail, the graph in Fig.
3 shows that a sudden rise and drop of the team reward cor-
responds to changes in the value of µ , but then the system
converges to a stationary state hence showing that the sys-
tem is able to adapt the queuing policy to different operator’s
speeds. Fig. 4 shows another experiment, where we vary the
ratio of event types during the learning phase. The events
were generated with a uniform distribution up to episode
2150. After that, we vary the percentage of events from type
1(E1), which has the higher probability of failure (see Ta-
ble 1), while the rest of the events are uniformly distributed
among E2 and E3. In more detail, we consider E1-100, E1-
80, E1-50, E1-10 and E1-0, where each shows the rate of E1.
Fig. 4 illustrates that, as there are more E1, the system will
gain less reward due to the increasing rate of failures. After
several iterations, the learning curve becomes stationary.

4.2 Test Phase

After the learning phase, we run 30 simulation executing
the policy learned previously. In this first experiment, we
use the same values for λ and µ as used during the learn-
ing phase. Fig. 5(a) demonstrates the team reward for each
learning models. A comparison on team reward between IL-
O and IL-U, shows 56% gain for IL-O. Besides, a signifi-
cant decrease (i.e. 40%) on average waiting time is shown
in Fig. 5(b) when using IL-O rather than IL-U. One might
expect the same reward value and idle time for IL-O and
TL. However, the results on Fig. 5(a) and 5(b) show bet-
ter performance values for IL-O than TL. Fig. 2 shows that
towards the end of the learning phase TL reaches similar
performance in terms of total team reward with respect to
IL-O. However on the one hand IL-O always dominates and,
more important, the reward value achieved by TL is much
less stable with respect to the one achieved by IL-O. This
results in the difference in performance observed in the test
phase. The different behavior of the two methods is due to
the fact that, the IL-O model keeps only the size of the queue
or Sq (i.e. it does not consider which boats are waiting in the
queue), while TL maintains the state of all boats which are
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(a) Total team reward (b) Total idle time

Fig. 5 (a) and (b) show the team performance (together with the standard error of the means) for three learning models

Fig. 6 Total idle time comparing balking models to non-balking mod-
els.

in their Waiting state (i.e. Sb = W). For example, whenever
two boats waiting in the queue (assuming the other features,
e.g., severity are the same), IL-O will map the state to Sq = 2,
while TL will differentiate the states depending on which
two boats are inside the queue. Since, the boats are homoge-
neous in our domain, IL-O results in better performance by
abstracting away features that do not have a significant im-
pact on the reward. This also makes TL to converge slower
than IL-O, due to the larger state space of TL which needs
more iterations to estimate the value for each state and ac-
tion.

Next, we compare the behavior of queues with and with-
out balking property (e.g., FIFO and SJF). For FIFO and
SJF, we use the same event rate λ and service rate µ . In these
two queuing models, boats always join the queue regard-
less of their request types and the queue size. Fig. 6 shows
the team idle time for FIFO, SJF and three learning mod-
els. FIFO without balking, has the worst performance, since
boats wait for the operator until he/she becomes available.
In contrast, IL-O approach outperforms all other models. In
more detail, it decreases the time up to 68% comparing to
FIFO. In general, the results in Fig. 6 indicate that, using

Fig. 7 Total team reward (together with the standard error of the
means) for IL-O (main) with different levels of noise on λ and µ

(noisy).

Fig. 8 Total idle time (together with the standard error of the means)
for IL-O (main) with different levels of noise on λ and µ (noisy).

balking models significantly decreases the idle time of the
team even though, some events may result in failures. This
is acceptable in our domain, since the penalties for failures
are not critical but only result in a finite increase of time.

To validate the noise sensitivity of our proposed model
IL-O, we consider a set of experiments as follow. We con-
sider adding the same level of noise, according to a uni-
form distribution, to both parameters λ and µ during the
test phase. In more detail, the noise follows a uniform dis-
tributed with a range that is X% of the value of the param-
eter to which the noise is added. The value of X ranges in
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{20,40,60,80}. Fig. 7 shows the team reward and Fig. 8
shows the team idle time for different levels of noise. The
results show that, the approach is able to cope with a signif-
icant amount of noise on both λ and µ .

As a final remark notice that both λ and µ can vary sig-
nificantly in real deployments and these are key parameters
for the cooperative queuing policy. However, a key outcome
of our empirical results is that our learning approach can
adapt to different values of µ (see Figure 3) and can cope
with a significant amount of noise in the estimation of µ and
λ (See Fig. 7 and 8). Hence, while clearly the absolute num-
bers for the performance indicators may vary, we believe
that the key trends highlighted by our empirical evaluation
(i.e., that the balking model performs better than standard
queuing approaches and that our learning approach is effec-
tive) will remain valid for real deployments.

4.3 Discussion

The model for cooperative learning that we propose in
this paper makes specific assumptions for what concerns
the interactions of the system with the operator and the
interactions among the robotic platforms. Such assump-
tions derive from the specific operation modalities of the
cooperative water monitoring scenario described in Sec-
tion 2.4. However, the idea of using a balking queue and
the idea of learning the best cooperative balking policy
using a model free approach can be applied to other do-
mains, such as for example search and rescue applica-
tions, where robots should schedule operator interven-
tion [5].

A first assumption relates to the interactions between
the multi-robot system and the human operator. In par-
ticular, we do not take into account the possibility that
the operator intervention might not be enough to cor-
rectly manage the unexpected event. Moreover, we con-
sider a model for operator’s skills and response time that
does not depend on important factors related to the in-
dividual operator (e.g., her/his experience level) or to the
specific situation (e.g., her/his stress level). These assump-
tions are not a major limiting factor for our water mon-
itoring application, because the dynamics of the envi-
ronment are usually rather slow allowing the operator
to intervene successfully. Moreover, the events that we
consider can be managed through rather simple inter-
actions: the user receives an alarm through a software
platform, and she/he will either change the current plan
with another one or teleoperate the platform. However,
for other application domains (and particularly for time-
critical applications) such assumptions may not hold. A
possible line of research to address this issue would be
to have different models for different types of users so
to consider their probability of failure and response time

for different intervention requests. This would allow the
robotic platforms to adapt their balking policy to differ-
ent types of users hence improving the performance of
the system.

A second assumption relates to the interactions among
the team members. In particular, we assume that the
state of the queue is always accessible by the robotic plat-
forms. This assumption is reasonable in our application
domain because we can rely on a robust communica-
tion infrastructure created by a dedicated device operat-
ing in an open area. Moreover, when robots stay within
the range of communication allowed by the base station,
they exchange mainly synchronization messages to al-
low for join plan execution, hence the bandwidth is not
a limiting factor. Also, if one platform decides to go be-
yond the communication range it does not need to co-
operate with its team mate until it comes back. How-
ever, in other domains, such as search and rescue, this
assumption may not hold because the communication in-
frastructure is usually affected by the presence of debris
or because interventions should be performed in indoor
areas where communications can be blocked. In these
cases, different learning methods should be employed.
For example policy gradient methods may result in bet-
ter performance than Q-Learning, because the learned
policy can typically generalize to unobserved states [23].
Moreover, the policy gradient can learn stochastic poli-
cies that are more robust than deterministic ones, partic-
ularly for partially observable states.

5 Conclusions

In this paper, we propose the use of balking queue to model
human-multi-robot interactions when the autonomy of robots
allow them to decide whether to wait for the operator or not.
We frame the problem as a Dec-MDP in which, each robot
observes its local state and the state of the queue and cooper-
ates with other agents to optimize the use of a shared queue.
We apply independent Q-Learning to find these cooperative
strategies in a water monitoring multi-robot simulation. We
consider three different models (TL, IL-U, IL-O), and our
results clearly show that an independent learner approach
where the state of the queue is accessible to the platforms
performs best. Furthermore, the empirical results related to
the noisy estimation for λ and µ (Fig. 7 and 8), suggest that
the approach is able to cope with a significant amount of
noise.

Future directions in this area include modeling the situ-
ations where the boats can decide to leave the queue when
the expected waiting time does not meet their requirements.
This would require a change in the action space of each
robot and a novel derivation of the reward function. Another
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interesting direction would be the use of different Multi-
Robot Reinforcement Learning solutions such as policy gra-
dient methods or in general function approximation methods
to better capture the uncertainty in both learning and testing
phases.
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