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Environmental monitoring is one of the main societal challenge of the last
century. This is particularly important when considering the increasing popula-
tion growth and the industrialization of developing countries. Information and
Communication Technology (ICT) and robotics can play a significant role in this
perspective as they offer invaluable tools to continuously gather relevant infor-
mation over wide, possibly dangerous areas. In particular autonomous boats hold
great promises for monitoring water bodies (lakes, rivers, fishfarms) or providing
first aid in floods. However, a key feature for such systems to have a practical
impact on society is to provide accurate measures over large areas while being
cost effective. In this work, we focus on a water monitoring system, based on
Cooperative Robotic Watercrafts (CRW), commercialised by Platypus LLC 1.

The CRW approach is based on the use of low cost, small, robotics plat-
forms, which are able to interact with each other and make use of various ar-
tificial intelligence methods to ensure a significant level of autonomy for navi-
gation and information gathering tasks. Figure 1(a) shows a differential drive
propeller versions. In addition to a battery based propulsion mechanism, each
boat is equipped with an Android OS smartphone, custom electronics board,
and sensor payload. The Android smartphone provides communication, GPS,
compass, and multi-core processor. The Arduino Mega based electronics board
receives commands from the Android phone and interfaces with the propulsion
mechanism and sensor payload, as shown in Figure 1(b). The electronics board
supports a wide variety of devices including acoustic doppler current profilers
and sensors that measure temperature, Dissolved Oxygen (DO), and pH level.

A crucial aspect for the CRW is the high level of autonomy of the platforms,
which can be controlled by few human operators that provide high level instruc-
tions to the system. In particular, Figure 1(c) shows the Graphical User Interface
that the human operators can use to control the robotic platforms. Boats be-
haviors are expressed in the form of high level plan encoded as Colored Petri
Nets [1]. In this example, the human operator activated an explore area plan
providing the shape of the area that must be explored. The platforms will then
automatically divide the area in different sections and execute a pre-specified
strategy to monitor the area. Figure 1(d) shows an example of the standard
lawnmower strategy employed by the boats. Notice that such strategy is decided
off-line, i.e., before the system acquires any readings, and as such it does not
depend on the data that the platforms are collecting.

1 see http://senseplatypus.com/ for more info
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Fig. 1. 1(a) Twin propeller platform; 1(b) System architecture; 1(c) GUI for controlling
the boat; 1(d) Lawnmower strategy for monitoring

Now, in many situations it is important to perform an on-line monitoring
strategy to focus on relevant parts of the area depending on reading acquired
while executing the mission. For example, we might want to provide accurate
readings on parts of the areas that exhibit a critical/interesting pattern (i.e., a
high DO value or a high PH level).

The contribution of this paper is to propose a new method for cooperative
exploration, providing an approach to collect relevant information while mini-
mizing costs. More in detail, this paper provides the following contributions to
the state of art: i) we use a Gaussian Process (GP) to model the spatial and
temporal dynamics of the target phenomena. GPs are powerful approaches for
Bayesian inference [2, 3], and here we use a GP for predicting the possible values
of unvisited locations given the values we measured. If the predicted value for
an area falls within a specified range, we consider such area to be of interest for
the exploration strategy; ii) we use the Marching Square algorithm to cluster lo-
cations that have an interesting predicted value, by building a “border” around
such area (called an isoline); iii) we cast the exploration process as a task assign-
ment problem, where interesting areas (i.e., isolines) are allocated to boats that
must acquire readings to increase the prediction accuracy of the GPs. We define
several cost functions to drive the task allocation process and we use two task



assignment methods: Greedy, which provides a basic approach for comparison
and the Hungarian method (proposed by H. W. Kuhn in 1955 [4] and refined by
J. Munkres in 1957 [5]), which provides the optimal allocation; iv) finally, we per-
form an extensive empirical evaluation with the CRW simulating environment.
Our empirical evaluation compares the various cost functions we devised for task
assignment and shows that our approach significantly outperforms the previous
lawnmower method in terms of prediction accuracy over interesting areas.

In more detail, our approach is based on the following main ingredients:
Environment Representation and Problem Formulation: Our goal is to minimize
the predicted error on relevant points. These points are defined based on a-priori
knowledge on the environment (i.e. DO > 7.0). To model the environment we
use a regular grid, and we assign to each cell the average of all the readings in
that area. Figure 1(d) shows the grid used in our experiments which represent
the DO values obtained by a robotic boat operating in a coastal areas in Doha,
Qatar. Black cells represent relevant readings (i.e. DO > 7.0).

Gaussian Process for prediction: we use GP to predict value of cells. Specif-
ically, the operation is divided in a learning phase and a prediction phase. In
the learning phase the platforms acquire measures populating the training set.
In contrast, in the prediction phase the GP is used to predict values for all
unknown locations (i.e, the testing set). Such predicted values, are processed
by the Marching Square Algorithm to cluster cells with the same value into
isolines. When the isolines are created, they are assigned to platforms. Then
platform move towards their assigned isolines and acquire new measures effec-
tively executing another learning phase (and populating the training set with
new data). The process is repeated until the mission is over. As the training set is
populated the prediction accuracy of the Gaussian Process is increased and the
goal of our approach is to assign boats to isoline so to minimize the prediction
uncertainty of the GP for the regions of interest, in particular in each iteration
we want to minimize the root mean square error for such regions, formally we

want to minimize RMSE =

√∑n

t=1
(ŷt−yt)2

n , where yt is the real value of a cell
that belongs to the interesting regions (obtained from the entries of the log-file
populated by the robotic boat operating in Qatar) and ŷt is the predicted value
of the same cell (computed by the GP)2.

Task Assignment: the task assignment process operates over the isolines built
by the marching square algorithm. Specifically, each isoline is a task that must be
assigned to a single boat. To perform the task assignment we use two centralized
approaches: the Hungarian method (which computes the optimal allocation for
our task assignment problem) and a greedy method, which simply iterates over
all tasks and all boats in sequence allocating the current task to the boat that has
the minimum cost. The cost of assigning a boat i to a task j is defined by a cost
function Ci(xj). We used four types of cost functions: distance Ci(xj) = di(xj)
which directly consider the travel distance from the current position of the boat
to to closest point on the isoline ; variance Ci(xj) = ‖di(xj)‖ − ‖v(xj)‖, where
the variance of an isoline is the value obtained from the sum of the variances
of each point (taken from the Gaussian process) composing the isoline related
to task xj . This gives an indication of the uncertainty of values in that isoline

2 The GP has been implemented in matlab and after a tuning phase we used the
covMaterniso (with d = 3) as covariance function.



and hence it indicates how valuable it is for a boat to consider that task. Both
distance and variance are normalized with respect to all isolines; length Ci(xj) =
‖di(xj)‖−‖l(xj)‖, where l(xj) is the normalised length of the isoline. By looking
at isolines with a greater length, the boats should gather more information on
the environment; Entropy Ci(xj) = ‖di(xj)‖ − ‖ρ(xj)‖, where ‖ρ(xj)‖ is the
normalized reduction of entropy of an isoline. The reduction of entropy can be
computed by using the predicted data from the GP and provides an indication
on the value of information for the cells associated to the isoline [6].
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Fig. 2. 2(a) Comparison with standard explore area and new approach; 2(b) Results
for the Hungarian Method with different cost functions

We performed experiments as follows: i) we read the log file, and we map this
on the area where boats can operate; ii) we create three boats which always start
from the same point on the map; iii) the boats are sent to three specific points, to
collect the inintial training set; iv) our cooperative exploration procedure is then
performed for 30 iterations. Figure 2(b) reports the RMSE at the last iteration
when varying the cost function for the Hungarian Method. Results shows that
the entropy cost function is the ones that minimizes the RMSE, moreover (as
expected) the Hungarian method performed better than the greedy approach
(data not reported here). Figure 2(a) compares three methods: i) the standard
lawnmower approach, ii) the Greedy method using distance as cost function
(worst performing among our approach) and iii) the Hungarian method with
entropy reduction as cost function (best performing). Our approach (even in the
worst case) significantly outperforms the previous lawnmower strategy and the
Hungarian method with entropy cost function further improves the RMSE.

Overall, the proposed approach provides a promising method for monitoring
water bodies when there is a-priori information on interesting range of values for
the data to be acquired. More in general, this is a first important step to devise
on-line autonomous water monitoring strategies for low-cost, robotics platforms
to provide more accurate data. Future work includes investigating methods to
explore new areas of the environment (instead of focusing only on existing iso-
lines) to avoid the initial pre-determined training phase and fully address the
exploration-exploitation trade-off typical of learning approaches.
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