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Abstract Multi-Robot Patrolling is a key feature for various applications related to
surveillance and security, and it has been studied from several different perspectives,
ranging from techniques that devise optimal off-line strategies to implemented sys-
tems. However, still few approaches consider on-line decision techniques that can
cope with uncertainty and non-determinism in robot behaviors.

In this article we address on-line coordination, by casting the multi-robot pa-
trolling problem as a task assignment problem and proposing two solution tech-
niques: DTA-Greedy, which is a baseline greedy approach, and DTAP, which is based
on sequential single-item auctions. We evaluate the performance of our system in a
realistic simulation environment (built with ROS and stage) as well as on real robotic
platforms. In particular, in the simulated environment we compare our task assign-
ment approaches with previous off-line and on-line methods. Our results confirm
that on-line coordination approaches improve the performance of the multi-robot pa-
trolling system in real environments, and that coordination approaches that employ
more informed coordination protocols (e.g., DTAP) achieve better performances with
respect to state-of-the-art online approaches (e.g., SEBS) in scenarios where interfer-
ences among robots are likely to occur. Moreover, the deployment on real platforms
(three Turtlebots in an office environment) shows that our on-line approaches can
successfully coordinate the robots achieving good patrolling behaviors when facing
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typical uncertainty and noise (e.g., localization and navigation errors) associated to
real platforms.

Keywords Multi-robot patrolling - Distributed Multi-Robot Coordination - Dynamic
Task Assignment

1 Introduction

Patrolling, that is the continuous monitoring of an environment, is an important activ-
ity for applications related to security and surveillance; using multiple robots for pa-
trolling clearly helps improving task performance. Therefore, Multi-robot patrolling
(MRP) is a problem that has been studied from many different perspectives in the last
years, including formal representations of the problem, optimal solutions, theoretical
analyses, implementation and experimental validation.

Although a relative large literature on this topic is available, experiments on real
robots or on realistic simulators are rather limited. With some notable exceptions
(see next section), most previous approaches focus on defining patrolling strategies
according to static characteristics of the environment (for example, the layout of the
map) and of the robots, without taking into account problems arising in actual de-
ployment of real robots in a real environment.

On the other hand, perception noise and non-deterministic effects of action ex-
ecution, that cannot be avoided by robots acting in the real environment, are not
modeled, while they significantly affect patrolling performance. In many cases, opti-
mal strategies obtained in ideal situations are suboptimal (or they may even fail) in a
real situation. In other cases, no static solutions with good performance can be found:
for example, in environments that do not contain loops (thus cyclic patrolling is not
possible or inconvenient because of interferences among robots) and that cannot be
partitioned in a balanced way (thus making the work of some robots unbalanced with
respect to the others). The work in [14] analyzes some of these situations and advo-
cates the use of on-line patrolling approaches strategies to address those issues.

However, to devise and execute effective on-line MRP strategies, robots must
be able to coordinate their movements while patrolling, so to optimize their choices
by considering up-to-date information and hence cope with the inevitable effects of
uncertainty in perception and action execution. Moreover, the use of decentralized
coordination approaches is a key issue for the deployment of practical MRP systems.
In contrast to centralized solutions, decentralized approaches do not have a single
point of failure and offer more flexible implementations (e.g., they do not require all
robots to be connected to a base station at all time).

In this article, we investigate decentralized on-line coordination approaches for
multi-robot patrolling, and show that dynamic task assignment techniques can be
successfully employed to coordinate robot actions in presence of non-modeled char-
acteristics of the real environment. In more detail, the present article makes the fol-
lowing contributions to the state of the art:

1. Formulation of the on-line coordination problem associated to MRP as a Dy-
namic Task Assignment (DTA) problem; this allows to use state-of-art solution
approaches for DTA to perform on-line coordination for MRP.
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2. Description of two dynamic, decentralized task assignment solution techniques
for MRP: a greedy baseline approach (DTA-Greedy) and a market-based ap-
proach based on sequential single item auctions (DTAP); for the latter approach,
we present a novel bidding strategy that departs from standard rules (such as min,
avg or max path cost [27]) and is based on the distance of the task we are bidding
for from a central task, which in turn, is a task at minimum distance from all other
tasks assigned to a robot. This gives rise to a dynamic partitioning of visit loca-
tions that are all close to each other, hence minimizing the possible interferences
among robots.

3. Critical analysis of the performance metrics for measuring performance of on-line
MRP solutions. In particular, we show that an evaluation of the methods based
only on standard metrics, such as global idleness average, global idleness standard
deviation and global maximum idleness, might not provide enough information
to allow for a suitable comparison of different methods. Hence we propose novel
forms of representing the results of a MRP task that allow for a more detailed
analysis of the MRP performance.

4. Evaluation of the proposed techniques and comparison with previous methods in
a realistic simulation environment for multi-robot patrolling, patrolling_sim!,
that is based on ROS and Stage. Moreover, an implementation of the developed
algorithms has been also tested in a real environment with three Turtlebots.

The experiments show that on-line coordination is crucial to improve system per-
formance with respect to static patrolling strategies and non-coordinated dynamic
choices. Specifically, our decentralized coordination methods provide good patrolling
solutions and adjust to unpredictable changes in the patrolling team (i.e., due to robot
malfunctioning/failures). Moreover, we used patrolling sim to perform a quanti-
tative comparison of our proposed approaches with several state of the art techniques
[19], considering both on-line and off-line approaches in several experimental set-
tings (i.e., varying the number of patrolling robots and the floor maps). Our results,
show that on-line coordination is needed to provide an effective patrolling system,
and that the market-based coordination method we propose has many advantages
over the other on-line coordination approaches we considered.

The rest of the paper is organized as follows: Section 2 puts our work in per-
spective with previous approaches for patrolling. Section 3 defines the on-line Multi-
Robot Patrolling (MRP) problem we address. Section 4 provides a formulation of
the on-line MRP problem as a Dynamic Task Assignment problem and proposes two
DTA techniques: DTA-Greedy and DTAP. Section 5 describes the performance met-
rics and the experimental evaluation of the proposed approach. Finally, Section 6
concludes the article.

! The simulator was originally developed by David Portugal and has been used to compare patrolling
strategies in previous work (e.g., [22]). We modified the simulator to include our DTA approaches and to
improve the behaviours of the robots for providing more realistic simulations. The current version of the
simulator is available at wiki.ros.org/patrolling_sim
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2 Related Work

The literature on MRP shows a significant body of work on the problem and pro-
vides a wide ranges of solution techniques. To better frame our approach with respect
to the current literature, we consider three main dimensions that characterize most
important algorithmic aspects of previous work in this area: i) adversarial vs. non-
adversarial approaches; ii) continuous vs. discrete environment representation; iii)
on-line vs. off-line solutions.

Adversarial approaches (also called strategic approaches), such as [1] or [6], con-
sider and explicitly model the presence of an intruder trying to find the best strategy to
enter the system and typically formulate the patrolling problem using game-theoretic
concepts. On the other hand, non-adversarial approaches do not model the presence of
an intruder and are typically used for applications such as environmental monitoring
or rescue operations [26], or where no information about the intruder are available or
no assumptions are made. Here we consider the non-adversarial application scenar-
ios, hence we do not further discuss the literature pertaining to adversarial patrolling.

Several works focus on patrolling in continuous areas [11,4,3,16], where pa-
trolling metrics (e.g., idleness) must be considered at every point of the environment.
In contrast, other approaches such as [5,9,20,22] focus on a discrete representation
of the environment that typically takes the form of a patrol graph, where nodes repre-
sent specific locations that the agents have to travel across and, typically, no assump-
tions are made on the properties of nodes or regions to be patrolled. In this work, we
adopt the graph-based representation, since it allows to add a-priori information about
which locations must be visited in an environment. Notice that, in the solutions using
patrol graph, interferences between robots are typically considered only on the patrol
nodes (i.e., when robots visit the same node of the graph). In contrast interferences
that might occur on the edges (i.e., when robots are traveling between visit locations)
are typically ignored. In our work, although using a graph-based representation, we
provide an algorithm (DTAP) that aims at reducing also the number of interferences
on the edges.

Off-line solutions [11,20] pre-compute paths that robots must follow before mis-
sion execution, while on-line solutions [19,22,25,4, 18] compute (or modify) paths
while robots are patrolling. On-line solutions can use most up-to-date information
and hence compensate for non-modelled characteristics of the environment. On the
other hand, off-line solutions typically provide optimal or near-optimal guarantees on
solution quality.

Many off-line approaches model MRP through a patrol graph [15], thus allowing
to apply several results from Graph Theory. Several strategies have been proposed to
navigate the resulting path. Among them, graph partitioning (e.g., [20,26]) is often
used as a basis for comparison. This comparison is performed using different met-
rics that have been suggested for determining the optimal solution: idleness ([9]),
frequency2 ([10,11]) or exploration time ([15]).

However, the theoretical analysis developed on graphs is typically based on rather
unrealistic assumptions on the operational environments and on the behaviour of the

2 Frequency is the inverse of idleness, thus results based on idleness can be directly related to frequency.
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robots. Consequently, recent research focuses on experiments with real robots or with
realistic simulators, where both the features of the environment and the robot capa-
bilities (e.g. localization, navigation, communication and perception) are taken into
account. For example, Portugal and Rocha [21] and Tocchi et al. [14] use a realistic
simulator, based on a ROS implementation, while Agmon et al. [3] developed an in-
teresting simulator that includes a model of environmental conditions (i.e., currents
in a maritime scenario). Few experiments with real robots have also been performed:
Elmaliach et al. [12] use a team of 3 modified vacuum cleaners to show the impact
of velocity uncertainty in the motion model; Marino et al. [17] use a team of 3 Pio-
neer robots to patrol the perimeter of a predefined area. Recently, extending previous
work, Portugal and Rocha [23] present an analysis on five different algorithms using
a realistic simulator as well as experiments with five Pioneer robots.

The more realistic validations of MRP approaches show that the theoretical strate-
gies need to be adapted to take into account the uncertainties and dynamics of the ac-
tual execution and, more generally, on-line coordination techniques are needed. Con-
sequently, alternative approaches have been proposed, based on reinforcement learn-
ing [24], on multi-agent Markov decision processes [16], or using Bayesian learning
[19].

In this paper, we develop an on-line task assignment approach to increase the ro-
bustness of MRP when dealing with the uncertainties arising from action execution in
areal environment. Specifically, we propose to model on-line MRP as a dynamic task
assignment problem, thus providing a general framework for on-line coordination of
MRP. On-line MRP shares similarities with approaches for on-line multi-robot ex-
ploration, where robots cooperatively choose the next frontiers to visit aiming at op-
timizing the information acquisition process [13, 8]. However, in on-line MRP, robots
must visit locations repeatedly minimizing the idleness rather than acquiring new in-
formation on the environment. This results in important differences in the employed
coordination strategies. An early work considering on-line MRP is the one by Sempé
and Drogoul [25], who address MRP by dynamically assigning tasks to robots. Task
data are propagated through a centralized virtual world, and robots follow the gra-
dient determined by the task strengths. Robustness to communication failures has
been considered in [2], where authors empirically evaluate on real platforms differ-
ent patrolling strategies with varying levels of coordination (no coordination, loose
coordination and tight coordination). More closely related to our approach is the work
by Ahmadi and Stone [4], where a negotiation is proposed to dynamically assign the
frontier cells to be visited by the robot that has more time available. In fact, this
work is very similar in spirit to our proposal. However, major differences with re-
spect to our approach are that Ahmadi and Stone assume that robots start-off from a
pre-computed partitioning of the cells, and that robots can negotiate only on frontier
cells. In contrast, in our work, robots start-off with no pre-computed allocation and
build a partitioning entirely through negotiation (which can involve any visit loca-
tion). While using a pre-computed partitioning might be beneficial for some aspects
(e.g., it would immediately provide the robots with a good allocation) such a solu-
tion might require more time to react to unexpected changes in the environment (e.g.,
when a robot exits/enters the system). Finally, the approach by Ahmadi and Stone is
designed for a grid representation of the environment and should be adapted to work
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on a graph representation, that is more common in previous works. Recently, Pippin
et al. [18] provide an approach to monitor robot performance in a multi-robot pa-
trolling system (using a centralized computational unit) and to re-assign tasks when
robots perform poorly. Task re-assignment is performed by using an auction-based
method where poor performing robots auction-off their tasks. We also consider on-
line coordination and propose a market-based technique, but in our approach robots
continuously negotiate over all available tasks. Moreover, we developed a completely
decentralized system that can immediately react to unexpected changes (i.e., a robot
that leaves or enters the system).

3 Problem Definition

In this section we define the MRP problem considered in this article. A set of robots
R ={ri,...,ry} act in a known environment with the objective of visiting all the
relevant places as often as possible. The environment in which the robots act is repre-
sented as a patrol graph PG =< P,E,c >, where P is a set of patrol nodes, i.e. poses
(position and orientation) in the environment that the robots have to reach to take
some observation, E C P x P is a set of edges connecting the nodes, c is a function
denoting the expected travel time for each edge.

The MRP problem can be solved off-line, by defining the paths 7; before the MRP
task starts, or on-line, by building such paths during the MRP task execution. On-line
solutions to the MRP problem dynamically choose a path @; = (p,..., p;), for each
robot r; so to maximize the MRP performance. These solutions are characterized by
the fact that each robot updates its path, while patrolling, by considering information
on the current performance of the system. Coordinated on-line solutions are also
characterized by explicit negotiation among robots.

Standard performance measures for MRP are based on the idleness of the nodes
[15]. The instantaneous idleness IP(t) for a node p at time ¢ is the elapsed time
since the last visit from any robot in the team. Let (19,#1,...,%) be the time frames
in which any robot of the team visits p, then we can collect the idlenesses of node p
as (IP(t1),....,I7(tx)) (i.e., IP(t;) =t; —t;_1). From these values we can calculate the
average idleness of a node Ié’vg and its standard deviation I£ ddev: Finally, three global
measures can be computed by determining average, standard deviation and maximum
of all the values I”(z) for every time ¢ and every p € P. We refer to these measures
as global idleness average Ig,g, global idleness standard deviation Igd Jev> and global
maximum idleness 1G,., respectively. Igd dev actually measures how balnaced are the
visits to the nodes: low values for Igdd ., mean that all the patrol nodes are visited
approximately with the same frequency. While IG_ _represents a worst case analysis.

From these definitions, different performance metrics may be considered for eval-
uating the performance of a MRP system. A typical choice is to minimize the global
idleness average, which is in general a good measure. However, in some cases, a
good average can be obtained with a large standard deviation, meaning that some
nodes are visited very often and some other nodes are visited less often. This may be
unacceptable for some surveillance applications. On the other hand, it is possible to
minimize the global idleness standard deviation, thus guaranteeing a more uniform
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visit of all the nodes, but this may be in contrast with minimizing the global average
idleness. Thus, a trade-off between global idleness average and global idleness stan-
dard deviation should be considered, as it may better characterize the overal system
performance. Moreover, specific needs of the application scenario may lead to prefer
some performance metric over the others. Section 5.3 provides more details about the
analysis of MRP performance.

In the following, we will use the term MRP performance to refer to any perfor-
mance metric based on the concept of idleness that is defined by the designer of the
surveillance application.

4 Dynamic Task Assignment for on-line MRP

In this section we describe how to employ Dynamic Task Assignment (DTA) for
developing on-line solutions for the MRP problem.

The MRP problem, as defined in the previous section, is characterized by a set of
robots R = {ry,...,r,}, a patrol graph PG =< P,E,c >, and some MRP performance
metrics. The goal of the multi-robot system is to choose a path m; = (p, ..., p;), for
each robot r;, so to maximize such MRP performance metrics.

The DTA problem associated to MRP consists of a set of tasks .7 = {71, , T} @
set of robots R = {ry,---,r,} and a reward matrix V = {v;;}, where each v;; indicates
the reward the system achieves when robot 7; executes task 7;. An allocation matrix
A = {a;;} defines the allocation of robots to tasks, with a;; € {0,1} and g;; = 1 if and
only if robot r; is allocated to task 7;. The goal of the system is then to find the best
assignment of tasks to robots with respect to the given reward, i.e.

IR| |P|
A* = argmax Z Z Vijaij
i=1j=1

Moreover, a set of constraints % usually describes valid allocations of robots to
tasks (e.g., one task per agent) and hence the above optimization must be performed
subject to %

In our patrolling problem, tasks are locations to be visited, i.e., a set of patrol
nodes P = {pi1, -+, pm} and rewards depend on the average idleness of a node and
on the travel cost that a robot incurs to visit such node. Specifically, we have that
vij =U(ri,pj,t), where U(r;, p;j,t) is a utility function that encodes how good is for
the system to allocate robot 7; to node p; at current time ¢. An example of such a
utility function may be

U(ri,pj,t) = 0117 (t) + 6:,Tc(ri, pj,t)

where 7i(t) is the idleness of p; at time f, T'c(r;, pj,t) is the travel cost for robot
r; to reach p; considering the robot position at time ¢, and 6,6, are parameters that
balance travel cost and idleness. Moreover, we enforce the constraint that, at any
time 7, only one robot should be allocated to a specific location (i.e., V¢, jY;a;; < 1)
to maintain a similar visit frequency across the locations.
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Notice that, in our DTA problem the costs and the allocation matrices depend
on time; however, as it is frequently the case in the task assignment literature, we
actually solve a one shot allocation and then iterate the decision process over time.

Furthermore, notice that, our formalization of the DTA problem does not explic-
itly represent paths for the robots (i.e., a task is one patrol node and not a sequence of
such nodes), hence at each time step only a subset of the tasks might be allocated (this
depends on the solution approach as described below). However, over time robots
effectively build paths that visit patrol locations based on the current value of the
idleness.

In what follows, we detail two methods for Dynamic Task Assignment: DTA-
Greedy and DTAP. Both methods provide a form of distributed coordination based
on explicit communication. The difference between these two methods lies in the
coordination protocol and on the length of the path that robots consider. In particu-
lar, DTA-Greedy can be considered as a baseline, while DTAP is a more informed
method for solving on-line MRP with DTA. In fact, in DTAP robots negotiate over
all patrol nodes to build a partition of visit locations over the robots, while in DTA-
Greedy they negotiate only their next patrol node and aim at avoiding conflicts (e.g.,
two robots heading towards the same target). In other words, DTAP allocates a subset
of patrol nodes to each robot (i.e., Vi ZJ» ajj > 1), hence considering the paths that
robots will follow, while DTA-Greedy always allocates one patrol node to each robot
(i.e., Vi}jaij = 1). By considering and exchanging more information, DTAP takes
better decisions and, hence has better performance (see Section 5).

4.1 Shared representation of information

The algorithms described in this section are totally distributed and thus each robot has
a local representation of the information, that is an estimate of the unknown global
state of the world.

Each robot r; maintains a local copy of the instantaneous idlenesses of all the
nodes, denoted by I7(r)"c) = (IP1 (1), ..., I’ (1)) ") As mentioned above, these idle-
ness values do not correspond in general to the actual idleness of the MRP task and
they may be different for each robot (unless communication is broadcast and instan-
taneous).

The robots periodically exchange and integrate information about their status and
the information sent by every robot include its local estimates of the idlenesses.

The algorithms are based on events and a new decision about the patrol path is
taken when one of these two events occur: (1) the robot reaches its current target
node, (2) the robot receives a message from another robot. Note that, after deciding
the initial target with any method (e.g., the closest one), the first event will eventually
occur. The following notation is used: ry is the robot running the algorithm; P is the
set of patrol nodes, I” (1)) is a vector of instantaneous idleness of all the nodes for
robot ry, with I* (O)(’k) = (0,...,0); py is the current target node for robot ry; f; is
the last update time of I7(r;)"%); ¢ is the current time when the algorithm is running;
1P()") and p ; are the instantaneous idlenesses and the current target node of robot
r; as received by robot ry; finally, p* is the next target node for ry.
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The algorithms presented in this section assume normal operations of the robots
(i.e., no major failures occurring). This means, for example, that if a robot aims at
reaching a target, it will eventually reach it. Dealing with major failures is not ex-
plicitly considered by the following algorithms. Some of these major failures (e.g., a
dead robot) are implicitly considered by the fact that the solution is on-line, and thus
remaining robots will eventually reconfigure to take the tasks of the dead one.

4.2 Basic Dynamic Task Assignment (DTA-Greedy)

The first algorithm presented here is a basic DTA that performs a greedy maximiza-
tion of the utility function U (ry, p’,t). Decisions are taken by considering the local
instantaneous idlenesses and the instantaneous idlenesses received from the other
robots. The process is described in more detail in Algorithm 1, which is split in two
parts corresponding to the two events to be handled.

Algorithm 1: DTA-Greedy

Event node pj reached:
17x(1) %) 05
foreach p’ € P,p’' # p; do
L Vs (1)) 11/(,,()(@) +(t—1);
p* <« argmax, U(ry, p',1);
P (@) o;
send(< IP (1)), p* >);
fp <1,
gotoTarget(p*);

B W N =

e &N w»n

11 Event < IP(t)(rf)7pj > received from robot r;:

12 foreach p’ € P do

13| 1Y () < min(? (6) ) + (c — ), 17 (1))
14 t <1t

15 if p; = p* then

16 p* « argmax, U(ry, p',1);

17 gotoTarget(p*);

send(< IP (1)) p* >);

—
=)

When a target node is reached [lines 1-9], I”(¢) is updated accordingly and then
the next target node p* is chosen by maximizing the utility function. The value of
17" (1) is also set to 0, so that the utility function for this node will decrease for the
other robots, thus trying to avoid conflicts in accessing the same node.

When idlenesses of another robot are received [lines 11-18], the local values
of IP (1)) are updated with the minimum between the received value 7 ()7 and
the current estimates as known by ry, v (1)) + (t — 1;,). Notice that this update rule
assumes (lacking any knowledge about it) that all the other robots have not visited any
other nodes meanwhile. Furthermore, notice that the algorithm updates the idleness
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of all the patrol nodes in P, even though the message received from robot r; relates
to a specific node p;. Now, under the assumption of perfect communication and no
robot failure this is redundant, as each robot could update only the idleness of node
p;. However, when messages can be lost, or when robots can enter the system during
the patrolling mission, such redundancy helps robots to quickly reach a common
estimate for the idleness of all patrol nodes. Next, if a conflict is detected (i.e., the
current target node for robot r; equals the target node of robot r;), a new target p* is
computed by maximizing the utility function. This means that a robot can change its
destination during its path towards a node. This can happen when a realistic or a real
model for communication is used (as in the simulation experiments described in this
article and with real robots), in which non-instantanous messages> may result in two
robots choosing to go to the same target node.
In DTA-Greedy algorithm, we have used the following utility function

U(re,p'st) = 61" (t) + 6:Tc(ry, p',1) + 63do(ri, p')

where, in addition to the terms /77 (¢) and T'c(r;, p;,t) defined before, we also consider
the distance dy(rg, p’) between the node p’ to be reached and the initial node for
robot ry, (i.e., the very first node in which r; was when the MRP task started). This
special heuristic is suitable when robots start the task in a distributed fashion (i.e.,
from distant locations each other) and this term of the utility function tends to keep
the robots apart from each other to avoid interferences. More in general, heuristics
to spread out robots have been frequently employed in multi-robot coverage [7] and
exploration [8].

Of course other heuristic functions can be defined, for example, functions that are
specific of the environment. The definition of a proper heuristic is not the focus of
this article, since DTA-Greedy is only shown here as a baseline of a simple method
based on DTA. Furthermore, good performance of this utility function depends also
on a proper set-up of the parameters 6;. In this work, no optimization of these pa-
rameters has been performed and the same set of parameters has been used in all the
experiments.

4.3 DTA based on Sequential Single Item Auctions (DTAP)

DTAP is inspired by auction based task allocation: the basic idea is that robots an-
nounce their destinations to everyone and then collect “bids” from their team-mates.
Such bids encode how well each robot fits to a given destination. In more detail, each
robot selects the next visit node as the one that maximizes a utility function. Then
the robot broadcasts its node selection, announcing its corresponding bid, to all team
mates. After collecting all bids the robot checks whether it is the one with the best bid
for the selected node. If this is the case, the robot visits the selected node, otherwise
it selects the next best visit node and iterates the selection process.

Our market based allocation scheme takes inspiration from Sequential Single
Item auctions, where robots allocate one task at the time, and when they compute

3 In the experiments we used a delay of 0.2 sec for each message.
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Algorithm 2: DTAP
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Initialization:

CurrentTasks < P ; // Initialize CurrentTasks with all patrol nodes
MyTasks <0 ; // Initialize MyTasks with the empty set
Event node p; reached:

/* Update Idleness of all patrol nodes */

17k (1) %) 05
foreach p' € P,p' # p; do
L Vs (1)) 11)’(,,()(@) +(t—1);
<t // update last visit time with current time
P* < argmaX,yccyrmentasksU (M P t) 5 // select best node among CurrentTasks
CurrentTasks < CurrentTasks\ p* ; // remove selected node from CurrentTasks
bid < computeBid(p*) ; // compute bid for p*
forceBid(p*,bid,r;) ; // assume this robot is the best one to patrol p*
sendTarget(p*,bid) ; // send target and bid to other robots
collectAllBids() ; // wait for bids from other robots (this inlcudes a timeout)
/* check whether this robot has the lowest bid */
if bestBid(p*) then
CurrentTasks < P ; // reset CurrentTasks
MyTasks < p* ; // allocate this robot to p*
Pnext < chooseNextNode(MyTasks) ; // choose the best task to patrol
gOtOTargEt(pne.xt); // go to Prext
/* check if there are still tasks the robot should consider */
else if CurrentTasks == 0 then
L CurrentTasks < P ; // reset CurrentTasks
Event msg received from robot r;:
if mgs.type == IP then
/* Update Idleness of all patrol nodes */
foreach p’ € P do
L7700 min(t? (000 + (¢~ 10), 17 (1));
I+t // update last visit time with current time
else if msg.type == Bid then
/* Maintain best bid for each patrol node, update MyTasks so to
include nodes for which this robot has lowest bid */
updateBids(msg.dst,msg.value,msg.sender);
updateMyTasks()
else if msg.type == Target then
/* Handle task request */
bid < computeBid(msg.dst) ; // compute bid for the target
updateBids(msg.dst,msg.value,msg.sender);
updateMyTasks();
/* Check whether the bid of this robot is better */
if msg.value > bid then
L sendBid(msg.dst,bid) ; // send bid
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their bids, they consider previous allocated tasks. This allows to take into account
important synergies between tasks (i.e., patrol nodes that are close to each other). In
our approach, such bid computation considers the number of tasks a robot is respon-
sible for and the distance of the target node to the central node, which is the node
at minimum path distance from all other nodes (see below for a more detailed ex-
planation). This is different with respect to standard bid computation rules employed
in sequential single item auctions for task allocation (e.g., [27]), that typically con-
sider an aggregation of the path cost to cover all allocated tasks (e.g., the sum, max
or average of the path cost). The rational behind this choice is twofold: i) by consid-
ering the number of nodes, we foster a balanced workload among the robots and ii)
by considering the distance to the central node, we aim at creating a partition of the
patrol nodes that tries to minimise path crossing among the robots, hence resulting in
less interferences for navigation. Moreover, we do not consider marginal costs for bid
computation, as this could result in unbalanced allocations (as stated in [18]), where
some robots might have significantly more visit nodes than others. This would be
problematic for the MRP strategy as it would increase the standard deviation of the
global idleness.

Our DTAP approach is described in Algorithm 2, which is again split in two parts
corresponding to the two events to be handled. Whenever a robot completes a task
(i.e., it reaches its current destination) [lines 5-22], it selects the next destination (p™*)
as the one that maximises the utility function. Next, the robot computes its fitness
for this destination (bid), and sends a target request (sendTarget(p*,bid)) to all the
robots.

After announcing its next target, the robot waits to receive the bids from the other
members for that target (collectAllBids()); this function is blocking and a time out
is used to avoid deadlocks due to possible robot failures. Notice that, waiting for a
specified amount of time whenever a decision must be made, can significantly slow
down the patrolling operations, hence resulting in a higher average idleness. However,
this can be avoided by reasoning in advance on the future destination. In particular,
robots can select the next destination, while travelling to the current target. Hence
the waiting time for bids is absorbed by the travelling time to the current destination.
Our current implementation employs this scheme, however, for ease of explanation,
the pseudocode reported here assumes that each robot always chooses its next target
after the current goal is completed.

After collecting all the bids, the robot checks whether its own bid is the best
one for node p*, if this is the case, it selects the best destination among its tasks
(chooseNextNode(MyTasks)) and goes towards this destination. Moreover, it resets
the task list, as appropriate [lines 16-20]. The choice of the next position (ppex)
should try to maximize the system performance considering all the nodes that the
robot should patrol, this requires to solve a problem that in general is not tractable
as it reduces to a TSP. However, in our implementation we observed that a good and
simple heuristic is to always choose the patrol node with the highest utility among
the robot’s tasks, hence in practice this amounts to simply set p,ey = p*.

When a message is received by another robot [lines 24—37], first the local values
of I” (1)) are updated as explained for DTA-Greedy .
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If the message is a bid (i.e., arobot is responding to a previous task request issued
by this robot), the bids are updated (updateBids(msg.dst,msg.value,msg.sender)) so
to always maintain the lowest bid for each patrol node. Once bids are updated the
robot updates its tasks (updateMyTasks()) by modifying the structure MyTasks so to
include nodes for which the robot holds the lowest bid.

If the message is a task request (i.e., this robot must respond to a task request of
the sender), the bid of the current robot for the target is computed and sent to the
message sender. Notice that, the robot communicates its bid only if it is useful for the
sender, i.e., if the computed bid is lower than the one communicated (this reduces the
number of messages for the coordination).

In order to effectively deploy sequential auctions a number of additional issues
need to be suitably addressed and they are discussed below. First, the possibility that
robots disappear during mission execution must be considered: if the best robot to
perform a task #; is a robot r; and such robot disappears, the task #; will never be
executed unless someone else becomes best suited for that task, which might never
happen. This is addressed when choosing the next target position after computing the
best candidate node, by the forceBid(dst,value,sender) function, which forces the
current bid as the best one. Moreover, the next node to reach is selected independently
of the tasks that the robot is responsible for [see line 10], hence if a robot disappears
the task it was responsible for will eventually be considered by the others.

Another critical issue is the computation of a bid b (computeBid(dst)). As men-
tioned before, our approach is based on the concept of central node, which is the node
that has minimum travel cost from all other nodes the robot is currently responsible
for. In more detail, we compute the central node as follows:

cn = minperyrasks Y, Te(p,p)
p'EMyTasks

where Tc(p,p’) is the travel cost from location p to location p’. In our implemen-
tation, the travel cost is comuputed as the length (i.e., the number of edges) of the
shortest path between the two nodes. The central node is updated each time the
MyTasks structure changes (i.e., when the robot acquires or loses a task). Next,
we compute the bid for a destination dst by multiplying the number of tasks the
robot is responsible for by the travel cost from the central node to the destination:
b = |MyTasks| * Tc(cn,dst). This computation of the bid helps balancing the work-
load, as it penalizes robots that are responsible for too many tasks, and it considers
synergies among tasks, by penalizing robots that have a central node which is far
from the current destination. Notice that, a standard metric, such as for example the
sum of travel cost for a tour that covers all tasks, would also achieve workload bal-
ance; however, since the bid is not related to a central node, this metric would not
facilitate space partitioning. As a result, it can produce several path intersections that
can increase difficuty in robot navigation.

5 Experimental Setting and Evaluation

The goal of the experiments described here is to assess the performance of the pro-
posed MRP algorithms in realistic scenarios. As already mentioned, in order to com-
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Map |P| |[E| | Size [m]
grid 25 40 26 x 26
example 29 36 47 x 33
cumberland 40 44 52 x 37
broughton 163 | 186 | 100 x 80
DIAG. labs 27 26 50 x 40
DIAG-floorl 60 63 114 x 46

Table 1 Size of the patrol graphs used in the experiments.

pare the performance of the different algorithms, we have used patrolling_sim
simulator. The simulator has been modified for improving the behaviors of the robots
and for providing more realistic simulations. In the simulations reported in this arti-
cle, typical odometry and laser range finder noises are used, robots use the standard
ROS navigation stack (amcl for localization and move_base for navigation), and exe-
cute their tasks at a nominal maximum speed of 1.0 m/s. Moreover, as communication
among robots is implemented through the use of ROS messages, but by introducing
a fixed amount of delay of 0.2 sec in the exchange of each message. This simulates
a typical delay when sending TCP packets on a wireless network as experienced in
the experiments with real robots. Finally, we added the implementation of the DTA
methods described in this paper, thus allowing for a full replicability of all the results
reported in this section.

The use of the ROS framework allows for an easy porting of the developed meth-
ods on actual robots, as described at the end of this section.

5.1 Evaluation scenarios and compared algorithms

Several different evaluation scenarios have been created in order to compare differ-
ent algorithms in different experimental conditions. Each scenario is defined by a
map (see Figure 1) and the number of robots. Other variables of an experiment are
discussed in Section 5.2.

The six maps used in the experiments are shown in Figure 1 and present different
size and characteristics of the patrol graphs. Details on the number of nodes |P|, the
number of edges |E| and the overall size of the area are shown in Table 5.1.

In the experimental evaluation reported in this article, the following algorithms
have been compared:

— RAND - Random algorithm chooses the next vertex randomly among the adjacent
ones.

— CR - Conscentious Reactive algorithm [15] selects the next node among the ad-
jacent ones, based on its local estimate of the idleness.

— HCR - Heuristic Conscientious Reactive [5] is an extension of CR considering
also the distance of the adjacent nodes from the current one.

— HPCC - Heuristic Pathfinder Cognitive Coordinated [5] considers path of length
> 1 in the graph, instead of only the next adjacent node.
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[o 5 10 15 20

Fig. 1 Maps used in the experiments (not in scale): grid, example, cumberland, broughton, DIAG_labs,
DIAG floorl.

— CGG - Cyclic algorithm for generic graphs [9] is an off-line method computing
Hamiltonian cycles (through a fast heuristic), when they exist, or long paths and
non-Hamiltonian cycles.

— GBS - Greedy Bayesian Strategy [22] selects the next vertex to reach based on
a Bayesian formulation of the problem for choosing the best direction. It uses
information coming from other robots about their arrival time at a given node, so
that a global idleness can be estimated.

— SEBS - State Exchange Bayesian Strategy [22] is an extension of GBS in which
also intentions of other robots are collected and used for determining (again with
a Bayesian method) the best direction.
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Algorithm | Decision | Path length Communication
RAND on-line 1 -

CR on-line 1 -

HCR on-line 1 -

HPCC on-line > 1 -

CGG off-line > 1 -

GBS on-line 1 arrived
SEBS on-line 1 arrived + intention
DTAG on-line 1 utility values
DTAP on-line >1 two-steps protocol

Table 2 Summary of characteristics of the compared algorithms.

— DTAG - DTA-Greedy algorithm described in this paper.
— DTAP - DTAP algorithm described in this paper.

The characteristics of the compared algorithms are also summarized in Table 2.
On-line vs. off-line decision making is a first classification dimension. As already
mentioned, on-line methods are more robust to non-modeled effects of the environ-
ment, while off-line methods aim at optimizing the behavior of the robots given the
prior knowledge about the environment. The path length determines how many nodes
are planned to be visited at each decision. This is particularly interesting, of course,
for on-line methods. In previous work, methods with path length 1 are called Re-
active, while the others are called Cognitive. Finally, the table highlights the com-
munication among robots, from no communication for non-coordinated methods, to
minimum communication for methods with implicit coordination (GBS and SEBS)
to explicit communication for methods based on a coordination protocol (DTAG and
DTAP).

It is important to notice that the last four algorithms (GBS, SEBS, DTAG and
DTAP) present some form of explicit coordination, based on communication of some
information among the robots that are used to decide which path to select. In GBS,
SEBS and DTAG, a single message is sent from a robot to all the others containing
information that will be used to take decision. The content of the messages exchanged
in SEBS and DTAG include some information about the intention of a robot to visit
the next node. This feature (as shown by experimental results) allows for a significant
reduction of the interferences. On the other hand, DTAP implements a two-steps co-
ordination protocol, in which robots exchange information and negotiate their paths.
Moreover, DTAP decision involves not only the next node to visit, but a subset of
nodes. Therefore, DTAP implements a more informed coordination protocol with re-
spect to the other methods.

For CR, HCR, HPCC, CGG, GBS and SEBS we have used the implementations
available in patrolling sim and we have added the implementation of RAND,
DTAG and DTAP to patrolling_sim. Other algorithms could be easily integrated
and compared using this simulator in the future. Previous comparisons among these
algorithms (except for DTA ones) are reported in [23] and [22]. Notice that values are
different in this article since we are using a different setting for the robots (e.g., 1.0
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m/s of maximum speed in the experiments reported in this article vs. 0.2 m/s used in
previous experiments).

5.2 Variability of the experiments

The results of the experiments are mostly based on the concept of idleness, which de-
pends on the time needed to reach nodes in the patrol graph and thus depends on the
underlying navigation module. Due to the choice of using a realistic simulator mod-
eling typical forms of uncertainty in mobile robots, some external factors influence
the results of the experiments, but are not part of the MRP algorithms. We believe
that it is important to consider these factors in the experiments and not to hide them
(by using for example a more abstract simulator or less noisy modules), since they
are actually present in the real world.

In the following, we briefly describe and comment the most important external
factors that affect the performance of MRP task.

1. Localization. Localization introduces some noise in the navigation component,
but in our experience this noise does not affect the overall results of multi-robot
patrolling in a significant way. Indeed, we consider robots equipped with a typical
laser range finder navigating in an indoor environment with a known map. In this
situation, standard localization methods based on particle filters (we use ROS
amcl) are known to be very robust and precise.

2. Path planning and trajectory following. The definition of the path to reach a
target node and its execution also introduce noise, but also in this case standard
implementations (we use ROS move_base) are reliable enough and do not in-
troduce high variability in the time to reach a target goal, except when there are
obstacles (see next item).

3. Obstacle avoidance. The feature that introduces the highest variability in the ex-
perimental results is the obstacle avoidance behavior. When a robot encounters
an obstacle (which is another robot in our case, since the environment is static
except for the robots moving in it), an obstacle avoidance behavior is executed
(in our case by move_base). In some cases, the robots just slightly change their
trajectory and thus the overall time to reach a node is just minimally affected
by this maneuver. In other cases, however, the procedure is more complicated,
specially if the avoidance occurs in a narrow passage. So the time to solve the sit-
uation may change significantly, depending on the position of the map in which
the situation occurs and on the performance of the obstacle avoidance module.
While move_base is generally good at solving these situations, in some cases it
requires a significant amount of time and in some other cases a deadlock occurs
and the robots remain stuck. It is important to notice that obstacle avoidance is ac-
tivated only in case of interferences and that an ideal MRP system should reduce
interferences as much as possible.

4. Communication delay. For MRP algorithms that rely on communication among
robots, the communication model is a relevant factor that affects performance.
In this article, we assume that a wireless network infrastructure is available to
the robots and that they use TCP communication. From our experience in real
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settings, wireless communication introduces a delay of messages of up to 0.2
seconds. As already mentioned, this delay has been considered in the experiments
in order to provide more realistic results.

5. Inmitial poses of the robots. For the initial poses of the robots we have consid-
ered two situations: 1) robots start in predefined positions (the same in all the
experiments for a given map and a given number of robots and the same used
in previous experiments by other authors) that are scattered through the environ-
ment; 2) robots start from a cluster of positions close each other; this set-up is a
more realistic one in which we assume robots are all started from a given starting
area. As shown in a set of specific experiments, when most effective algorithms
are considered (SEBS and DTAP in our case), the initial position of the robot
does not affect significantly the overall performance.

In summary, the main factor that increases variability of the experimental results
is the obstacle avoidance behavior, that is activated to solve interferences. As already
mentioned, we have added the interferences as a performance metric. Moreover, we
have implemented a mechanism to detect when results are strongly affected by the
obstacle avoidance procedure. More specifically, we have stopped all the experiments
in which a robot is not able to reach a target location within 5 minutes. These experi-
ments are not considered in the results, since the performance based on the idleness is
not suitable for a fair comparison with another run in which this situation did not oc-
cur. Moreover, as explained in the next section, we have discarded all the experiments
that have low correlation with the majority.

5.3 Performance metrics

In order to assess the performance of a MRP system, several performance metrics and
evaluation procedures have been proposed in previous work. Most of them are based
on the concept of idleness that measures time distance between two consecutive visits
of a node by any robot in the team. Therefore, as already mentioned, global idleness
average vag, global idleness standard deviation Is(t;d dev> and global maximum idleness

IG  are typical performance metrics used to compare different systems. However, it
is important to notice that very often a trade-off among these metrics allows for a
better comparison of different algorithms.

In this section, we discuss the results of a first set of experiments (named Ex-
periment Set 1) aiming at presenting and discussing the different performance met-
rics and their visualization. The experiments have been performed in the following
settings: Cumberland map with 4 robots, 1 hour of duration, and three algorithms
compared: a random method (RAND) in which each robot selects the next target
node randomly among the adjacent ones, SEBS algorithm [22], and DTAP algorithm
described in this article. For each algorithm, three runs have been executed. In the
following, we present the results of this experiment in different forms in order to
discuss them in details.

A first representation of the results is given in Table 3, which reports the values
16,16, and IG, . for each run. This is the typical way in which MRP results have

avg>“stddev’ . .
been presented in previous papers.
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Algorithm | 18 118 T 1% | Ifrae
RAND_I | 1172 [ 2162 | 2066.0 | 6.857
RAND2 | 99.3 [ 199.8 | 24299 | 2.663
RAND3 | 102.6 | 201.6 | 20448 | 2.848

SEBS_1 1143 | 100.3 567.1 0.100
SEBS_2 113.8 | 102.8 575.2 | 0.216
SEBS_3 112.8 | 1024 687.4 | 0.283
DTAP_1 142.6 57.1 371.3 0.167

DTAP2 140.2 55.4 306.9 | 0.083
DTAP_3 135.7 54.2 3205 | 0.117

Table 3 Exp. ES1: cumberland, 4 robots, RAND, SEBS, and DTAP algorithms. Best values in bold.

From this table, it is possible to notice that the difference among the average val-
ues I,ﬁ,g in the different runs in some cases is not statistically significant, given the
high standard deviation. Moreover, the RAND algorithm has even generally better
performance if only the average idleness is considered, but this is obtained at the
cost of a substantially higher standard deviation and maximum value. Both SEBS
and DTAP have significant lower standard deviation and maximum values. The dif-
ferences between SEBS and DTAP are further analyzed in the next sections. This
table shows also the number of interferences per minute (last column) that is a metric
explained later in this section.
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Fig. 2 Meaninf of boxplot representation.

A different format for representing the results of a MRP task is given by boxplots,
whose definition is presented in Figure 2. Figure 3 shows the same results of this
experiment using boxplots. From this view, the difference between the algorithms
appears more clearly. RAND algorithm achieves a low average thanks to many small
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Exp. ES1: cumberland, 4 robots
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Fig. 3 Boxplots of comparison among the three algorithms.

values and a few high ones, while SEBS and DTAP provide for a more balanced set
of values having smaller standard deviation and few outliers and high values.

Exp. ES1: cumberland, 4 robots RAND_3 Exp. ESL: cumberland, 4 robots SEBS_3 Exp. ESL: cumberland, 4 robols DTAP_3
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Fig. 4 Temporal plots of comparison among the three algorithms: RAND, SEBS, DTAP.

Another view of the results is given in the form of a temporal plot of idleness
values over the time of an experimental run. Figure 4 shows a plot for one run for each
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of the algorithms considered in this experiment. From these plots, we can analyze the
distribution of the idleness values and the temporal evolution of the performance
metrics. We can see that the majority of values in RAND are low values, while in
DTAP the majority of values are around 200 seconds. Notice also that some values
in RAND are not shown in the leftmost figure, since the idleness scale (Y axis) has
been limited to 1000 s, while RAND generates values also above this limit. Finally,
temporal plots are useful to see if an algorithm has some transient behavior. For
example, in DTAP_3 outliers are present only in the first phase of the experiment. A
more detailed analysis of temporal evolution of performance is presented in Section
5.8.

In addition to these metrics based on the idleness, we also measure the number of
interferences over time. An interference is defined as a situation when two robots get
closer so that the obstacle avoidance module is used to avoid each other. In the simu-
lated experiments, the interferences are detected when two robots are within 2 meters
and they are counted by an external module accessing the ground truth positions of
the robots. The interferences are important, since they affect the time to reach a goal
position and thus all the performance metrics based on idleness. Moreover, they can-
not just be disregarded, since minimizing conflicts on space is an important feature
of a multi-robot patrolling system. In the experiments reported in this article, we use
the rate of interferences (I f,4.), expressed in number of interferences per minute, as
an additional performance metric of an MRP system. The results for /f,,. obtained
in the experiments reported in this section are illustrated in the last column of Table
3. As expected, SEBS and DTAP algorithms present much less interferences with
respect to the RAND algorithm.

From this analysis, we can conclude that using only the average value Iang would
not allow for a suitable comparison of different methods. The use of boxplots and
temporal plots provides for a detailed analysis of the performance of the algorithm.
However, in these cases, it is difficult to summarize the result of an experiment in a
single value and thus it is not always possible to definitely compare two sets of results.
The use of the maximum value /¢, _ is a good choice as worst case analysis, but from
the experiments done during this work we have experienced a high variability of this
value (since it depends on noise and uncertainty in the execution of the task by the
robots, which is not modeled in the MRP problem). Finally, the rate of interferences
I frare 1s important to assess the ability of the algorithm to prevent space conflicts.

In the following, we mainly present the results of experiments with boxplots of
idleness values. In some cases, we also show temporal plots, in order to evaluate
temporal evolution of the idleness, and tables with the aggregate results based on the
idleness and the rate of interferences.

5.4 Length and repetitions of the experiments

Given the external factors mentioned in the previous section, it is important to de-
termine how many experiments in the same setting are needed in order to guarantee
significant results and how long an experiment must last. To this end, we made the
experiments reported below (named Experiment Set 2).
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Because of the above mentioned external factors that affect the results of a MRP
test, performing a single run of an experiment in a given setting is not enough to guar-
antee significant results. The procedure we have developed in this article is based on
performing a statistical test (in particular, the one-way ANOVA test) to the obtained
results in order to determine the ones that are significant. More specifically, we per-
form many runs of each configuration until we are able to collect at least 3 tests that
have significant correlation. Significant correlation is measured with the ANOVA test
applied to all the values of the idlenesses collected during an experiment. When the
ANOVA test returns a high p value (e.g., > 0.1) then we can conclude that there is
high probability that the two sets of values (i.e., idlenesses of the two experiments)
come from the same distribution.

Therefore, by collecting three experimental runs for which the ANOVA test re-
turns mutual correlation, we can guarantee statistical significance of the experimental
results. On the other hand, experimental runs for which the ANOVA test return a small
p value (i.e., low correlation) are discarded, since in these cases it is likely that some
of the external factors have determined a non-significant result.

Another important control parameter for the experiments is length. In order to
determine this parameter, we have conducted some experiments and applied the sta-
tistical test described above.

A first experiment has been done to measure the evolution over time of the two

metrics: global idleness average (Ig,g) and global idleness standard deviation (Ig ldev)
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Fig. 5 Performance metrics ((IaGVg and 19, , ) over time (hours): a) RAND, b) SEBS and DTAP.

stddev

In Figure 5 the evolution over time of the algorithms RAND (left side), SEBS and
DTAP (right side) is reported. On the left plot, it is clear that average and standard
deviation of the idleness when using the RAND algorithm increases over time, while
the right plot shows that SEBS and DTAP get stable results between 0.5 and 1 hour.

This test highlights that stability of the results over time depends also on the algo-
rithm. However, most of the algorithms, and in particular the ones mostly addressed
in this article, have stable results within 1 hour.

In order to further confirm this result, we have executed another experiment in
which we applied the statistical analysis described above. In this second experiment,
we have collected three statistically correlated runs for each of the following lengths
of the experiments: 30 minutes, 1 hour, and 2 hours.

Statistical analysis has been performed by computing the p values for each pair of
such experiments and the results are reported in Table 4. The table shows that there is
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I [05h]05h [05h [[ Th [ Th [ 1Th [ 2h [ 2h | 2h ]
05h 0.848 ] 0.731 ][ 0.915 [ 0.783 [ 0.959 ]| 0.649 [ 0.807 | 0.578
0.5h 0.571 || 0.900 | 0.610 | 0.774 || 0475 | 0.620 | 0.425
05h 0.592 | 0.906 | 0.715 |[ 0.990 | 0.845 | 0.880

Ih 0.624 | 0.839 ][ 0.444 [ 0.631 [ 0.369
1h 0772 || 0.852 | 0.933 | 0.723
Th 0.596 | 0.802 | 0.497
2h 0.739 | 0.820
2h 0.587
2h

Table 4 Correlation of experiments with SEBS algorithm in grib map with 4 robots.

high correlation between all the results obtained. Consequently, all the experiments
describer in the next sections have been performed for 1 hour, which, as discussed
before, guarantees significant results.

5.5 Comparison among all the algorithms

Comparison among all the algorithms has been the subject of the next set of exper-
iments (named Experiment Set 3). A limited set of scenarios have been considered
in this set, since it was clear that two algorithms outperform the others and thus we
decided to provide a more detailed analysis of these two algorithms only in a next set
of experiments (reported in next section).

The six scenarios considered in this Experiment Set are the following ones, indi-
cated as a pair (map, number of robots): (grid,4), (example,4), (cumberland,4), (cum-
berland,6), (DIAG_floorl,6), (broughton, 8). In all these experiments, we used the
predefined scattered initial poses of the robots. As for the duration of the experiments,
we set the maximum time to 60 minutes. However, some runs were interrupted before
this time out, when a robot did not reach a target after 5 minutes.

The results obtained are shown as boxplots in Figure 6 and in Tables 5-10. Ac-
cording to the discussion about performance metrics in Section 5.3, performance as-
sessment can be done by considering low standard deviation (i.e., small size of the
box), small number and lower values of outliers (i.e., less and lower “high” values of
the idleness), and small number of interferences. From this analysis, it appears evi-
dent (although not associated to a single result value) that SEBS and DTAP generally
outperform all the other algorithms. These results also confirm the trend reported in
previous experiments on MRP (e.g., [23,22]).

5.6 Detailed comparison between SEBS and DTAP
In the next phase of the experiments (named Experiment Set 4), we focused the

analysis only on the two most effective algorithms, SEBS and DTAP, in order to make
a more detailed comparison in more scenarios and conditions. More specifically, we
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Exp. ES3B: example, 4 robots

Exp. ES3A: grid, 4 robots
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Exp. ES3D: cumberland, 6 robots
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Exp. ES3F: broughton, 8 robots

Exp. ES3E: DIAG_floor1, 6 robots
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Fig. 6 Comparison among all the algorithms
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Alg' Iang Igddgv Irgax Ifmle Alg' IzIGvg ]s(t;ddev [rgux [fm/e
RAND | 86.3 | 118.0 | 840.5 | 4.308 RAND | 98.1 183.1 | 1748.5 | 5.645
CR 74.4 51.8 2714 | 3.164 CR 101.2 88.1 509.8 | 5.358
HCR 99.2 75.5 467.9 | 4.396 HCR 95.8 117.7 6834 | 5462
HPCC | 752 54.7 280.8 | 3.213 HPCC 101.5 | 101.9 509.8 | 5.108
CGG 77.1 58.7 358.3 | 3.808 CGG 93.6 78.1 316.3 1.498
GBS 80.9 56.7 2427 | 5.092 GBS 93.9 80.1 4674 | 2.995
SEBS 71.7 29.0 1514 | 0.033 SEBS 81.9 63.8 406.7 | 0.067
DTAG | 743 36.0 2222 | 0.383 DTAG 99.5 58.2 285.2 | 0.582
DTAP 83.5 23.2 200.7 | 0.466 DTAP 101.6 43.3 285.7 | 0.133
Table 5 Exp. ES3A: grid, 4 robots Table 6 Exp. ES3B: example, 4 robots
Alg. [grg 1 ;(1; ddev ] fiax ! frate Alg. / g'g I.vct;ddev U’ gzu’ L frate
RAND | 99.3 199.8 | 24299 | 2.663 RAND | 81.3 | 181.5 | 18449 | 11.172
CR 1355 | 191.8 986.8 | 5.662 CR 98.3 | 106.9 596.0 12.585
HCR 107.2 | 1252 | 1067.8 | 2.946 HCR 90.6 97.3 807.4 10.170
HPCC 123.3 | 139.1 788.0 | 4.762 HPCC | 994 | 109.0 692.1 12.134
CGG 1159 | 1543 989.5 2.165 CGG 98.4 | 1433 982.3 12.787
GBS 112.7 | 106.1 868.7 3.096 GBS 86.4 86.7 636.0 7.523
SEBS 113.8 | 102.8 5752 | 0.216 SEBS 75.2 64.7 491.4 0.433
DTAG | 144.3 72.3 336.1 0.483 DTAG | 93.9 58.6 337.6 2.981
DTAP 135.7 54.2 320.5 | 0.117 DTAP 97.0 47.1 343.9 0.033
Table 7 Exp. ES3C: cumberland, 4 robots Table 8 Exp. ES3D: cumberland, 6 robots
Alg. 1S 1180 | o 1 frate Alg. G 18 | 1o | Lfrae
RAND | 95.0 1829 | 2074.6 | 8.291 RAND | 1129 | 2599 | 2690.2 | 6.063
CR 127.4 | 149.0 934.9 11.849 CR 2019 | 247.0 | 14409 | 8.959
HCR 133.5 | 2132 | 1382.3 | 14.447 HCR 168.6 | 221.2 | 1675.2 | 8.844
HPCC 1239 | 162.0 | 10574 | 9.673 HPCC | 208.8 | 2424 | 14404 | 6.113
CGG 109.8 | 137.0 | 1020.7 | 7.958 CGG 188.6 | 358.0 | 33424 | 2.996
GBS 93.0 1242 | 11742 | 4314 GBS 196.4 | 201.3 | 14714 | 2.048
SEBS 84.5 97.9 579.7 0.083 SEBS 185.1 | 174.8 | 1022.1 | 0.000
DTAG 93.2 84.6 411.6 1.199 DTAG | 279.8 80.9 760.2 | 2.781
DTAP 103.4 57.7 497.7 0.033 DTAP 2142 | 1520 666.6 | 2.496
Table 9 Exp. ES3E: DIAG_floorl, 6 robots Table 10 Exp. ES3F: broughton, 8 robots

consider scenarios with a variable ratio between the size of the patrol graph and the
number of robots. The results reported in this section generally show that DTAP is
more effective when this ratio is high, that is large graph with a few robots, while
when this ratio gets lower DTAP and SEBS tend to have similar performance or
SEBS seems to be more effective. Therefore, the most appropriate algorithm could
be chosen according to the specific application, although the case in which a few
robots have to patrol a large space is more realistic.

More specifically, three runs for each algorithm and for each scenario are shown
as boxplots in Figures 7 and 8. In Figure 7, six scenarios are considered with a ratio
between size of the graph and number of robots > 10. In these situations, DTAP
provides better performance than SEBS, since the benefit of a stronger coordination is
advantageous given the large number of coordination possibilities. While in Figure 8,
the results in five scenarios with a lower ratio between size of the graph and number of
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Exp. ES4B: example, 2 robots

Exp. ES4A: grid, 2 robots
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Fig. 7 Comparison among all SEBS and DTAP algorithms in six scenarios with ratio size of the graph /
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Exp. ES4H: example, 6 robots

Exp. ES4G: grid, 4 robots
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robots (< 8) show situations in which a strong coordination is less beneficial. In these
settings, the performance are similar or, in some cases, SEBS has better performance.

These experiments show the need of a more sophisticated form of coordination
when there are many possible choices for the team, corresponding to high number of
tasks with respect to the available robots.

5.7 Impact of different initial positions of the robots

In these experiments (named Experiment Set 5), we have evaluated the impact of
the initial poses of the robots in the environment in the overall performance. We have
considered three scenarios and additional initial poses with respect to the “default”
ones used in previous experiments. While in all the default initial poses the robots are
scattered through the environment far away each other, in the new sets of initial poses
considered here the robots starts close each other in a limited area. The new sets of
initial poses are indicated below with a letter (‘a’, ‘b’, ‘c’), while the letter is missing
when the default poses are used.

Figure 9 shows the results obtained in the four scenarios for SEBS and DTAP
algorithms. In these figures, labels ‘SEBS’ and ‘DTAP’ refers to default initial poses,
while SEBS_a and DTAP_« refer to the new sets of initial poses when the robots are
grouped in a limited area. As shown in the figure, we have defined one additional set
of initial poses (‘a’) for grid, example, and DIAG_floor] maps and three additional
sets of initial poses (‘a’, ‘b’ , ‘c’) for cumberland map.

The results confirm that in general the initial poses of the robots do not sub-
stantially affect the overall performance in the long term. The runs ‘DTAP_b’ and
‘DTAP_¢’ in Experiment ES5C and DTAP_a in Experiment ES5D, however, show
higher values of the idleness. By looking at the timeplots for some of these runs (il-
lustrated in Figure 10), a similar trend of the values of the idleness can be observed
with the only exception of a few outliers, due to particular situations in which task
allocation was not optimal.

We can conclude that in most cases the initial poses of the robots do not signif-
icantly affect the overall performance, while DTAP seems to produce a few isolated
outliers.

5.8 Temporal analysis and variable number of robots

Another important evaluation is related to analyze temporal evaluation of the perfor-
mance metrics. This is also related to situations in which the number of robots in the
team changes over time, for example in a long-term situation in which robots have to
temporary leave the team for battery recharge operations.

In these experiments (named Experiment Set 6), we have analyzed how the per-
formance metrics vary over time, to assess the ability of an algorithm to adapt to
changing conditions over time also in presence of a variable number of robots.

Figure 11 shows the timeplots of four runs of Experiment ES6A in which the
two algorithms SEBS and DTAP have been compared in two scenarios: grid and
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Exp. ES5A: grid, 4 robots Exp. ES5B: example, 4 robots
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Fig. 9 Comparison among all SEBS and DTAP algorithms in three scenarios with different intial poses.

cumberland. In these runs, 4 robots are used at the beginning of the task, then after
20 minutes one robot is removed from the team, finally after additional 20 minutes
the robot is put again in the team. The timeplots in the Figure show the evolution of
the idleness values. It is interesting to notice that in the grid map, when three robots
are in the team (from time 1200 to time 2400), SEBS presents just a slight increase
of idleness values, while DTAP finds an even better partition of the nodes among the
three robots, as demonstrated by the almost continuous flat lines in the plot. After
time 2400 when the four robots are again operating, it is possible to observe similar
performance with respect to the first time period (0-1200), so showing adaptability
of the algorithms to the number of robots. In the cumberland map, the difference
between the period with three robots and the periods with four robots is more evident.
Also in this case, both the algorithms adapt to this changing condition and DTAP has
general better performance, as confirmed in previous experiments.

It is interesting to observe that, even though the algorithms developed so far show
some degree of adaptability to changing situations, it is not yet the case that they show
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Exp. ES5C: cumberland, 4 robots DTAP Exp. ES5C: cumberland, 4 robots DTAP_a

800 1000
I I
800 1000
I I

600

I

Idleness (s)
600

I

Idleness (s)

400
I
400
I

T T T T T T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500

Time (s) Time (s)

Exp. ES5C: cumberland, 4 robots DTAP_b Exp. ES5C: cumberland, 4 robots DTAP_c

800 1000
I I
800 1000
I I

600

I

Idleness (s)
600

I

Idleness (s)

400
I
400
I

T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500

Time (s) Time ()

Fig. 10 Time plots of runs with different initial poses.

“learning abilities”. We believe that introducing learning in MRP can bring to a novel
family of algorithms that can further exploit adaptiveness to changing situations.

5.9 Porting to real robots

The developed algorithms have been also validated in a real environment with three
robots. Figure 12 shows the real environment of DIAG_labs map, which is the corri-
dor of our lab. A portion of this map, considered in the simulated scenarios, has been
used to test the execution of the developed algorithms with real robots. In this envi-
ronment, a patrol graph with 8 nodes and a team of 3 robots have been considered.
The tests with real robots have been performed by using the same implementation of
the algorithms described before. ROS infrastructure indeed allows for an easy port-
ing from a Stage-based simulated application to a real one. In particular, Turtlebots
in the real environment and robots in the Stage simulator use the same map of the
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Exp. ES6A: 4-3-4 robots grid_SEBS
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Fig. 11 Time plots of runs with different number of robots (4,3,4).

Fig. 12 Real robot scenario: DIAG_labs map, 3 robots and 8 patrol nodes.
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environment, the same configuration of parameters for localization and navigation,
and the same implementations of the MRP algorithms.

The experiments performed with the real robots have the objective of demon-
strating the portability of the software in a real environment. Experimental runs with
variable initial poses and variable number of robots during the task have been per-
formed, confirming the trends in the simulated experiments. Details on these exper-
iments and videos are available in this web site: https://sites.google.com/a/
dis.uniromal.it/mrp-dta/.

6 Conclusions

This article proposes an on-line coordination approach to multi-robot patrolling based
on dynamic task assignment. Specifically, we propose two dynamic task assignment
techniques: a baseline greedy approach (DTA-Greedy) and a market based technique
based on sequential single item auctions (DTAP). We evaluate the performance of
such approach in a realistic simulation environment (built with ROS and stage) as
well as on real robotic platforms.

In particular, in the simulated environments we compare our task assignment ap-
proaches with previous off-line and on-line methods. Our results confirm that on-line
coordination approaches improve the performance of the multi-robot patrolling sys-
tem in real environments, by coping with the unpredictable and inevitable dynamic
elements that are due to noise in perception and uncertain action execution, typical
of robotic systems. Moreover, our results show that coordination approaches that em-
ploy more informed coordination protocols (i.e., DTAP) achieve better performance
with respect to state-of-the-art on-line approaches (i.e., SEBS). This is particularly
true, in scenarios where there are many possible tasks (i.e., large environment) with
respect to the number of robots.

The experimental evaluation reported in this article has analyzed the different
performance metrics used in previous work and some forms of presentation of the
results. This analysis showed that a more detailed analysis of these metrics is needed
in order to assess MRP performance. The algorithms and the simulator used for the
experiments is fully available, the results reported in this article are fully reproducible
and this simulator can be thus further extended to include other algorithms and to
improve performance evaluation and benchmarking of MRP systems.

Finally, the experiments performed with real robots (a team of three Turtlebot
platforms in an office environment) show that, when deployed on a real system, our
approach is able to successfully coordinate the robots achieving good patrolling be-
haviors in face of uncertainty and noise (e.g., localization and navigation error) asso-
ciated to real platforms.

In conclusion, on-line distributed task assignment techniques allow to cope with
the dynamics arising from the robot behaviors, hence increasing the performance of
the patrolling system.

Among the several future research directions in Multi-Robot Patrolling, we be-
lieve that an interesting direction refers to extending on-line coordination algorithms
for MRP in settings where strategic reasoning comes into play and where robots must
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jointly act to perform more complex surveillance operations in each location of the
environment. For example, heterogeneous teams of robots with different abilities are
used to monitor an environment in which each node must be visited simultaneously
by more robots with different abilities.

References

—_

10.

11.

12.

13.

15.

16.

17.

. Agmon, N.: On events in multi-robot patrol in adversarial environments. In: AAMAS (2010)
. Agmon, N, Fok, C.L., Emaliah, Y., Stone, P., Julien, C., Vishwanath, S.: On coordination in practical

multi-robot patrol. In: IEEE International Conference on Robotics and Automation (ICRA) (2012).
URL http://wuw.cs.utexas.edu/users/ai-lab/?ICRA12-agmon

. Agmon, N., Urieli, D., Stone, P.: Multiagent patrol generalized to complex environmental conditions.

In: Proceedings of the Twenty-Fifth Conference on Artificial Intelligence (2011). URL http://www.
cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127070

. Ahmadi, M., Stone, P.: A multi-robot system for continuous area sweeping tasks. In: Proceedings

of the IEEE International Conference on Robotics and Automation, pp. 1724-1729 (2006). URL
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=126653

. Almeida, A., Ramalho, G., Santana, H., Tedesco, P.A., Menezes, T., Corruble, V., Chevaleyre, Y.:

Recent advances on multi-agent patrolling. In: SBIA (2004)

. Basilico, N., Gatti, N., Villa, F.: Asynchronous multi-robot patrolling against intrusion in arbitrary

topologies. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 1124—
1229. Atlanta, USA (2010)

. Batalin, M.A., Sukhatme, G.S.: Distributed Autonomous Robotic Systems 5, chap. Spreading Out: A

Local Approach to Multi-robot Coverage, pp. 373-382. Springer Japan (2002)

. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE

Transactions on Robotics 21(3), 376-386 (2005)

. Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. Intelligent Agent Tech-

nology, IEEE / WIC / ACM International Conference on (2004)

Elmaliach, Y., Agmon, N., Kaminka, G.: Multi-robot area patrol under frequency constraints. In:
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2007)
Elmaliach, Y., Agmon, N., Kaminka, G.: Multi-robot area patrol under frequency constraints. Annals
of Mathematics and Artificial Intelligence (2009)

Elmaliach, Y., Shiloni, A., Kaminka, G.A.: A realistic model of frequency-based multi-robot poly-
line patrolling. In: Proceedings of the 7th international joint conference on Autonomous agents and
multiagent systems - Volume 1 (2008)

Holz, D., Basilico, N., Amigoni, F., Behnke, S.: A comparative evaluation of exploration strategies
and heuristics to improve them. In: Proceedings of the Fourth European Conference on Mobile Robots
(ECMR 2011), pp. 25-30 (2011)

. Tocchi, L., Marchetti, L., Nardi, D.: Multi-robot patrolling with coordinated behaviours in realistic

environments. In: Proceedings of the International Conference on Intelligent Robots and Systems
(IROS), pp. 27962801 (2011). DOI http://dx.doi.org/10.1109/IROS.2011.6094844

Machado, A., Ramalho, G., Zucker, J.D., Drogoul, A.: Multi-agent patrolling: an empirical analysis
of alternative architectures. In: Proceedings of the 3rd international conference on Multi-agent-based
simulation II. Berlin, Heidelberg (2003)

Marier, J.S., Besse, C., Chaib-draa, B.: Solving the continuous time multiagent patrol problem. In:
Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp. 941-946 (2010)
Marino, A., Parker, L., Antonelli, G., Caccavale, F.: Behavioral control for multi-robot perimeter
patrol: a finite state automata approach. In: Proceedings of the 2009 IEEE international conference
on Robotics and Automation (2009)

. Pippin, C., Christensen, H., Weiss, L.: Performance based task assignment in multi-robot patrolling.

In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC *13, pp. 70-76.
ACM, New York, NY, USA (2013). DOI 10.1145/2480362.2480378. URL http://doi.acm.org/
10.1145/2480362.2480378

. Portugal, D., Couceiro, M.S., Rocha, R.P.: Applying bayesian learning to multi-robot patrol. In:

Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International Symposium on, pp. 1-6
(2013). DOI 10.1109/SSRR.2013.6719325



34

Alessandro Farinelli et al.

20.

21.

22.

23.

24.

25.
26.

27.

Portugal, D., Rocha, R.: Msp algorithm: multi-robot patrolling based on territory allocation using
balanced graph partitioning. In: Proceedings of the 2010 ACM Symposium on Applied Computing
(2010)

Portugal, D., Rocha, R.P.: On the performance and scalability of multi-robot patrolling algorithms.
In: Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE International Symposium on, pp. 50
—55(2011). DOI 10.1109/SSRR.2011.6106761

Portugal, D., Rocha, R.P.: Distributed multi-robot patrol: a scalable and fault-tolerant framework.
Robotics and Autonomous Systems 61, 1572-1587 (2013)

Portugal, D., Rocha, R.P.: Multi-robot patrolling algorithms: examining performance and scalability.
Advanced Robotics 27(5), 325-336 (2013)

Santana, H., Ramalho, G., Corruble, V., Ratitch, B.: Multi-agent patrolling with reinforcement learn-
ing. In: Proceedings of the Third International Joint Conference on Autonomous Agents and Multia-
gent Systems - Volume 3, AAMAS 04, pp. 1122-1129 (2004)

Semp, F., Drogoul, A.: Adaptive patrol for a group of robots. In: IROS, pp. 2865-2869. IEEE (2003)
Stranders, R., de Cote, E.M., Rogers, A., Jennings, N.: Near-optimal continuous patrolling with teams
of mobile information gathering agents. Artificial Intelligence 195(0), 63 — 105 (2013). DOI http:
//dx.doi.org/10.1016/j.artint.2012.10.006.  URL http://www.sciencedirect.com/science/
article/pii/S0004370212001282

Tovey, C., Lagoudakis, M., Jain, S., Koenig, S.: The generation of bidding rules for auction-based
robot coordination. In: ES. L. Parker, A.S. (editor) (eds.) Multi-Robot Systems: From Swarms to
Intelligent Automata, vol. 3. Springer (2005)



