
A Mechanism for Smoothly Handling Human Interrupts in
Team Oriented Plans

Alessandro Farinelli, Nicolo’ Marchi,
Masoume M. Raeissi

Computer Science Department
University of Verona

Verona, Italy
alessandro.farinelli@univr.it
marchi.nicolo@gmail.com
masoume.raeissi@univr.it

Nathan Brooks, Paul Scerri
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA USA

nbb@cs.cmu.edu
pscerri@cs.cmu.edu

ABSTRACT
Team oriented plans have become a popular tool for operators to
control teams of autonomous agents (or robots) to pursue complex
objectives in complex environments. Such plans allow an operator
to specify high level directives and allow the team to autonomously
determine how to implement such directives. However, the oper-
ators will often want to interrupt the activities of individual team
members to deal with particular situations, such as a danger to a
robot that the robot team cannot perceive. Previously, after such
interrupt, the operator would usually need to restart the team plan
to ensure its success. In this paper, we present an approach to en-
coding how unexpected interrupts can be smoothly handled within
a team plan. Building on a team plan formalism that uses Col-
ored Petri Net, we describe a mechanism that allows a range of
interrupts to be handled smoothly, allowing the team to efficiently
continue with its task, after the operator intervention. We validate
the approach with an application of robotic watercraft and show
improved overall efficiency. In particular, our interrupt mechanism
decreases the time to complete the mission (up to 48% reduction)
and decreases the operator load (up to 80% reduction in number of
user actions).

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
I.2.9 [Robotics]: Operator Interfaces

General Terms
Experimentation

Keywords
Plan Monitoring; Petri Net; Cooperative Robotic Watercraft

1. INTRODUCTION
Robotics technology has matured sufficiently to make the idea of
building robot teams for real environments a serious possibility. For
applications ranging from disaster response to environmental mon-
itoring to military operations, approaches are emerging to allow

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

small numbers of humans to control teams of robots for achieving
complex objectives. A common way of doing this is via team plans
[1, 2, 3], which allow an operator to interact via high level objec-
tives and plans and allow automation to work out the details. For
example, a plan for environmental monitoring might tell robots to
collect a certain type of information in a certain area, leaving the
robots to work out who goes where to collect the information.

However, in most real domains, human operators will occasion-
ally need to directly control a robot for some purpose, perhaps to
protect a robot from a danger it cannot perceive or to achieve some
specific objectives that the robot is not capable of understanding.
Typically, when a robot plan is interrupted, any team plan that the
robot was participating in will be terminally impacted. In some
cases, the rest of the team can reorganize without the interrupted
robot and then reorganize when the interruption is over, but this de-
pends sensitively on the plan, the particular situation and nature of
the interruption. In general, how to respond to an external interrup-
tion is very sensitive to the specific context of the plan and if the
context is not taken into account when dealing with the interrup-
tion, overall performance will be poor.

In this paper, we are specifically looking at a domain of teams of
robotic boats collecting information in bodies of water [4]. In such
applications, one or a small number of experienced operators, per-
haps water scientists, are managing between five and 25 boats on a
body of water. Large manned boats and water phenomena are ex-
ternal dangers to the robots that the human operators might be able
to help mitigate. In other cases, operators might have some exter-
nal knowledge about what is going on in the water that allows them
to direct resources in a very specific way to get very specific infor-
mation. Hence, while it is necessary to utilize team plans to make
use of multiple assets, interruptions are an inevitable and important
part of operations.

We specifically adopt an approach for creating team plans with
Petri Nets to allow specification of complex, parallel and multi-
stage plans. To deal with external interruptions, two special events
are created, indicating the start of two categories of interruptions,
but not specifying the nature of the interruption. The approach al-
lows transitions to be created from any place in the Petri Net to a
place that waits for the interruption handling to be completed be-
fore sending the plan back to an appropriate place in the plan. De-
pending on the nature and timing of the interaction, relative to the
specific context of the plan, the expressive approach allows a range
of possibilities to be encoded, including restarting the plan, directly
resuming or going through some intermediate steps to restart effec-
tively. The key is that the plan designer can work out in advance



how to handle interruptions at a particular place in the plan and
encode efficient and effective resumptions.

In some interesting plans, there are specific roles for specific as-
sets. Our team plan approach captures this by using a Colored Petri
Net formalism and allowing the different colored tokens to repre-
sent specific roles. For such plans, we have a special event type
which captures which role is being interrupted when the interrup-
tion occurs. The plan can then be designed to react differently to
different roles being interrupted. For example, interruptions of non-
critical roles might be ignored completely, while when one of a set
of tightly coupled roles is interrupted, the other roles might be put
into some sort of holding pattern. The key is that the design ap-
proach provides the representational power to handle the interrup-
tion effectively.

To evaluate the approach, we use a simulator of the robot boats
and a novel technique for determining the value of the concept.
The simulator is used for all development and testing of algorithms
on the real robots, hence it is an accurate simulator of their capa-
bilities. However, it is very difficult to design an experiment with
real human operators where interrupts would be distributed over
the whole length of the plan and vary in length in non-trivial ways.
Moreover, this would require a proper evaluation of the operator
interface which falls outside the scope of this contribution. Instead,
our experimental approach simulates all possible interrupts mul-
tiple times. While in practice interrupts at some times might be
more common than others, the concept of the approach is that any
interrupt is handled smoothly hence the experimental setup pro-
vides a significant indication of the power offered by the interrupt
mechanism without considering the skills of the human operators.
In more detail, we compared the execution of team plans without
specific interrupt handling to plans where interrupt handlers were
explicitly encoded by using our framework and we found signifi-
cant improvement in overall efficiency, i.e., up to a 48% reduction
in time to complete a mission and up to a 80% reduction in operator
load.

The rest of the paper is organized as follows, Section 2 provides
necessary background on Colored Petri Net (CPN) and plan mon-
itoring for multi-agent systems. Section 3 describes the robotic
boat system we considered here and the plan specification language
used in such system. Section 4 describes the interrupt mechanism
we propose and Section 5 details our empirical methodology dis-
cussing obtained results. Finally, Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK
In this section we will first provide necessary mathematical back-
ground on Petri Net and Colored Petri Net and then discuss related
work on plan monitoring in multi-agent systems.

2.1 Petri Net
Petri Net (PN) is a widely used mathematical and graphical mod-
eling tool for describing concurrency and synchronization in dis-
tributed systems. Graphically, a PN is represented by a directed
bipartite graph, in which nodes could be either places (states of the
system) or transitions (system events), arcs connect places to transi-
tions and vice versa. Places in a Petri net contain a discrete number
of marks called tokens. A particular allocation of tokens to places
is called a marking and it defines a specific state of the system that
the Petri Net represents.

Formally, a PN is a tuple PN = (P, T, F,W,M0), where P =
{p1, p2, . . . , pm}, is a finite set of places; T = {t1, t2, . . . , tn}, is
a finite set of transitions; F ⊆ (P ×T )∪ (T ×P ), is a set of arcs;
W : F → N, is a weight function; M0 : P → N0 is an initial
marking.

The markings of a PN evolves based on the firing behavior of the
transitions. A transition t can fire whenever it is enabled (i.e., when
each input place pi of the transition is marked with at leastW (pi, t)
tokens) and if the transition firesW (pi, t) tokens are removed from
each input places pi and W (t, pj) tokens are added to each output
place pj .

Colored Petri Net (CPN) [5] extends Petri Nets where tokens
become more informative and each of them has attached a data
value called the token color. The firing behaviors of transitions, and
consequently the evolution of the markings, now depends on the
colors of the tokens. In particular, tokens can now be identified and
related to specific agents, thus providing a compact and convenient
modeling language for team oriented plans.

Moreover, similar to PN, CPN can be analyzed and verified ei-
ther by means of simulation or formal analysis methods1 thus al-
lowing validation of team oriented plans before their execution.

2.2 Plan monitoring in multi-agent systems
The problem of monitoring plan execution in agents and multi-

agent systems has been addressed from different perspective through-
out the years [7, 8, 9]. In particular here we focus on approaches
that are most relevant to our work as they are explicitly designed
for multi-agent systems. Hence, we discuss Belief Desire Inten-
sion (BDI) architectures [1, 2] and approaches based on Petri Net
[10, 3].

Two successful BDI-based frameworks are STEAM and BITE
which enable a coherent teamwork structure for multiple agents.
The key aspect of STEAM [1] are team operators which are based
on the Joint Intentions Theory, introduced by [11]. In STEAM,
agents can monitor the team’s performance and reorganize the team
based on the current situation. BITE, which was introduced by
Kaminka & Frenkel [2], specifies a library of social behaviors and
offers different synchronization protocols that can be used inter-
changeably and mixed as needed. However, while both this works
provide key contributions for building team oriented plans, they do
not provide any specific mechanism for a human-operator to inter-
rupt the execution of such plans.

One of the first approaches based on Petri Net for multi-agent
plan monitoring was proposed by King et al. [10]. In particular they
propose the use of automated planning methods to generate plans
for multiple agents. Such plans are then compiled into Petri Nets
for analysis, execution and monitoring. The approach handles pos-
sible failures during plan execution by re-planning at run-time. In
particular, the agent which experienced a problem/failure informs
the human-operator, who starts the re-planning process. Hence,
the human operator intervention happens only after receiving a re-
quest from the agent; moreover, re-planning at run-time might be
problematic for applications that must operate within real-time con-
straints.

Recently, Ziparo et al. proposed an approach for plan monitor-
ing called Petri Net Plan (PNP) [3] . PNP takes inspiration from
action languages and offers a rich collection of mechanisms for
dealing with action failures, concurrent actions and cooperation in
a multi-robot context. One important functionality offered by the
formalism of PNP is the possibility to modify the execution of a
plan at run-time using interrupts. Our work also focuses on inter-
rupting multi-robot plans, however here we are mainly interested in
human-operators interrupting the normal execution of a team-plan
rather than action failures and plan synchronization. In more detail,
here we take a different approach for plan representation as we en-
code team plans by using Colored Petri Nets in contrast to what is

1See for example CPN Tools [6]



proposed in [3] where a team-plan is a collection of several single-
agent plans represented with standard Petri Nets. This is a signif-
icant difference as it allows us to represent plans involving several
agents with a very compact structure as agents are represented by
the colored tokens and not explicitly in the network. Moreover,
by using CPN we can represent different types of interrupts, i.e.,
team-level and platform specific (see Section 4) thus providing a
rich model to allow sophisticated interactions between the human
operators and team plans.

3. THE COOPERATIVE ROBOTIC WATER-
CRAFT FRAMEWORK

This work focuses on a system of robotic boats developed as part of
the Cooperative Robotic Watercraft project [4]. In this Section we
describe the team plan specification language used in such system
(SAMI) and provide a brief overview of the whole system.

3.1 SAMI Petri Net
The main components of the SAMI Petri Net specification language
are illustrated in a sample plan in Figure 1. The language is based
on Colored Petri Nets and Hierarchical Petri Nets and has several
extensions to add the capability to send and receive commands and
information from team members, to perform and reference task al-
locations, and to capture situational awareness and mixed initiative
directives. In particular, the plan shown in Figure 1 reports places
and transitions with associated output (OE) and input events (IE).
When the plan starts the output event Operator Select Robot List
is triggered asking the operator to select the list of boats that will
participate in the plan. When the operator performs this action the
input event Operator Selects Boat List is triggered, the correspond-
ing transition will then fire moving the relevant tokens (i.e., the
tokens that correspond to the selected boats) to the next place. The
plan progresses in a similar way until the tokens reach the last place
(i.e., all selected boats completed their path). When this happens
the mission is over and the plan is no longer active.

Events fall under two categories: output events and input events.
Output events are added to places in the Petri Net and contain
commands or requests that are sent to human operators, robots, or
agents. When a token(s) enter a place, all the output events on the
place are triggered. The registered handler for that class of output
event is sent the output event along with the tokens that just entered
the place. For output event classes that contain data fields, there
are 4 ways to specify the information, which are listed here with
example usage in our outlined scenario: (1) Value defined offline
by the petri net developer (the battery voltage threshold to send a
low-energy alert to the operator). (2) Value defined by the operator
at run-time when the plan is instantiated (the location boats should
move to have their battery swapped). (3) Value defined by operator
at run-time when the plan reaches place containing event (a safe
temporary position for robots to move to in order to avoid an in-
coming manned boat). (4) Variable name defined by developer at
plan design time, whose value is retrieved at run-time when plan
reaches the place containing the event (a variable to retrieve the
path planning results from a planning agent).
Input events are put on transitions and contain information received
from human operators, robot proxies2, or agent services, which
perform assistive functions such as path planning, task allocation,
and image processing. Input events on a transition are typically
responses to an output event on a place preceding the transition.
For input events that will contain information at run-time (such as
2With the term proxy we refer to a software-service that connects a
specific boat with the rest of the system

a generated path or selection from an operator), a variable name
is used so the information can be stored and accessed by output
events. When an input event is received by the plan execution en-
gine, it copies each piece of information held by the input event
to the corresponding variable name that was specified by the plan
developer. Input events also contain “relevant proxy” and “relevant
task” fields, which contain the identities of the proxy(s) or task(s)
that sent or triggered the input event.

Markup Each plan is “marked up” with context clues attached
to individual events which provide information to the run-time GUI
about which UI components and widgets are most appropriate for
operator interaction, which set of priorities an agent service should
consider when choosing from multiple algorithms, and which level
of mixed-initiative autonomy to employ in making decisions. Each
markup has a number of options and variables that the petri net
developer must specify. UI components and agent services corre-
spondingly indicate which markup options they support, allowing
the most appropriate ones to be retrieved automatically at run-time.
For example, the “relevant proxy” markup indicates to the UI that
the locational data of certain proxies should be displayed to the
operator in addition to any other information contained within the
event. Settings include the proxy selection criteria (the event’s rel-
evant proxies or all proxies) and which data to visualize (including
pose, current path, future paths, and past paths). The “mixed ini-
tiative trigger” markup is used to indicate when system autonomy
should make a decision and if the operator should be informed.
Options range from never using system autonomy, using autonomy
after a timer expires, or using autonomy immediately without con-
sulting the operator.

Tokens The Token class has 4 fields: a name (String), a token
type (TokenType), a proxy (ProxyInt), and a task (Task). There are
3 TokenTypes: Generic tokens have no defined proxy or task and
are used as counters. Proxy tokens contain a proxy but no task.
These are created whenever a robot proxy is added to the system
at run-time. Task tokens contain a task and might contain a proxy.
Task tokens are created by the petri net execution engine when a
plan is started, creating one for each task in the plan. When the task
is allocated to a proxy, the proxy field of the task’s corresponding
token is set to the proxy assigned to the task. Representing proxies
and tasks using tokens allows for multi-robot plans with arbitrary
numbers of team members to be constructed and visualized com-
pactly, compared to having individual Petri Net for each member
of the team.

Edge Requirements In a standard Petri Net, incoming edges
specify the tokens required for a transition to fire, which are then
consumed, and outgoing edges specify the tokens that are added to
the connected place. SAMI Petri Net edge labels have additional
options designed to provide additional power. Labels on incoming
edges specify tokens that must be present in the connected place
in order for the connected transition to fire, but does not remove
them upon firing as it could cause undesired interruption of be-
havior controlled by output events in the connected place. Labels
on outgoing edges specify tokens that should be taken or consumed
from the incoming places preceding the connected transition and/or
tokens that should be added to the connected place. Taking a token
removes it from its old place and adds it to the place connected to
the outgoing edge. Consuming a token simply removes it from its
old place, while adding a token will not modify the old place and
just add a copy of the token to the connected place. In addition
to generic tokens and specific task tokens, edge requirements can
also refer to “relevant tokens” which are defined by the input events
on the transition being evaluated. The list could contain proxy to-
ken(s), in the case of a “Path Completed” input event which spec-



ifies the proxy token for the robot that finished, so that at run-time
that proxy token can be moved forward in the Petri Net. It could
also contain task token(s), in the case of a “Task Completed” in-
put event signaling that a particular task has been completed and
another task with a sequential completion constraint can begin.

Sub-missions The SAMI team plan language supports hierar-
chical team plans, allowing a “sub-mission” to be added on a place.
When tokens enter the place an instance of the sub-mission is started,
placing the tokens that entered the place into the start place of the
sub-mission. Until the sub-mission finishes executing, transitions
in the parent mission leaving the place holding the sub-mission are
prevented from firing. Sub-missions can return values, return to-
kens, and write to variables shared with its parent mission, allow-
ing sub-missions to reduce repeated creation of common Petri Net
sequences and increase readability of the petri net.

3.2 System design
Figure 2 shows an airboat style robot, although differential drive
propeller versions have also been developed. In addition to a bat-
tery based propulsion mechanism, each boat is equipped with an
Android OS smartphone, custom electronics board, and sensor pay-
load. The Android smartphone provides communication, either
through a wireless local area network or 3G cellular network, GPS,
compass, and multi-core processor. An optional prism can be mounted
to the transparent lid of the waterproof electronics bay to use the
phone’s camera for obstacle avoidance and imaging. The Arduino
Mega based electronics board receives commands from the An-
droid phone over USB OTG and interfaces with the propulsion
mechanism and sensor payload, as shown in Figure 3. The elec-
tronics board supports a wide variety of devices including acoustic
doppler current profilers and sensors that measure electroconduc-
tivity, temperature, dissolved oxygen, and pH level. All sensor data
is logged along with time and location.

The robot team is controlled from a nearby base station via a high
power wireless antenna or remotely using 3G connectivity. The op-
erator uses a SAMI compatible GUI to instantiate SAMI Petri Net
plans, monitor their execution, and provide input as necessary. In
this case, compatibility means the GUI contains a library of UI
components listing which data classes and SAMI markups they
support, allowing a custom “interaction panel” to be constructed
for each event requiring operator input.

In order to assist the petri net developer, an intelligent plan edit-
ing tool named DREAAM was created. The editor was designed
with three potential limitations of the plan language in mind: over-
whelming visual clutter and developer errors resulting in invalid
Petri Net or unexpected run-time behavior. DREAAM contains
different visualization modes which selectively hide and compress
sections of nets based on different tasks the developer may be per-
forming. “Assistant agents” check for violations of Petri Net rules
and flag errors, such as incomplete graphs and unlabeled start/end
places, and warnings, such as suspicious edge labels.

4. THE INTERRUPT MECHANISM
In this Section, we describe the basic ideas of the interrupt mecha-
nism for Petri Net and how we realize such mechanism in SAMI.
Then we discuss an exemplar multi-agent plan that makes use of
such interrupt mechanism, i.e., the Cooperative Location Visit plan.

4.1 Modelling the interrupt Mechanism in
Petri Net

The Petri Net paradigm does not offer a special construct to im-
plement interrupts, but it is possible to replicate the behavior of an
interrupt through a specific sequence of places and transitions [12].

Figure 2: Airboat robot platform

Figure 3: CRW system architecture

State A

State B

Interrupt Place

End of State AInterrupt Handler

End Interrupt

Return to State A

Figure 4: Interrupt implementation with Petri Net.



Figure 1: SAMI Petri Net “Cooperative Location Visit” plan (without the interrupts)

Figure 4 reports an example of an interrupt realized in the Petri
Net framework. Essentially, the normal execution flow can be in-
terrupted when the system is in state A. The interrupt can be trig-
gered by the human operator simply placing a token in the Inter-
rupt Place. This will enable the Interrupt Handler transition, hence
changing the execution flow of the plan. If the Interrupt Handler
transition fires, the system will place a token in the End Interrupt
place, and, when the execution of such behavior is completed (i.e.,
when the Return to State A transition fires), the system resumes
the normal execution by placing a token back to the State A place.
Notice that, during the execution of the interrupt behavior, the tran-
sition End of State A is not enabled, therefore the flow of execution
can not progress to State B until the interrupt handler behavior is
completed.

4.2 Modeling the Interrupt mechanism
in SAMI

Following the interrupt implementation idea described in Figure 4
we use three key elements to model the interrupt mechanism in the
SAMI framework: i) a place (called Interrupt Place) ii) a transition
that starts the interrupt handling procedure (StartInterruptTransi-
tion) and, iii) a transition that determines the end of the interrupt
procedure (EndInterruptTransition). Now, consider a general plan
that we represent with a Source Place, indicating the state of the
system that could receive an interrupt, a general transition, indi-
cating a general part of a plan, and a Destination Place, indicating
the state of the system that should be reached when the interrupt
handling procedures terminates (notice that the source and desti-
nation places could be the same). Figure 5 shows the structure
we propose to add an interrupt to such general plan. As the figure
shows, the StartInterruptTransition and the EndInterruptTransition
are connected by a Submission Interrupt Place which represents a
general sub-plan that models the appropriate interrupt handling be-
haviour. After the execution of the submission all the tokens that
comes out from the submission move to the destination place of the
interrupt, and restore the normal behaviour of the plan.

The structure described above can represent two types of inter-
rupts: a proxy interrupt (see Figure 5(a)) and a general interrupt
(see Figure 5(b)). As shown in Figures 5(a) and 5(b), the structure
to realize these two types of interrupts is the same, however, the
events attached to places/transitions and the labels to the edges of
the net are different. In what follows we describe these two inter-
rupt types in more detail.

The Proxy Interrupt The proxy interrupt relates to a specific
subset of the platforms, and affects the execution flow of those plat-
forms only (while the others continue the normal execution of the
plan). This type of interrupt typically represents a procedure that
should be activated in response to some proxy-level events, e.g., the
battery of a boat reaches a critical level and the boat should stop the
current plan to go to a recharge area.

In particular, the interrupt place generates a ProxyInterruptEvent,

which is an output event3. The ProxyInterruptEvent encapsulates
the information regarding which proxies should be involved in the
event. Such information is used by the Start Interrupt Transition to
consume only the relevant tokens from the Source Place and trans-
fer them to the Submission Interrupt Place. Consequently, only the
tokens specified by the ProxyInterruptEvent will stop their current
mission to execute the interrupt submission. Such relevant tokens
are selected with a mission specific procedure, and this often re-
quires a user interaction (i.e., the user directly selects which plat-
forms should execute the interrupt submission).

General Interrupt The general interrupt is a team-level inter-
rupt that is not specific to a particular platform. The general inter-
rupt represents a situation where all robotic-boats should perform
a particular procedure, e.g., stop all current plans and go to a safe
position as a manned boat is approaching.

In contrast to the proxy interrupt, the general interrupt will re-
move all tokens present in the Source Place and transfer them to
the submission. Hence, the event generated by the interrupt place
is a different output event, named InterruptEvent. Such event is
generated to trigger the interrupt mechanism but does not contain
any specific information regarding the relevant proxies (as all prox-
ies are relevant in this case). Consequently, the StartInterruptTran-
sition requires a generic token (and not a proxy token) and it will
transfer all the proxy tokens from the Source Place to the Submi-
sison Interrupt Place. A general interrupt is essentially a compact
way of representing an interrupt for all proxies. Such compact rep-
resentation is crucial for team level plans that must be designed and
monitored by human operators.

4.3 Using interrupt in multi-agent plans
Here we provide an exemplar multi-agent plan, discussing the

possible use of both interrupt types described above. In particu-
lar we consider a Cooperative Location Visit (CLV) plan where
the operator selects a group of boats to visit a set of locations so
to perform point measuring tasks. The boats should navigate to
each location and acquire a specific measure (e.g., pH level, oxy-
gen level, temperature). In this work, we assume that each boat is
equipped with the same sensors, hence visiting the same location
with different boats does not provide more information and should
be avoided, in contrast, each boat can visit several locations (i.e.,
executing a path that goes through all such locations in sequence).
The system offers various techniques to assign boats to locations
and in this work we used a method which is based on Sequential
Single Item auctions [13]. The method assign locations to boats
sequentially, and for each location the system selects the boat that
can provide the lowest path cost. Such path cost is computed as
the minimum path cost that the boat can achieve when inserting the

3Recall from Section 3.1 that output events are associated to
places and contain commands or requests for other modules. In-
put events are associated to transitions and encapsulate information
that should be consumed by the module that receives such event



(a) Proxy Interrupt

(b) General Interrupt

Figure 5: Types of interrupt implemented in the SAMI frame-
work.

current location in the set of locations that are already assigned to
such boat4.

The CLV plan is reported in Figure 6. In such plan, the general
interrupt handles a situation where the user decides to temporarily
stop the current mission of all the boats to avoid a dangerous situ-
ation, i.e., a manned boat that enters the area where the boats are
operating. The general interrupt starts from the ProxyExecutePath
place and goes back to the same place. When the interrupt triggers,
all the tokens present in the ProxyExecutePath place are transferred
to the submission place. The submission associated to the interrupt
(not shown in this picture) sends all the boats to a specific safe as-
semble position and then waits for an operator input to re-start the
previous mission. When the operator decides that the dangerous
situation is over, the boats are sent back to the ProxyExecutePath
place where they resume executing their mission, maintaining their
previous location assignment.

In contrast, the proxy interrupt allows the operator to stop the
execution of a selected subset of the boats without interfering with
the mission execution of the other boats. This is useful when the
human operator should handle an event that influences the behavior
of a specific group of boats, i.e., a boat that reaches a critical level of

4Since computing the minimum path cost given a sequence of visit
locations is in general NP-Hard here we use a simple nearest neigh-
bor heuristic: the path is built incrementally by always selecting the
next locations as the one that is closest to the current location. At
the beginning the current location is the boat position.

the battery. The proxy interrupt moves the set of selected proxies to
the submission place while the others will continue their execution.
In our exemplar plan, the submission associated to the interrupt is
a recharge submission that stops the current plans of the selected
proxies and sends the relevant proxies to a recharge station, where
the batteries are replaced. Then the proxies re-start their previous
mission.

By combining the team-level and proxy-level interrupts our ap-
proach provides a powerful and general model to allow sophisti-
cated interactions between the human operators and the robotic sys-
tem. As the empirical evaluation shows this results in a significant
performance gain for the system.

5. EMPIRICAL RESULTS
In this section we present a quantitative evaluation of our approach
to team plan monitoring for the CRW framework. We first describe
our empirical methodology, then we present and discuss the results
we obtained.

5.1 Empirical Methodology
The main goals of the empirical evaluation are: i) to validate the
applicability of the interrupt mechanism to team-level plans that
represent realistic use cases, ii) to evaluate the gain achieved by
such mechanism, in terms of task specific performance as well as
operator load, with respect to aborting the plan whenever an exter-
nal event takes place.

As a first step, we consider the CLV plan discussed in Section 4.3
considering the “interrupt” version that encodes the interrupt within
the plan (reported in Figure 6) and the “standard” version without
the interrupts (reported in Figure 1). Next, we define two possible
external events: i) general alarm and ii) temporary boat pull-out
that should be handled at execution time by a human operator. We
then simulate the execution of both versions of the CLV plan with
both events, measuring indicators of task specific performance and
operator work load. When we execute the standard plan and one
of the external events takes place, the human operator must abort
the entire mission execution, execute the plan that can handle the
specific event, and then restart the original plan.

External Events As for the external events, the general alarm
represents a danger that may significantly interfere with the plan
execution of all the boats. An example of this could be a manned
boat that enters the operative areas of the robotic boats. If this hap-
pens the human operator should signal to all the platforms that all
plans should be suspended to avoid collisions. When the manned
boat leaves the scene the human operator can then instruct the boats
to recover the execution of their plans (e.g., executing the remain-
ing tasks). This situation can be handled with a general interrupt
as all the boats will have to execute the same specific sub-mission
(i.e., reach a safe position) before recovering their plans. In our
empirical evaluation we simulate the occurrences of several gen-
eral alarm events while a CLV plan is running. In particular, we
fix the number of events to happen and distribute them randomly
during the mission execution,

In contrast, the temporary boat pull out represents an event that
interferes with a specific subset of robotic platforms and that will
not directly hinder the plan execution for the rest of the team. An
example of this could be the need to recharge the battery for one
robotic boat. Specifically, we simulate a discharge process for the
boats, where the battery level is reduced based on distance traveled.
The discharge process includes a random element that increases or
decreases the units of battery consumed to simulate possible not-
modeled situations (such as currents) that impact the amount of
energy required to traverse a given distance. In more detail, if we



Figure 6: The Cooperative Location Visit plan specified in the SAMI framework, with both interrupts (general and proxy).

indicate with bi(t) the level of battery at time t for boat i, we have
that bi(t + τ) = bi(t) − Kdi(τ)(1 + R), where τ is a positive
value that represents a time interval, di(τ) represents the distance
(in meters) traveled by boat i in the time interval τ , K is a constant
that expresses the units of battery required to travel one meter and
R ∼ U(−0.1, 0.1) is a random variable drawn from a uniform
probability distribution.

When we execute the plan with the interrupt mechanism in place,
we assume that whenever an external event happens, the operator
will trigger the corresponding interrupt. For example, when we ex-
ecute the CLV plan and the battery level of a boat reaches a critical
level, in our simulation the corresponding proxy interrupt will al-
ways be triggered and the correct boat will be selected. In other
words, we assume the human operator will always do the correct
actions that the framework offers to respond to the external events.
This is because our intent here is to evaluate the interrupt mech-
anism and not the human interface. As mentioned in the intro, a
proper evaluation of the human interface falls outside the scope of
this contribution.

When we execute the plan without the interrupt, we assume that
the human operator will abort the current plan, start the plan for
the specific interrupts and, finally, start a new plan to complete the
original mission once the interrupt has been handled. Note that,
when we start a new plan the operator must re-insert all informa-
tion required by the plan, such as the locations to be visited. In
our experiments, we assume the operator can keep track of which
locations have been visited and re-start the plan only with the lo-
cations yet to be visited (this reduces the number of interactions
in favor of the standard approach). Moreover, we assume that the
operator will start new plans only after the recharge mission has
been completed. This means that the other boats will remain idle
for the recharge mission duration. Another execution model could
start new plans for the other boats while the recharging boat accom-
plishes its mission and then restart the plan with all the boats once

the recharge process is over. While this would reduce the overall
time of the mission it would significantly increase the number of
interactions with the user.

Metrics The metrics we extract from the simulation combine
task dependent metrics and metrics to evaluate the operator load.
Specifically, the task dependent metric is the time to complete a
mission while the load metric is the number of user actions re-
quired to start/abort the plan, trigger the interrupt, provide infor-
mation to the boats (e.g., the locations to visit). In our experiments
such interactions always take the form of a click (on a map or on
a button), hence we measure the number of clicks that the opera-
tor performs. Since the main goal of the empirical evaluation is to
compare the use of the interact mechanism with the standard ex-
ecution model, we compute and report the percentage gain of the
interrupt mechanism for both metrics. In particular, we compute

(vStd−vInt)
max {vInt,vStd}

∗ 100, where vStd is the value of the metric ob-
tained with the standard execution model and vInt is the value of
the metric obtained with the interrupt mechanism. Since for both
metrics the lower the better, a positive value indicates superior per-
formance of the interrupt mechanism over the standard execution
model.

In the next section we report and discuss the results obtained
with our empirical evaluation.

5.2 Results
Table 1 reports results obtained for the CLV plan and the boat pull
out event. In particular, we consider a set of configurations, where
each configuration is defined by three elements: i) the number of
boats involved in the plan (3,5), ii) the number of locations to be
visited (10,20) and iii) the time required to exchange a boat’s bat-
tery expressed in seconds (10,20). For each configuration we exe-
cuted 10 repetitions. We report the average values of the gain for
both metrics and the standard error of the mean (shown in square
brackets). In the tables, we report only the percentage gain for con-



Configurations Std Int. % Gain (Interrupt vs Standard)
#boat,#loc.,r.t. #rec. #rec. Total Time # interactions

3, 20, 10 6 6 6.3% 73%
5, 20, 10 5 5 23% [± 0.5] 68%
3, 20, 20 6 6 26% [± 2.5] 72% [± 0.8]
5, 20, 20 5 5 27% [± 6.6] 64% [± 3.7]
3, 30, 10 11 12 26% [± 1.2] 69% [± 9.5]
5, 30, 10 10 12 21% 75%
3, 30, 20 11 12 48% [± 0.8] 80% [± 0.1]
5, 30, 20 10 12 27% [± 2.9] 75% [± 0.5]

Table 1: Results for the CLV plan and boat pull out event. Each
configuration specifies the number of boats, the number of lo-
cations, the time required to recharge the boat’s battery (in sec-
onds). The number of recharge (#rec) represents the number of
times a boat required a recharge action for the standard execu-
tion (Std.) and for the plan with the interrupt (Int.)

Configurations % Gain (Interrupt vs Standard)
#boat,#loc.,#alarms # interactions

3, 20, 1 44% [± 0.6]
5, 20, 1 40% [± 1.4]
3, 20, 3 65% [± 0.6]
5, 20, 3 61% [± 1]
3, 30, 1 46% [± 0.3]
5, 30, 1 16% [± 1.9]
3, 30, 3 68% [± 0.23]
5, 30, 3 66% [± 0.4]

Table 2: Results for the CLV plan and the general alarm event.
Each configuration specifies the number of boats, the number
of locations and the number of alarms.

figurations that show a statistically significant difference between
the values of the means5.

As it is possible to see, for all configurations the plan with the in-
terrupts achieves better performance both in terms of time to com-
plete the mission as well as for the operator workload. In more de-
tail, focusing on the time to complete the mission, we can see that
the gain of the interrupt mechanism with respect to the standard
mechanism increases when the recharge time increases, because in
the standard execution model all plans must be aborted when a boat
must recharge, while in the interrupt model the other boats can con-
tinue with their mission execution. As for the operator work load,
the interrupt mechanism requires far fewer user actions than the
standard plan. This is due to the fact that, in the standard execu-
tion model, the user must re-insert the locations that the boats must
visit when the CLV plan is re-started. Notice that, the number of
recharge actions is higher when using the interrupts model. This
is because the battery discharge process depends on the travel dis-
tance, and since the interrupt model minimizes the idle time of the
boats, each boat will on average travel more (this is confirmed by
the positive gain in the total time).
Table 2 reports results achieved for the CLV plan and the general
alarm event. We considered the same number of boats and number
of tasks, and we vary the number of alarm events that will appear
during the mission (1,3). As before, we report the average values
of the gain and the standard error of the mean.

For what concerns the operator work load, these results confirm

5To check whether results are statistically significant we run a t-test
with α = 0.05.

the superior performance of the approach that encodes interrupts in
the plan. However, in this case, the difference in time to complete
the mission does not show a statistical significance, consequently
we do not report such values. This is because the procedure to
handle the general alarm requires all boats to stop and wait until the
original mission can be safely re-started. Hence, the actions that the
boats perform when aborting a plan are very similar to the interrupt
handling procedure. Notice that, in all the simulations we do not
consider the time required by a human operator to perform the click
actions but we simply count the number of clicks. This is because,
a proper evaluation of such time would be highly dependent on the
skills of the operator. However, in practice this time will not be
negligible and would significantly increase the gain in favor of the
interrupt mechanism.

Finally, a video showing an exemplar execution of the CLV plan
presented in Figure 6 is reported here6. The video shows that, when
the general interrupt is triggered all the boats move through the
interrupt branch, and enters a recovery sub-mission that sends them
all to a safe assemble location. When the alarm is over the boats re-
start their previous missions. In contrast, when the proxy interrupt
is triggered, the selected boat proceeds to the recharge area while
the execution of the other boats progresses unchanged. When such
boat completes the recharge mission, it returns to finish executing
its previous mission.

The video shows how our mechanism allows the human operator
to smoothly handle different types of interrupts during the execu-
tion phase of complex team-level plans.

6. CONCLUSIONS
We consider the problem of handling human interrupts in team ori-
ented plans. Team oriented plans are a key tool for allowing human
operators to specify high level directives for teams of autonomous
agents. However, in many scenarios an operator might need to in-
terrupt the activities of individual team members to deal with par-
ticular situations (i.e., a danger that the team can not perceive). Pre-
vious to this work, after such interrupt the operator would usually
need to restart the team plan manually to ensure its success.

Here, we proposed a mechanism that allows a range of interrupts
to be handled smoothly, allowing the team to efficiently continue
with its tasks after an operator intervention. In particular, we build
on the SAMI framework, which proposes the use of Colored Petri
Net for specifying team plans, and we define two types of inter-
rupts: a proxy interrupt that affects the execution flow of a subset
of the platforms, and a general interrupt that specifies a particular
recovery procedure for all the platforms.

We validated our approach considering an application of robotic
watercraft. In more detail, we provided a quantitative evaluation of
our interrupt mechanism by simulating the plan execution with and
without the interrupts in a set of selected use cases. The empirical
results show that, by combining the team-level and proxy-level in-
terrupts, our mechanism provides a powerful and general model to
allow sophisticated interactions between the human operators and
team plans, resulting in a significant performance gain for the sys-
tem.

Acknowledgments
This work is funded by the Qatar National Research Fund NPRP
grant 4-1330-1-213.

6http://profs.sci.univr.it/~farinelli/
videos/CLV.mp4



REFERENCES
[1] M. Tambe, “Towards flexible teamwork,” Journal of

Artificial Intelligence Research, pp. 83–124, 1997.
[2] G. A. Kaminka and I. Frenkel, “Flexible teamwork in

behavior-based robots,” in Proceedings, The Twentieth
National Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial Intelligence
Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA,
2005, pp. 108–113. [Online]. Available:
http://www.aaai.org/Library/AAAI/2005/aaai05-018.php

[3] V. Ziparo, L. Iocchi, P. Lima, D. Nardi, and P. Palamara,
“Petri net plans,” Autonomous Agents and Multi-Agent
Systems, vol. 23, no. 3, pp. 344–383, 2011. [Online].
Available: http://dx.doi.org/10.1007/s10458-010-9146-1

[4] P. Scerri, B. Kannan, P. Velagapudi, K. Macarthur, P. Stone,
M. Taylor, J. Dolan, A. Farinelli, A. Chapman, B. Dias et al.,
“Flood disaster mitigation: A real-world challenge problem
for multi-agent unmanned surface vehicles,” in Advanced
Agent Technology. Springer, 2012, pp. 252–269.

[5] K. Jensen, Coloured Petri nets: A high level language for
system design and analysis. Springer, 1991.

[6] A. V. Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F.
Qvortrup, M. S. Stissing, M. Westergaard, S. Christensen,
and K. Jensen, “Cpn tools for editing, simulating, and
analysing coloured petri nets,” in Applications and Theory of
Petri Nets 2003. Springer, 2003, pp. 450–462.

[7] M. M. Veloso, M. E. Pollack, and M. T. Cox,
“Rationale-based monitoring for continuous planning in
dynamic environments,” in Proceedings of the Fourth
International Conference on Artificial Intelligence Planning
Systems, Pittsburgh, PA, June 1998, pp. 171–179.

[8] R. Simmons and D. Apfelbaum, “A task description
language for robot control,” in Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems,
vol. 3, Oct 1998, pp. 1931–1937.

[9] F. Y. Wang, K. Kyriakopoulos, A. Tsolkas, and G. Saridis,
“A petri-net coordination model for an intelligent mobile
robot,” Systems, Man and Cybernetics, IEEE Transactions
on, vol. 21, no. 4, pp. 777–789, Jul 1991.

[10] J. King, R. K. Pretty, and R. G. Gosine, “Coordinated
execution of tasks in a multiagent environment,” IEEE
Transactions on Systems, Man, and Cybernetics, Part A,
vol. 33, no. 5, pp. 615–619, 2003. [Online]. Available:
http://dx.doi.org/10.1109/TSMCA.2003.817387

[11] P. R. Cohen and H. J. Levesque, “Teamwork,” Special Issue
in cognitive Science and Artificial Intelligence, pp. 487–512,
1991.

[12] J. Desel, W. Reisig, and G. Rozenberg, Lectures on
concurrency and Petri nets: advances in Petri nets.
Springer, 2004, vol. 3098.

[13] C. Tovey, M. Lagoudakis, S. Jain, and S. Koenig, “The
generation of bidding rules for auction-based robot
coordination,” in Multi-Robot Systems: From Swarms to
Intelligent Automata, F. S. L. Parker and A. S. (editor), Eds.,
vol. 3, no. 14. Springer, 2005.


