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ABSTRACT
Biclustering regards the simultaneous clustering of both rows
and columns of a given data matrix. A specific applica-
tion scenario for biclustering techniques concerns the anal-
ysis of gene expression time-series data, wherein columns
dataset are temporally related. In this context, bicluster-
ing solutions should involve subset of genes sharing ‘simi-
lar’ behaviours among consecutive experimental conditions.
Due to the intrinsic spatial constraint required by time-series
dataset, current Factor Graph (FG) based approaches can-
not be applied. In this paper we introduce Time-Series
constraints forcing biclustering solution to have contiguous
columns. We optimize the model by using the Max-Sum
algorithm, whose message update rules have been derived
exploiting The Higher Order Potentials (THOP). The pro-
posed method has been assessed on a real world dataset and
the retrieved biclusters show that it can provide accurate
and biologically relevant solutions.
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1. INTRODUCTION
Biclustering, widely known also as co-clustering, refers to
the simultaneous clustering of both rows and columns of a
given data matrix [7]. The goal of biclustering techniques is
to retrieve groups of rows which share ‘similar’ behaviours in
a subset of columns, and viceversa. Compared to clustering,
biclustering focuses on local correlations between rows/columns
portions instead of considering the whole trend. Its origins
and the main application field is Bioinformatic, namely in
the analysis of gene expression data [7]. A particular task
in gene expression scenario is represented by the analysis of
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Figure 1: Biclustering of Time Series Data. The picture shows
how the data matrix (on top) would be analysed by classical bi-
clustering approaches (left), and how dedicated Time-Series bi-
clustering approaches retrieve the desired information.

time series data. In these datasets, samples refer to experi-
mental conditions which are temporally related (e.g. growth
stages of a plant, disease evolution). Biclustering approaches
in this scenario focus on the identification of genes that act
similarly in consecutive subset of samples [8]. This intro-
duces a spatial constraint that cannot be satisfied by clas-
sical biclustering approaches, Figure 1 provides an intuitive
example.

Recently, a trend of research focuses on the investigation
of Factor Graphs (FG) to face the biclustering problem [4].
The most recent FG based algorithm [4] redefines the bi-
clustering problem as the iterative search of one bicluster,
and it provides a model that define a mask on the data ma-
trix highlighting which points belong to the solution and
which not. Such mask is obtained by optimizing the objec-
tive function described in the FG with the Max-Sum algo-
rithm. Although the method proposed in [4] improves the
scalability of FG based approaches, it cannot be applied on
time-series dataset. One of the advantages in using FG ap-
proaches is the fact that these models can be easily modified
by plugging in new factors, given that corresponding Max-
Sum messages can be derived efficiently. In this paper we
extend the model proposed in [4] by introducing a constraint
enforcing the solution columns to be contiguous. We derive
the new messages update rules employing The Higher Order
Potentials [9], and we plug them in the pipeline described
in [4]. The proposed technique does not alter the time and
space complexity of [4], hence preserving the scalability im-
provement reached by such method. We conduct a simple
test on a real gene expression matrix containing time-series
data: preliminary results show that the investigation of FGs
for biclustering time-series data provides accurate and bio-
logically significant solutions.

FGs and the Max-Sum Algorithm.
A FG is a bipartite graph graph including: i) variable nodes,



one for problem variable, usually drawn as circles and ii)
factor nodes, one for each local function, usually drawn as
squares. Such graph is bipartite in the sense that there are
only edges/connections between factors and variable nodes
(not between two variables or two factors). The obtained
graph represents how the global objective function decom-
poses in smaller local functions (factors) providing a model
which is easier to analyse. There are no limitations on the
form of the local functions, in fact factors can be designed to
impose hard or soft constraints, and they may involve differ-
ent types of variables (e.g., categorical, integer, binary, real
numbers). However, depending on the optimization algo-
rithm adopted, the choices made when designing a FG have
a drastic effect on the difficulty of the resulting optimization
problem [4]. In this paper, due to its recent exploitation in
the biclustering field, we adopt the widely known Max-Sum
algorithm 1 [4].

2. BICLUSTERING FG FOR TIME SERIES
Components, Variables and Factors.

1. Biclustering can be seen as the incremental search for
the largest bicluster. As in [4] the solution of our FG is
a binary ‘mask’ C having the same size of the matrix
under analysis, each variable cij ∈ {0, 1} (with 1 ≤ i ≤
#Rows and 1 ≤ j ≤ #Columns). Each variable cij is
equal to one if, and only if, an entry aij belongs to the
solution.

2. Entries value counts. Biclusters with high valued en-
tries should be preferred since they are related with
genes over-expressions. To represent this aspect in the
objective function the model comprehend one factor
Aij(cij) for each variable, which sums the value aij to
the objective if, and only if, the variable cij has been
set to 1.

3. Biclusters are coherent. Coherence is the crucial as-
pect that distinguish a bicluster from a random sub-
matrix. In order to obtain the desired solutions, we pe-
nalize the incoherent ones introducing a factor on each
pair of variables. Such factor, called Oijtk(cij , ctk),
subtracts from the objective function the amount of
incoherence between two variables I(aij , atk) if both of
them have been set to 1. In this paper we adopt as co-
herence criteria the simple difference among all the en-
tries belonging to a bicluster: I(aij , atk) = |aij − atk|.

4. Biclusters are sub-matrices. This means that once we
select the entries belonging to the solution, we must be
sure that these represent a valid assignment (i.e., form
a sub-matrix). For this reason the FG involves a set of
factors defined over each couple of rows (or columns)
Bit(ci1, . . . , cim, ct1, . . . , ctm), that enforce the selected
entries belonging to have a rectangular shape (i.e.,
form a sub-matrix).

1Max-Sum is a message passing technique based on the def-
inition of two functions, called messages, exchanging infor-
mation between connected nodes in the graph. These mes-
sages are iteratively exchanged until a convergence criterion
is met (commonly defined over the variables configuration
or the objective function). For a detailed perspective on the
Max-Sum algorithm including pros and cons please refer to
[5].

5. Time series solution must involve contiguous experi-
mental conditions. As mentioned in Section 1, the
analysis of time-series data focus on how genes pat-
terns evolve in consecutive instant of times. Returning
to Figure 1, classical biclustering approaches cannot
retrieve such information. Hence we introduce a set
of spatial constraint in order to devise a suitable one.
Given a set of variable binary variables x, we define the
Time-Series constraint TS(x) such that the ones in x
do not have zeros in between or, more formally, must
form a contiguous subset. Assuming that the columns
of the data matrix represent the experimental condi-
tions, if we apply such constraint on each row of C the
solution is enforced to have contiguous columns and
hence to contain a time-series bicluster.

Concerning messages, in this short paper we report only
the equations adopted to encode the time-series constraint
in the model. For a detailed explanation about messages
derivation please refer to [5]. Specifically: messages going
from variables to functions are can be computed as:

γij =

m∑
k=1

ηkij +

(n,m)∑
tk=(1,1)

σtk
ij + αij

where ηkij , σ
tk
ij and αij are incoming messages for the variable

cij . Regarding the message going from a factor node TSi to a
variable node cij , we derive it exploiting a particular THOP
called convex-set potential [9]; and it can be computed as:

ρij =MS(c1:j−1, cj−1 = 1) +MS(cj+1:N , cj+1 = 1)+

−max (MS(c1:j−1),MS(cj+1:N )) .

where MS(c1:j−1, cj−1 = 1) is a function retrieving the
maximum weighted contiguous subsequence in the subset
{c1, . . . , cj−1} and forcing cj−1 to be equal to 1 (if the sec-
ond part is missing, no variables are constrained).

3. EXPERIMENTAL EVALUATION
The algorithm performances have been assessed on a Real
Gene Expression dataset, namely the CHO et al yeast cell-
cycle dataset [3]. The dataset is composed by a matrix where
6457 genes have been sampled in 17 consecutive time steps
with an interval of 10 minutes.

Although recent models improved the scalability of FG based
approaches, real data matrices are still far to be directly
analysed [4]. In our case the bottleneck is represented by
the space complexity required by the model (i.e., the coher-
ence is calculated for each pair of entries with complexity
O(n2m2)). Hence, as proposed in [4], we run the algorithm
on randomly extracted sub-matrices where about 120 rows
have been selected. First, to reduce the matrix dimension-
ality we applied a variance-based gene selection, as already
adopted in relevant literature [2]. Each row of the obtained
matrix have been then rescaled such that the 2-sigma in-
terval lies in [0, 1], and missing values have been recovered
using the method proposed in [10]. We retrieve one biclus-
ter from each sub-matrix and then the following evaluation
criteria have been adopted:

1. Mean Square Residue (MSR) - it assess the fluctuation
of expression level for all rows in the bicluster. The



ID #Rows #Cols (first-last) MSR GO-Terms

1 20 3 (14 - 16) 0.0017
GO:0065008
GO:0022890

2 18 4 (12 - 15) 0.0011
GO:0042254
GO:0022613

3 18 3 (14 - 16) 0.0007
GO:0009063
GO:0044270

4 17 4 (6 - 9) 0.0015
GO:0005515
GO:0051649

5 17 4 (6 - 9) 0.0015
GO:0008202
GO:0016125

6 17 3 (11 - 13) 0.0008
GO:0065008
GO:0022890

7 17 3 (6 - 8) 0.0013
GO:0031974
GO:0043233

8 16 3 (3 - 5) 0.0005
GO:0031980
GO:0005759

9 16 3 (7 - 9) 0.0016
GO:0016020
GO:0031090

10 16 3 (4 - 6) 0.0017
GO:0005730
GO:0015078

Table 1: Top 10 largest Biclusters obtained by the proposed
approach on the yeast dataset.

smaller the MSR, the higher the correlation. Given a
bicluster ATK , the MSR is computed as

MSR(TK) =
1

|T ||K|
∑
t∈T

∑
k∈K

(atk−aTk−atK +aTK)2

where aTk is the mean of the kth column in the biclus-
ter, atK is the mean of the tth row in the bicluster,
and aTK is the mean of the whole bicluster.

2. Gene Ontology (GO) terms - are a fundamental qual-
itative information that highlights whether the genes
contained in a certain bicluster are biologically related
or not. The GO enrichment analysis have been per-
formed via the GOstat online application2 [1] setting
as p-value threshold 0.05.

Table 1 reports the results concerning the top 10 largest bi-
clusters, it shows for each bicluster: the number of rows com-
posing the bicluster, the columns interval selected, the MSR
and the top 2 GO terms according to the p-value and number
of genes involved. It can be seen by the MSR and GO term
columns that the retrieved biclusters present high coherence
and they are significantly and biologically relevant.

Surely it would be interesting to compare the proposed ap-
proach with other state-of-the-art techniques such as [8],
however with these preliminary results we want to demon-
strate that the extension of FG based approaches to time-
series dataset is sound and, moreover, it provides accurate
and biologically meaningful solutions. To make results com-
parable with current state-of-the-art a first step could be
trying to merge the results increasing the biclusters size.
A possible solution can be the following: i) given the set
of bicluster previously obtained, merge all the rows of the
biclusters sharing the same column subset; ii) then evalu-
ate the FG objective function for each novel bicluster and,
if the value is bigger then the sum of the previous ones, re-
place them. Table 2 presents two bicluster obtained with the
heuristic just described. The MSR of the retrieved biclus-
ters is comparable with the performances presented in Table

2http://gostat.wehi.edu.au/

ID #Rows #Cols (first-last) MSR GO-Terms

11 38 3 (14 - 16) 0.0013
GO:0005737
GO:0022890

12 57 4 (6 - 9) 0.0015
GO:0044425
GO:0005515

Table 2: Result of merged biclusters. Highlighted in bold a GO
term that was not enriched in basic results, this GO term involve
31 of the 38 genes in the bicluster.

1, demonstrating that the proposed approach would provide
accurate solution also in bigger data matrices. Moreover
grouping the results allows to retrieve different and more in-
formative GO terms, specifically in the GO term highlighted
in bold 31 of the 38 selected genes are involved in the same
biological process.

4. CONCLUSIONS
In this paper we propose a FG based approach dedicated
to time-series dataset. The algorithm presented is an ex-
tension where the model proposed in [4] has been modified
introducing Time-Series constraints enforcing the solution
to have contiguous columns. We implement Max-Sum mes-
sages update rules exploiting The Higher Order Potentials,
the resulting messages do not alter the complexity of the pre-
vious model. We test the approach on a real gene expression
dataset and the biclusters obtained present high coherence
and are biologically consistent. Future works will surely re-
gard the comparison with other state-of-the-art time-series
algorithms.
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