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Abstract

We focus on the Multi-Robot pickup and delivery problem for logistic scenarios
that recently received significant attention from the research community. In
particular we consider an innovative variant of the pickup and delivery problem
where robots can deliver, in a single travel, multiple items. We propose a
decentralized coordination algorithm based on a token passing approach. Our
algorithm allocates delivery tasks (i.e., an aggregation of items to be delivered by
a single robot) to the Multi-Robot System avoiding conflicts among the robots.
In more detail, we show that our approach generates conflict-free paths for
the Multi-Robot system requiring weaker assumptions on the operational area
compared to previous approaches. We empirically evaluate the proposed method
on three different scenarios, including the production line of a smart factory,
comparing the performance of our decentralized method against two centralized
approaches. Results show that our approach finds solutions of similar quality (in
terms of makespan and travel distance) reducing the associated computational
effort.

Keywords: Multi-Robot Systems, Multi-Agent Path Planning, Task
Allocation, Logistic Applications

1. Introduction

The multi-agent pickup and delivery (MAPD) problem requires a set of agents
to deliver a set of items to relevant locations. This problem is particularly
important for logistic scenarios where robots should move goods from storage
locations to production areas [1, 2] and many approaches have been proposed
to effectively coordinate the robots involved in the operations.

In particular, a series of approaches [3, 4] are based on the concept of well-
formed infrastructures [5], where the operational area must meet a set of suffi-
cient conditions to guarantee that the MAPD instance is solvable. While these
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approaches successfully address the MAPD problem, they focus on situations
where a single agent can transport a single item for every travel. This is a
reasonable assumption for several important scenarios, for example large au-
tomated warehouses where robots must transport a single pod to a packaging
area, like the system used by Amazon [1].

However, in other scenarios it may be beneficial to have more items delivered
in one single travel if the capacity of the platform allows this to happen. For
example, imagine a production line where different types of objects must be
delivered to different production areas and mobile robots are used to transport
such objects from a storage area to the specific production areas. If robots
can carry more than one object in one single travel this would result in a more
efficient transportation system (i.e., minimizing the time to transport the objects
and the travel distance for the robots).

To address this issue, we consider a novel variant of the MAPD problem,
where a transportation task consists of picking up multiple items, each with a
(possibly) different delivery destination. We propose a decentralized algorithm
to solve this variant that can allocate multi-item transportation tasks to the
robots computing conflict-free paths. Moreover, our algorithm tries to optimize
the makespan (i.e., the time required by the team of robots to complete the
tasks), even though no optimality guarantee is given for this criterion. We con-
sider the makespan as it is one of the most common metric used when evaluating
solutions to the Multi-Agent Path Finding (MAPF) problem [6, 7].

To validate our distributed approach we consider two centralized algorithms
that solve the same problem and compare the algorithms in three different
logistic scenarios. Such scenarios include a benchmarking grid map and two
configurations of a prototype production line for a smart factory1. The quanti-
tative evaluation is performed in a realistic simulation environment built using
ROS (Robot Operating System).

In summary, this paper makes the following contributions to the state of the
art:

i) we present a novel variant of the MAPD problem, where each transporta-
tion task requires the delivery of multiple items in a single travel. Such items
maybe delivered to different locations hence the computation of paths for the
robots is significantly more complex than when single items are considered.

ii) we propose a decentralized coordination method that uses a token-based
protocol to allocate the tasks and a token-wait approach to synchronize the
execution of the paths by the robots. We analyse the proposed approach in terms
of computational complexity and guarantees that method offers with respect to
conflicts among the robots. Crucially we prove that our method guarantees
conflict-free paths with fewer restrictions on the map of the working area in
comparison to previous approaches;

iii) we empirically evaluate our approach by comparing the proposed de-

1The Industrial Computer Engineering (ICE) laboratory for Industry 4.0 of Verona Uni-
versity https://www.icelab.di.univr.it/?lang=en
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centralized method with two competitors: a centralized method that evaluates
all possible allocations of transportation tasks to robots (named global) and a
centralized approach that greedily selects the best allocation of transportation
tasks to robots (named greedy). Crucially, the evaluation is performed on the
ROS framework by using the full navigation stack that ROS provides. Experi-
ments have been performed on three different operational scenario including the
real plants of a prototype smart factory. Results show that the proposed decen-
tralized method provides good performances (in terms of time to complete a set
of tasks and distance travelled by the robots) being superior to greedy and com-
parable to the global approach, while requiring significantly less computational
effort.

The reminder of the paper is organized as follows: Section 2 describes the
background and related work discussing the MAPD problem as well as the most
related approaches for Multi-Agent Path Finding and Multi-Robot task Allo-
cation; Section 3 describes the sinlge-item MAPD problem and introduces the
multi-item variant. Section 4 describes the proposed decentralized algorithm
to solve the multi-item variant of MAPD and reports the theoretical analy-
sis of the proposed approach in terms of complexity and guarantees. Section
5 describes the empirical evaluation of the proposed approach presenting the
empirical methodology and discussing the obtained results. Finally, Section 6
concludes the paper.

2. Background and related work

The MAPD problem requires agents to perform a series of tasks, where for
each task an agent must travel to a pick-up location and then to a delivery
location [3]. Hence, the MAPD problem is deeply related to the Multi-Agent
Path Finding (MAPF) problem, which requires multiple agents to plan conflict-
free paths from their positions to their goals, as well as to the Multi-Robot
Task Allocation (MRTA) problem, where a set of tasks must be allocated to a
set of robots.2 Both problems have been extensively studied in the literature
and there are several techniques that can be used to address them. In the next
sections we discuss the techniques that are related to our work the most.

2.1. Multi Agent Path Finding

The MAPF literature offers a wide variety of techniques that span from central-
ized methods [8, 9, 10, 11, 12, 13] to distributed approaches [14, 15, 3, 16, 17].

Grid-like environments have been used to represent the MAPF problem [12],
as they can model different logistic scenarios, including shipping container han-
dling and order fulfillment. However, following recent literature on MAPD

2While usually the term agent is more general than robot in this work we will use the
two words interchangeably adopting the term that is most frequently used in the literature
depending on the context.
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[3, 4, 18], we prefer to use a graph based approach as it is more general and can
be specialized to represent grid-like environments.

One of the first approach to MAPF is Cooperative A* (CA*) proposed by
Silver in [13]. In CA* each agent plans its path sequentially taking into account
the paths of the previous agents. The work proposes two variants of this scheme:
HCA* that consider specific heuristics to boost performances, and WHCA*
where each agent plans only for a fixed number of steps into the future and
re-plan at regular intervals. While our approach to route planning (see Section
4.4) shares some similarities with the basic concepts used by CA*, the work
described in [13] is a centralized approach and it is not based on the concept of
token-passing.

Distributed approaches to path planning have been proposed for various
types of operational scenarios. For example, Gilboa and colleagues in [17] pro-
pose a distributed algorithm, for a setting where the model of the environment
(a graph in this case) is initially unknown and the agents must physically move
to discover new vertices. In this context, agents have a limited communication
range and different schemes are proposed to divide the agents in groups that
must stay in close proximity. Battacharya and Kumar in [19] propose a dis-
tributed optimization algorithm for multi-robot path planning to find paths in
a 2D continuous environment with rendezvous constraints . In this work, each
robot start with an initial plan (a list of coordinates towards its goal) and the
algorithm keeps increasing the penalty weights in order to find variations on
the path that optimize the constraints. While these approaches propose very
interesting solutions they address different problem settings with respect to the
logistic scenarios that we focus on.

In contrast, Chouhan and Nyogi in [15] propose DMAPP a token-passing
algorithm where each agent plans an individual path using the FastForward
planner [20] then each agent exchanges its plan with the others according to a
priority order to resolve conflicts between the individual plans. When a lower
priority agent receives a message from a higher priority agent the lower priority
agent tries to change its plan to avoid conflicts with plans of all higher priority
agents. This approach is incomplete because it evaluates a single priority order.

In general, for a team of n robots, n! priority orders should be evaluated,
which is computationally expensive. To address this issue, DiMPP [21] extends
DMAPP showing that is sufficient to evaluate only n orders, which are variations
of the same token cycle where only the cycle initiator changes.

These two methods use a message passing procedure which shares many
similarities with our approach, however they solve the MAPF3 problem in the
standard setting where each robot has a single destination that is an input
for the problem. In contrast, our approach considers the possibility of having
several destinations for each robot and, most important, it addresses also the
task assignment problem, i.e., the goals for each robot are not an input for the

3They name the MAPF problem as Multi-Agent Path Planning (MAPP) hence the name
of the approaches.
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approach but are computed by the approach starting from the transportation
tasks. This is important, because while we build the multi-agent paths consid-
ering a single order we can guarantee that the output paths are conflict-free by
changing the tasks allocated to the robots (see Section 4 for more details).

All approaches discussed so far are usually termed decoupled, i.e., the paths
for the agents are not planned in the joint action space of all the agents. Rather,
each individual agent plans for its own path trying to avoiding conflicts with
the other agents. Coupled approaches are interesting as they can directly plan
conflict-free paths however they are typically computationally intensive and not
tractable for most application scenarios. Pianpak and colleagues propose in [16]
a coupled decentralized algorithm. To make the approach tractable this algo-
rithm subdivides the search space between multiple agents spatially, with each
agent in charge of finding MAPF paths across an assigned subgraph. In each
round, the agents find an agreement on which robots may cross the boundary
from a subgraph to another. Then, each agents finds the paths in its subgraph
to move robots across using Answer Set Programming (ASP). While this is an
interesting and promising solution scheme, our approach addresses the MAPD
problem that involves also the task allocation process and not only path find-
ing. Hence, we prefer to follow the scheme adopted by previous approaches on
MAPD [3, 4, 18] that are decoupled and use graph search techniques to find
paths for the robots.

2.2. Multi Robot Task Allocation

As mentioned above MAPD is deeply related to the Multi-Robot Task Alloca-
tion (MRTA) problem.

The MRTA problem can be roughly stated as the problem of deciding which
robot performs which task(s). This decision process has a great impact on the
performance of the overall system and therefore has been widely studied [22],
[23] and it is closely related to logistic scenarios [1]. MRTA approaches span
a wide variety of methodologies including Distributed Constraint Optimization
Problem (DCOP) [2], probabilistic methods [24], market-based approaches [25]
and auctions [26, 27], as well as Token Passing techniques [28], [3], [4].

Token passing approaches for task assignment are the most closely related to
our work. In particular, Scerri and colleagues in [28] propose a task assignment
approach where each task is represented by one token and tokens are exchanged
among the robots. When a robot receives a token it decides whether to exe-
cute the associated task or to send the token to some other team mates. The
decision on whether to execute a task is a key point and it is taken based on
local information that are available to the single robot (e.g., constraints on its
own resources, capability to perform the task, other tasks that the robot maybe
assigned to) and on a broad knowledge on the state of the system that is trans-
mitted through the tokens (e.g., how many robots refused the token). To guide
the system towards good solutions authors propose the use of a threshold on the
ability to perform the task: a robots accepts a task only if its ability for the task
is higher than the threshold. The main benefit for this token passing scheme is
the extremely low computation and communication requirements that make the
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approach very well suited for large scale applications. While our approach to
task allocation is also based on the concept of a token that is exchanged among
the robots our focus is not so much on the possibility of allocating tasks in large
scale scenario and to achieve high quality task allocation. Rather, similar to
[3, 4] we use the concept of a token as a way to pass information in a synchro-
nized way through the robot team. In this perspective, we do not create a token
for each transportation task but we create one token that represents all tasks
and tasks that are allocated are removed from the token. Also the token is a
way to communicate the current paths of the robots to the rest of the team so
to avoid conflicts. The approaches presented in [3, 4] will be discussed in details
in Section 2.3.

2.3. Multi-Agent Pickup and Delivery

As mentioned before, MAPD [3] is deeply related to MAPF and MRTA, in fact
it can be considered as a variant of MAPF where agents are assigned to delivery
tasks and must visit the pickup and delivery location consecutively.

Token-passing approaches are particularly related to the MAPD problem
because this type of coordination methods have been successfully applied to
MAPD by a series of recent works [4, 3]. These works propose the use of a
token that maintains the paths already planned by the agents and the tasks
that must be assigned. In more detail, Ma and colleagues in [3] propose two
algorithms, TP (Token-Passing) and TPTS (Token-Passing with Task Swaps).
In TP the token is passed from one agent to another and the agent that owns
the token selects the next task to perform avoiding conflicts with the paths
already stored in the token. TPTS extends this approach by extending the
task set inside the token with the tasks that other robots have assigned but for
which they have not yet reached the pickup location. The TP approach has
been extended in [4] by taking into account the kinematic constraints of a real
robot in order to calculate continuous movements instead of discrete vertices on
a graph.

Ma and colleagues show that for well-formed MAPD instances [3] their ap-
proach is guaranteed to find conflict-free paths. Well-formed MAPD instances
and based on the concept of well-formed infrastructure [5] and must respect a
set of constraints. The environment is defined as a planar graph, where each
vertex represents a specific location of the environment. The vertices of the
graph that represent relevant locations of the environment are called endpoints
and are divided in home and task endpoints. Home endpoints are the locations
from where robots start and where they go after completing all their tasks. Task
endpoints are locations where objects are either picked up or delivered.

A well-formed MAPD instance must respect three constraints: i) the number
of tasks must be finite, ii) the number of home endpoints must not be lower than
the number of robots and iii) for any two endpoints there must be a path between
them that does not traverse another endpoint. We take inspiration from this
important line of work because we also use a token-based algorithm to generate
conflict-free paths for MAPD.
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However there are several elements that differentiate our work with respect
to these previous approaches. A first important difference is the fact that we
significantly relax the assumptions on the map required by our algorithm to
provide conflict-free paths, in fact our MAPD instances do contain non-well
formed infrastructures (see section 4.5). A key element to achieve this is that
we do not require every agent to perform a task, rather in our approach one agent
could perform more tasks than another and in pathological situation a single
agent could perform all tasks. Our empirical evaluation shows that in practice
the load distribution across the agents is good and hence these situations are
rare.

Recently Okumura and colleagues addressed both the iterative MAPF (and
particularly MAPD) in [18]. They propose the Priority Inheritance with Back
Tracking (PIBT) approach which solves the iterative MAPF problem with a
decoupled decentralized method. In this approach, agents continuously plan
their next movements based on prioritized planning. Path adjustments to avoid
deadlocks are solved by using priority inheritance that is executed following a
backtracking protocol.

Okumura and colleagues show that their approach guarantees that each
agent will reach its destination in finite time if the environment is a graph
such that each pair of adjacent vertices is part of a bi-connected component, i.e.
adjacent nodes belong to a simple cycle of length 3 or more. This restriction on
the environment may not be guaranteed in some operational environments as it
is the case for some of our MAPD instances (see section 4.5).

3. Problem definition

In this section we first report the definition of the single-item MAPD problem
and then define the multi-item MAPD problem.

3.1. Single-item MAPD problem

The single-item MAPD problem, defined in [3], consists of a task set T =
{tk1, tk2, tk3, . . . , tkr} , an environment described by an undirected planar con-
nected graph G = (V,E) and by n robots. Each task tki represents a task
requiring the transportation of one item from a pickup location si ∈ V to a
delivery location gi ∈ V . Each free robot (i.e., a robot that is not currently
carrying an item) is assigned to an available task. The robot must execute the
task by going to the pickup location, taking the item and then going to the de-
livery location. A robot can be assigned to another task if it has not reached the
pickup location of the current task. After the completion of the task the robot
can be assigned to a new task. At any time the robots must avoid collisions with
each other, in a setting with discrete timesteps TS = {t1, t2, t3, . . . , tz}, this can
be enforced by making sure that: i) two robots can not occupy the same vertex
in the same timestep and ii) two robots can not traverse the same edge in the
same timestep. The instance of the problem is solved when all the tasks have
been executed without any collision.
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3.2. Multi-item MAPD problem

The multi-item MAPD problem differs from the single-item version [3] in the
definition of the task set and the characteristics of the robots.

In the multi-item MAPD problem there is a multi-item task set P = {p1, p2, p3, . . . , pq}.
The multi-item task set P is generated from the single-item task set T by a task
aggregation algorithm, described in section 4.2. Each task pi ∈ P represents
the request to pick up a set of objects from a pickup location si ∈ V and deliver
them to mi delivery locations {g1

i , g
2
i , g

3
i , . . . , g

mi
i } ∈ V . These destinations may

differ between each object or may be the same for all of them.
The objective is to assign each task to a robot and a robot can have multiple

tasks assigned. Then for each robot a path that completes all the assigned tasks
must be found. A task pi is considered completed when the assigned robot has a
path to reach the pickup location si and subsequently reach all the mi delivery
locations. Each robot must execute tasks in the order on which they have been
assigned and only one task at a time can be active.

Similar to the single-item version, planning takes place in a setting with
discrete timesteps TS = {t1, t2, t3, . . . , tz}. At each timestep each robot occupies
a vertex of the graph G and there are two types of conflict that may occur
between the robots. The first is a vertex conflict, where two robots occupy the
same vertex at the same time. The second is an edge conflict, where two robots
to go through the same edge in opposing directions. Robots must find plans
that are conflict-free. The instance of the problem is solved when all the tasks
have been planned and the generated plans are conflict-free.

Differently than the standard MAPD problem, a task can require a robot to
transport more than one item. However, a robot has a limit on how many objects
it can transport, depending on the weight or the size of the objects. For this
reason we pose a limit on the transportation capacity of a robot. Specifically, we
defined a capacity value C, equal for every robot.4 We then consider a demand
for every item and we assume that a robot can execute a multi-item task only
if the sum of the item demand is less or equal its capacity.

4. Method

In this section we describe our proposed solution to the multi-item MAPD
problem. Specifically we first provide an overview of the approach and then
detail the most important ingredients for our method: task aggregation, task
assignment and route planning. Finally we provide an analysis of the approach
in terms of complexity and guarantees.

4Having homogeneous capacity for the robots is a reasonable assumption for standard
logistic scenario. It would be possible to extend the approach to different capacities for
different robots, but this would require a more sophisticated approach to perform the task
partitioning phase which is not the main focus of this paper.
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Distributed Iterative algorithm

Task Planner

Tasks inserted inside
token

1 2 7 12 17 18 13 12 7 6 1

1 2 7 12 17 18 13 12 7 6 1

2 7 6 11 16 11 6 7 2

1 2 7 12 17 18 13 12 7 6 1

2 7 6 11 16 11 6 7 2

3 3 2 7 12 17 18 13 8 3

1 2 7 12 17 18 13 12 7 6 1

3 3 2 7 12 17 18 13 8 3

2 7 6 11 16 11 12 7 6 11 16 11 6 7 2

Token-Wait

Figure 1: Execution example for the iterative algorithms. The example is related to the grid
map (See Figure 3).

Task
assignment 1 2 7 12 17 18 13 8 3 2 1

2 7 6 11 16 11 6 7 12 17 12

3 3 2 7 12 17 16 16 11 6 7

7 2

2 3

Route
planning

Task
assignment 1 2 7 6 11 16 11 6 7 6 11

2 7 12 17 17 17 17 17 17 17 17

3 3 2 7 7 7 7 7 8 8 13

17 12

18 17

Route
planning

16 11 6 1

7 2

18 13 8 3

Token-Wait

Token-Wait

Centralized Greedy algorithm

Centralized Global algorithm

Task Planner

Task Planner

Figure 2: Execution examples for the two centralized algorithms. The examples are related
to the grid map (See Figure 3).

4.1. Overview

To deal with the multi-item MAPD problem we propose a distributed algorithm,
called iterative, based on a Token Passing technique were a token T contains
the paths of every robots and the remaining tasks. The token T is shared
among the robots via message passing. The iterative algorithm takes as input a
multi-item task set which is computed by a dedicated module called task plan-
ner. The task planner, takes as input the single item transportation tasks and
divides them in batches called windows. The single item tasks that belong to a
windows are aggregated into a set of multi-item transportation tasks which is
then given as input to the iterative algorithm. The task planner is realized as
a centralized algorithm that operates on each window separately. Specifically,
for each window the task planner evaluates all partitions that meet the capacity
constraints of the robots, choosing the one that minimizes a given cost function
(see Section 4.2 for more details). When the multi-item tasks for a given win-
dow has been generated they will be processed by the task allocation algorithm
and robots will then execute the computed paths. While the task allocation
and execution phase is running the task planner can process another window
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to generate a new multi-item task set. The task allocation algorithm can start
allocating these new task set while the robots are executing their current tasks,
however there is not task preemption, i.e., tasks generated from a previous win-
dow will always be executed before the tasks generated from the next window.
The task planner is completely decoupled from the iterative algorithm and it is
used only as a way to generate the Multi-Item MAPD instance from a single
item task set. While more advanced approaches can be used to realize a more
efficient task partitioning phase, our focus in this work is on the iterative algo-
rithm. Hence we decided to choose a simple approach for the task aggregation
phase.

When the multi-item transportation tasks have been created the task planer
generates a token that contains all the tasks and sends the token to one of the
robots. The token is then passed from one robot to another to distribute the
tasks and plan conflict free paths, hence completing the multi-item tasks.

When the paths are executed, the token keeps cycling through the robots
to synchronize their movements. After a robot reaches the next location in its
path it waits for the token and it inserts the information about its progress
inside the token, then the robot waits for the other team member to do the
same before going toward the next location. This is important because before
executing the paths it is very difficult to have a clear estimation of the time
required by a robot to execute a portion of the path. Hence, if robots are not
synchronized conflicts may happen even if the computed paths considering the
discrete timesteps TS are conflict free.

We also consider two centralized algorithms called global and greedy as
benchmarks for our approach. They implement different task assignment strate-
gies (see Section 4.3). For the centralized algorithms the token is used only for
synchronization purposes.

For ease of explanation, all the algorithms will be described considering only
one window. Figures 1 and 2 show a visual representation of an execution
example on the grid map (see Figure 3) for the three approaches. These will be
used in what follows as a running example to explain the main ingredients of
our approach.

4.2. Task aggregation

This is the first step of the three algorithms. In this phase the single item task
set T = {tk1, tk2, tk3, . . . , tkr} is aggregated to form a multi-item task set P.
This is done by the task planner and then the multi-item task set P is passed to
the task allocation algorithm. For the iterative algorithm that is decentralized,
the P is inserted into the token and sent to the robots.

Let us consider a partition Pi = {S1
i ,S2

i ,S3
i , . . . ,S

vi
i } of a generic set X as

a set of non-empty subsets of X such that X is a disjoint union of the subsets
(
⋃
Sji∈Pi

Sj
i = X and ∀Sk

i ,Sl
i ∈ Pi Sk

i 6= Sl
i ⇒ Sk

i

⋂
Sl
i = ∅).

The multi-item task set P is a partition of T , where each multi-item task
will have items with a total demand that is less or equal to the capacity of the
robots. This is done by evaluating all the partitions P1,P2, . . . of the task
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set T . Each partition Pi represents a possible aggregation of the tasks and
each subset Sj

i ∈ Pi contains the tasks that will form a multi-item task. The
partitions that do not respect the constraint on the capacity are ignored.

A multi-item task set Pi is generated from the partition Pi. For each subset
Sj
i a multi-item task pj is created, with each destination gkj being equal to the

destination gk of the task tkk ∈ Sj
i . This is shown in Figure 1: each colored dot

in T is a single-item task and the color of the dot represents the destination of
the corresponding item (e.g., the green dots have vertex 16 as destination, the
red dots have vertex 17 and blue light dots have vertex 18). Each multi-item
task in P is composed of one or more items from the original task. To choose
the best partition an evaluation metric on the cost of a multi-item task pj is
defined:

V (pj) =
path(pj)

demand(pj)
(1)

where path(pj) is the length of the shortest path completing the multi-item task
pj (without considering other robots) and demand(pj) is the total demand of
the task.

The cost of a multi-item taskset Pi is:

V (Pi) =
∑

pj∈Pi

V (pj) (2)

The final task set P will be the one with the lowest cost. This phase is executed
once for each window of tasks.

4.3. Task assignment

The multi-item tasks generated by the task planner are assigned to the robots
by using one of the three mentioned algorithms: iterative, global or greedy.

4.3.1. Iterative algorithm

Algorithm 1 reports a pseudo-code description of the iterative algorithm. The
algorithm takes as input a multi-item task set P which has been generated by
the task planner considering a given window of single item tasks. The task
planner generates a token that contains the task set P and sends the token to
the robot that has the path with the minimum number of hops. This can be
determined by looking at the paths which are stored inside the token. This is
an heuristic that aims at minimizing the makespan (see section 4.4 for more
details) and at balancing the load in terms of tasks between robots. We also
arbitrarily define a total order o among the robots (e.g., based on their ids)
which is used to break ties when more robots have paths with the same number
of hops. This arbitrary order is also used to select which robot to exclude from
the task assignment process when a valid path can not be found (see below for
more details). The robot that owns the token selects a task, called pi, from the
token and derives from the task the list of endpoints (essentially, the pickup
location si followed by the delivery locations g1

i , g
2
i , . . . ) that must be reached
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to complete the task. The list is completed by adding at the end the home
endpoint of the robot. This result in a list of vertices that the robot must reach
in order to complete the assigned task. This list is used as an input for the path
planning phase (see Section 4.4) that computes a path connecting the endpoints
and avoiding conflicts with the other robots. If a valid path is found, it is stored
in the token and the token is sent to the robot that now holds the shortest
path. Otherwise, if such path can not be found, then the task is re-inserted in
the token and the token is sent to the next robot until a robot that can find a
valid path is found. If there is no robot that can execute the task, then all the
tasks in P are re-inserted in the token and the first robot according to the total
order o is excluded from the allocation process. The algorithm is then restarted
with the reduced set of robots.

If this procedure can not produce a conflict-free solution with two or more
robots, we assign all the tasks to a single robot.5 To do this, the token is sent
to the first robot of the team (according to the order o) and all the tasks are
assigned to this robot. If such robot can not find a valid path to execute all
tasks then the robot re-inserts all the tasks inside the token and sends the token
to the next robot. The procedure is iterated until a robot in the team can
execute all the tasks. Section 4.5 shows that a valid assignment can always be
found if the operational scenario meets a constraint which is weaker than the
ones required by previous work (see section 2).

Figure 1 gives a visual representation of an execution of the iterative algo-
rithm in the grid map (see Figure 3). The box called Task Planner shows the
single item task set T and the resulting P. Once P has been generated the Task
Planner creates the token and sends it to the red robot. The arbitrary order
o in this example is {red, blue, cyan}. Boxes t1 to t4 show the task assignment
and path planning phases. In box t1 the red robot chooses the first multi-item
task and plans a path that goes to the pick-up location (yellow vertex) and then
to the delivery locations (red and blue vertices). Then the red robot sends the
token to the blue robot. In box t2 the blue robot chooses a multi-item task and
calculates a conflict-free path. This path considers the one already planned by
the red robot and does not generate any conflict with such path. Then the blue
robot passes the token to the cyan robot. The cyan robot chooses in box t3 one
of the remaining tasks and plans its path, making sure that conflicts are avoided
with the paths of the other two robots. Notice that this robot waits a turn in
vertex 3, before going to the pick-up location, to make sure that the paths are
conflict free. Finally the token is sent back to the blue robot (i.e., the one that
has the shortest path) that selects the last multi-item task. This time the blue
robot changes parts of its path to complete the second task right after the first

5The described procedure removes one robot at a time following an arbitrary order, hence
it is not complete: it may exist a conflict free solution with two or more robots that our
procedure did not check. However, to guarantee completeness we should check all the possible
n! orders for the robots hence incurring a significant computational overhead. Considering
that in our experiments the case where a single robot executes all tasks never appeared, we
prefer to consider only the order o in this procedure.
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one without going to its home endpoint, as shown in box t4. After reaching the
green delivery location the robot goes to the pick-up location and then again to
the delivery location. Finally, box tz represents the synchronized execution of
the paths achieved by using the token as a synchronization mechanism.

4.3.2. Global centralized algorithm

This algorithm aims at computing the conflict-free paths that minimize the max-
imum number of hops for all the robots with a brute force approach. This is done
by evaluating all the partitions of the multi-item task set P with a size equal to
the number of robots n. Each of these partitions Ai = {A1

i ,A2
i , . . . ,An

i }6represents

a possible way to divide the tasks between the robots because each subset Aj
i

of the partition contains the tasks that must be executed by one and only one
robot. This does not tell us which robot will execute a particular subset because
there are n! possible assignments, where n is the number of robots. To account
for all these assignments we must consider all the permutations of Ai. The al-
gorithm evaluates each partition and for each partition evaluates each possible
permutation. The best partition’s permutation is the one that gives the paths
with the least number of hops.

The paths are calculated for each robot in sequential order. The route
planning algorithm is executed for each robot and takes into account the paths
of the previous robots. If the route for a robot cannot be found then the
algorithm moves to the next permutation and when all the permutations have
been evaluated it goes to the next partition. If a valid path cannot be found
even after evaluating all the permutations of all the partitions then a robot
is removed and the process is restarted. The computational effort required to
execute this algorithm is strongly dependent on the number of multi-item tasks
and hence on the number of single-item tasks . As a consequence the window
size (i.e., the number of single-item tasks that the method allocates in a batch)
must be chosen appropriately in order to obtain acceptable computation times
(see section 5).

Figure 2 shows a solution found by the global centralized algorithm for the
same multi-item task set P used in the example of the iterative algorithm. It is
possible to see that the allocation is different (the blue robot is allocated to two
tasks) and as expected the makespan is lower compared to the iterative solution
(12 hops against 14). Similar to the iterative algorithm the execution of the
paths is synchronized through the use of the token.

While this algorithm is not particularly useful from a practical standpoint
(searching all the possible permutations is tractable only for very small instances
in terms of number of robots, as shown in section 4.5), this is a good benchmark
for the iterative solution, as this algorithm finds the best possible assignment.

6Note that these are the partitions of the P that was selected by the task planner and not
the partitions of the original task set T
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4.3.3. Greedy centralized algorithm

This approach is very similar to the global centralized approach, because all
the permutations of all the partitions will be eventually evaluated. However, in
this case the search stops whenever the algorithm finds an assignment that can
generate conflict-free paths. All the remaining assignments are not evaluated.

This algorithm is again used as a benchmark for the iterative algorithms, as
it offers an approach that, on average, requires much less computation than the
global approach. The approach does not guarantee optimality (in terms of min-
imizing the number of hops) but it does guarantee completeness (it will always
find a conflict free allocation if one exists). The computational complexity of
the worst case for this algorithm is the same as the global approach (see Section
4.5 for more details).

Figure 2 shows a solution found by the greedy centralized algorithm for the
same multi-item task set P used in the example of the iterative and global cen-
tralized algorithm. Also in this case the allocation is different and the makespan
is higher compared both to the iterative and centralized (16 hops against 12 and
14). This is just a single example of execution but this trend is confirmed by
the empirical analysis reported in Section 5.

Algorithm 1: Iterative Distributed Algorithm
inputs : Multi-item task set P, team of robots R of size n
// Each robot in parallel

Wi = ∅ // The list of endpoints of robot ri
// Allocation phase: the token is sent to the first robot by the task

planner and contains the task set P
while the token T contains at least a task do

// the robot ri has the token

task p← T .pop task()
Wi.add(p.s) // p.s is the pickup location

foreach gj ∈ p do
Wi.add(p.gj) // p.gj is the j-th delivery location

end
Wi.add(initial vertex) // Home vertex

opi = spacetime astar(Wi, G, {op1, . . . , opi−1})
if opi is a conflict-free path then

T .add path(opi)
// T is sent to robot rj , where |opj | ≤ |opk| ∀k < n

else
T .push task(p) // ri restores the task in the token

// T is sent to robot rj , where j 6= i ∧ |opj | ≤ |opk| ∀k < n, k 6= i

end

end

4.4. Route planning

Our approach for route panning is based on a variation of the A* algorithm
that finds a path going through a list of endpoints W = {w1, w2, w3, . . . } ∈ V
and avoids conflicts with other robots. The algorithm explores a state space
where each state is defined by the location on the graph G = (V,E), the current
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timestep and the next endpoint to visit. A state st = (u, t, w) is linked to
another state st′ = (v, t + 1, w′) if (u, v) ∈ E and location v is reachable in the
next timestep without resulting in a conflict. Notice that ∀u ∈ V (u, u) ∈ E,
hence a robot is also allowed to wait in its place. It is important to note that
after a robot completes its path it will stay on the last visited vertex unless it
receives a new path to execute. As mentioned before, for each multi-item task pi
we have an associated list of endpoints [si, g

1
i , g

2
i , . . . , g

mi
i ]. The list of endpoints

for a series of task is defined as the concatenation of each task endpoint list. As
mentioned before, we add at the end of the list the home endpoint of the robot.
This is important because we want the robot to complete its path in a location
where it cannot obstruct the paths of the other robots. As show in section 4.5,
the home endpoint of the robot is always a location that satisfy this constraint.
This also gives the guarantee that the path for new tasks can always be planned
(explained in detail in section 4.5).

The path planning algorithm for a given robot i (procedure spacetime astar
in Algorithm 1) takes as input a list of endpoints Wi, the graph G, and the paths
of the other robots {op1, . . . , opi−1} and calculates a conflict-free path for the
robot if one exists or returns a failure. The algorithms return the shortest path
for a robot in terms of the least number of hops. We made this choice because
our main aim is to minimize the makespan (as said in the introduction) and given
our synchronization approach to the movements of the robots this is equivalent
to minimizing the number of hops. An admissible heuristic has been defined
to have the guarantee that the paths returned by the path planning are the
shortest possible. Because the aim is to minimize the number of hops, it makes
sense to use as heuristic the minimum number of hops necessary to complete a
path between any two vertices, regardless of other robots. More formally, given
two vertices u, v ∈ V the heuristic function h(u, v) return the minimum number
of hops required to reach vertex v from vertex u. This heuristic function can
easily be precomputed by using any all-pairs shortest path algorithm, in this
case the Floyd-Warshall algorithm has been used.

4.5. Analysis of the approach

A key point of our method is that we can guarantee conflict-free paths even if the
MAPD instance is not well-formed [3], in particular we relax the constraint that
a path between any two endpoints must not traverse another endpoint. This
constraint can be restrictive for several operational scenarios and in particular
some of the scenarios used here do not meet such constraint. This can be seen
in figure 3, that shows the graph structure of all the maps together with the
endpoints. Endpoints are represented as coloured vertices, where the purple
vertices are home endpoints for the robots, the yellow vertex are the pickup
locations and the others are the delivery locations. Vertices 2 and 22 in the grid
map do not meet the constraint mentioned above, this is also true for vertices
1 and 26 in the model5 map. Finally, in the smart factory map it is impossible
to reach vertices 1 and 3 without going through vertex 2 or vertex 8.

Moreover, our scenarios does not satisfy the condition that all pairs of ad-
jacent nodes belong to a simple cycle of length 3 or more, which is required by
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PIBT [18] to guarantee that every agent always reaches its destination within
finite time. For example, vertices 24 and 25 in the smart factory map do not
meet such constraint.

To address this issues, we relax the constraints on the MAPD instances
and we can guarantee that valid paths can be found by posing the following
constraint:

Constraint 4.1. There is at least one home endpoint from which all the task
endpoints can be reached without traversing other home endpoints.

This poses a much weaker constraint with respect to the third constraint for
well-formed infrastructure and in fact all the MAPD scenarios that we use in
our empirical evaluation do meet this constraint but as mentioned above some
of these are not well-formed infrastructures.

For what concerns the constraint required by PIBT [18], we observe that such
constraint is related to the topology of the graph and not to the MAPD scenario
(i.e., it is not related to the position of home endpoints). Hence, if the topology
of the graph meets the required constraints the endpoints can be located without
any further restriction. However, if the topology of the graph does not meet the
constraint it is not possible to find a configuration of endpoints that respects
the constraint. Now, in most cases changing the topology of the graph is harder
than changing the location of endpoints, because the former requires a physical
change in the layout of the warehouse while the latter requires to move, for
example, the starting position of the robots. Hence while the two constraints
are applied to different elements we believe that constraint 4.1 is easier to respect
in practical scenarios.

Assuming that the above constraint is met we can show that all the algo-
rithms we consider here (global, greedy and iterative) will always find a valid
solution for the MAPD. This is detailed in the following theorems.

Theorem 4.2. The global and greedy algorithms always find an allocation of
tasks that gives conflict-free paths that solves the multi-item MAPD problem
instance

Proof. Because the global and greedy algorithms tries all the possible allocations
of tasks, they will also evaluate the allocations in which a single robot takes all
the tasks and in particular they will evaluate the allocation in which such robot
will start from the endpoint mentioned in constraint 4.1. Because all the other
robots stay still, such allocation enables the robot to reach all the pickup and
delivery vertices without conflicts.

Theorem 4.3. The iterative algorithm always finds an allocation of tasks that
gives conflict-free paths that solves the multi-item MAPD problem instance

Proof. In case the iterative algorithm is forced to use a single robot, it searches
for the one that can execute all the tasks by itself. Because of constraint 4.1
such robot exists and a valid plan is found.
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Even though this guarantee can be given in the worst case that a single robot
takes all the tasks, our results show that for all the tested MAPD instances all
robots execute at least one multi-item task. This is also apparent from the
balancing results among the robots which we report in tables 2 and 4.

For what concerns the computational complexity of our algorithms, we ob-
serve that the task partitioning phase requires the enumeration of the partitions
of a set, the number of partition of a set of n + 1 elements is the Bell number
Bn+1 that can be found with this recursive relationship:

Bn+1 =

n∑
k=0

(
n

k

)
Bk

As for the route planning algorithm, since this is a variant of the A* algo-
rithm, the complexity in the worst case can be defined (assuming an adjacency
list implementation on a connected graph G = (V,E) and a limit of T hops) as

O(|E| log (|V |T |Wmax|))

where, |Wmax| represents the maximum number of endpoints that can be given
in input to the path planning algorithm. This limit depends on how many
delivery endpoints are present in the map and any task that visits all the delivery
endpoints will give this number of endpoints in input to the route planning
algorithm.

As for the iterative algorithm, the task aggregation phase must be executed
for each window and for each window the aggregation might return a different
number of multi-item tasks. Let us indicate with d the maximum number of
multi-item tasks generated from a window of r single-item tasks by the aggre-
gation process. For each task the route planning algorithm must be executed.

O(wBr + wd|E| log (|V |T |Wmax|))

In this formula, and the others below, the first part represents the task ag-
gregation phase, while the second is the complexity of the task allocation and
path planning phase combined. Where, w is the number of windows and, as
mentioned above, r is the number of single-item tasks ingested by the task
aggregation algorithm.

For the two offline centralized algorithms we must take into account the
enumeration of all the permutations of each partition. The Johnson-Trotter
algorithm generates all the possible permutations with a complexity of O(n!),
where n is the size of the set. In this case, the route planning algorithm is
executed for each permutation of each partition are considered, hence resulting
in a complexity of:

O(wBr + wBd!|E| log (|V |T |Wmax|))

Where, as mentioned before, w is the number of windows, r is the number
of single-item tasks and d is the maximum number of multi-item tasks. As
mentioned in Section 4.3.3, the greedy algorithms has the same complexity in
the worst case, however in our empirical evaluation it terminates long before
global because it takes the first valid solution.
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5. Empirical evaluation

To test our approach we implemented the three algorithms described in Section
4 using the ROS framework. In particular, we employ a modified version of the
patrolling sim [29] package 7 and we have created three maps and different task
sets to test our algorithms with multiple configurations. The ROS framework
provides a navigation stack, i.e., a set of modules that implement key function-
alities for navigation of mobile platforms such as localization, path planning and
obstacle avoidance. Using the navigation stack enables us to do simulations in a
realistic scenario, where each robot senses the environment through laser scan-
ners and localizes itself on the map with a particle filter system (i.e., using the
AMCL module of the ROS navigation stack). Moreover, the robots are guided
by the move base module that provides path planning and obstacle avoidance.
It is important to note that move base can not safely drive the robots in complex
situations and will fail most of the time in presence of cluttered environments
and moving obstacles (e.g., other robots). Hence we can not simply give to the
robot a series of endpoints (e.g., pickup location and destinations) but must co-
ordinate their movements to guarantee conflict-free paths. On the other hand,
move base is very useful to avoid collisions in face of possible unexpected situa-
tions. Such unexpected situations can be caused, for example, from localization
errors, which can occur frequently when dynamic obstacles are present in the
working environment.

A video showing an execution of the iterative algorithm in simulation is
associated with this paper. 8 The video is executed on the smart factory map.
Notice that at second 20 the move base module of the cyan robot performs
a recovery procedure to avoid the blue robot that is deemed too close. This
introduces a delay in the execution of the path for the cyan robot, however
thanks to the token-wait synchronization, the robots are still able to correctly
perform the paths without any collision.

A video showing an execution of the iterative algorithm on two RB-KAIROS
robots operating in the ICE laboratory is associated with this paper. 9 Each
robot is assigned to a pickup and delivery task. Both robots reach the pickup
location (seconds 0:20 and 0:38), they then move to the delivery location (0:48
and 1:22) and return back to their home location. The pickup and delivery
locations are the same for both robots. From second (0:08 to second 0:20) one
of the robots waits for the other to reach the pickup location, while at second
0:58 the same robot waits for the other to clear the corridor before going to the
delivery location. The video validates the use of our approach on real platforms
in their operative scenario.

7A github repository containing the code for our approach can be found at this link https:

//github.com/antonellocontini/LogisticAgent
8The video is also available at this link: http://profs.sci.univr.it/~farinelli/videos/

MAPD-sim.mp4
9The video is also available at this link: http://profs.sci.univr.it/~farinelli/videos/

MAPD-kairos.mp4

18

https://github.com/antonellocontini/LogisticAgent
https://github.com/antonellocontini/LogisticAgent
http://profs.sci.univr.it/~farinelli/videos/MAPD-sim.mp4
http://profs.sci.univr.it/~farinelli/videos/MAPD-sim.mp4
http://profs.sci.univr.it/~farinelli/videos/MAPD-kairos.mp4
http://profs.sci.univr.it/~farinelli/videos/MAPD-kairos.mp4


0 5

1 6

12

8 13

10 15

11

22

23

9 14 19 24

2

3

4

20

2116

17

18

7

(a) Grid

5

4

6

7

8

0

1 3

13

14

15

9

10

11 19

18

17

21

22 25 27 29

28

32 35

34

37

48

40 49

43

44

46

47

45

42

41

52

51383633302612 16 2320

24
31

392

(b) smart factory

0

2 7

5 10

12 17

15 20

22 27

25

261

3

4

8

9

13

14

18

19

23

24

11 16 236

(c) Model5

Figure 3: The 3 maps used for the empirical evaluation

5.1. Empirical methodology

Our aim is to test our algorithms on different situations so we generated 3 maps:
a grid map, and two maps representing two configurations of the ICE laboratory,
called model5 and smart factory. In each map there are 6 starting locations for
the robots, 1 pickup location and 3 delivery locations. We tested our system with
27 different configurations, where a configuration is defined by the algorithm,
the map and the number of robots (2, 4 or 6). Two different scenarios have
been tested. In the first scenario 10 task sets have been defined, each with a
single window composed of 12 single-item tasks, each item has a random demand
value. For the second scenario the same number of task sets has been used, but
each task set has 30 task, while the window size has been reduced in order to
have more than one window. For each configuration the algorithms have been
run in both scenarios, obtaining a run for each combination of configuration and
task set. For each run we record the makespan, the number of tasks completed,
the number of transported items and the total distance travelled by each robot.

5.1.1. Single window scenario

Table 1 shows the average makespan (expressed in seconds) and the average
of the sum of the distance travelled by all the robots (expressed in meters).
Results show that the global algorithm offers the best performance in terms
of makespan and travel distance (as expected). Results also show that the
iterative algorithm does not differ significantly from the global one. In fact,
only few configurations show a statistically significant difference according to
the t-test (the numbers reported in italics in the table represent cases where
the t-test null hypothesis was rejected). However, it is important to note that
the global algorithm is extremely intensive from a computational point of view:
most of the configurations with 6 robots required hours or even days to give
the best solution, while the iterative algorithm finds a comparable solution in
seconds. The greedy algorithm exhibits a run time similar to the iterative
method but its makespan is often considerably worse. This is because while the
iterative algorithm distributes the task in an even way, the greedy algorithm
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model5 2 4 6 stats

Single Window Global
319.70 ± 64.15 213.90 ± 27.76 210.90 ± 33.28 Time[s]
160.46 ± 28.78 178.85 ± 26.26 202.90 ± 26.23

∑
Dist[m]

Single Window Iterative
324.00 ± 47.71 234.60 ± 29.06 221.30 ± 27.73 Time[s]
163.62 ± 25.95 183.59 ± 34.08 218.70 ± 37.24

∑
Dist[m]

Single Window Greedy
433.70 ± 183.82 372.10 ± 77.43 308.10 ± 74.68 Time[s]
162.57 ± 28.92 188.82 ± 28.75 218.20 ± 36.26

∑
Dist[m]

grid 2 4 6 stats

Single Window Global
195.40 ± 24.03 134.50 ± 13.76 114.90 ± 8.13 Time[s]
145.92 ± 18.58 178.45 ± 22.39 206.72 ± 24.70

∑
Dist[m]

Single Window Iterative
200.10 ± 21.56 153.10 ± 22.49 135.40 ± 10.58 Time[s]
149.87 ± 16.65 188.78 ± 23.22 221.31 ± 24.10

∑
Dist[m]

Single Window Greedy
308.00 ± 47.80 247.50 ± 44.99 185.00 ± 46.72 Time[s]
158.38 ± 21.33 206.42 ± 23.17 227.09 ± 33.49

∑
Dist[m]

smart-factory 2 4 6 stats

Single Window Global
744.50 ± 145.46 505.90 ± 113.42 448.00 ± 119.15 Time[s]
251.32 ± 46.68 263.70 ± 47.83 282.82 ± 55.84

∑
Dist[m]

Single Window Iterative
791.70 ± 110.33 564.10 ± 85.17 530.60 ± 127.78 Time[s]
252.65 ± 46.04 263.30 ± 48.44 286.39 ± 45.73

∑
Dist[m]

Single Window Greedy
945.00 ± 101.46 918.70 ± 179.93 718.70 ± 258.85 Time[s]
251.45 ± 48.74 270.95 ± 44.53 291.75 ± 48.11

∑
Dist[m]

Table 1: Summary of the three algorithms’ performance in the single window scenario,
analysis performed on 10 task sets of 12 single-item tasks
Bold = Best result Italic = Rejected paired-sample t-test with a 5% significance level The
t-test is always done comparing the population of the highlighted value with the iterative
algorithm’s one.

selects the first valid assignment it finds, and in many cases this results in
unbalanced allocations where few robots perform most of the tasks, hence the
higher makespan. Table 2 shows the load balancing of the three algorithms in
terms of standard deviation of distance travelled by each robot, distribution of
tasks and items. Even in this aspect iterative and global are comparable, while
greedy offers the worst balancing. This confirms the above discussion.

5.1.2. Multiple windows scenario

For the multiple window scenario the window size must be taken in consid-
eration. This influences the performance of the algorithms, in particular for
global and greedy, where the computation time grows rapidly with the number
of tasks. For the iterative algorithm a window size of 11 has been chosen, while
for the other two the window has been set to 4 tasks. The choice of window
size is limited by the associated computational effort, where a bigger window
will require higher computation and will provide better performance. This is
particularly relevant for the centralized algorithms which have a higher compu-
tational overhead and hence can be executed only on windows of smaller size.
For this reason, we do not evaluate the iterative algorithm with 4 tasks sets, as
a key benefit of this approach is the lower computational overhead that allows
the execution on larger windows.

The effect on the performance is evident in the results of table 3, where
often the best results are obtained by the decentralized algorithm (and often
the difference is statistically significant according to the t-test). This is because
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model5 2 4 6 stats

Single Window Global
0.10 1.43 0.69 σ(Distance[m])
0.28 0.44 0.49 σ(Items)
0.07 0.39 0.32 σ(Tasks)

Single Window Iterative
0.73 1.24 2.02 σ(Distance[m])
1.13 0.75 0.69 σ(Items)
0.35 0.30 0.38 σ(Tasks)

Single Window Greedy
34.64 22.12 10.12 σ(Distance[m])
3.54 2.59 1.34 σ(Items)
2.19 1.55 0.81 σ(Tasks)

grid 2 4 6 stats

Single Window Global
0.86 1.63 0.76 σ(Distance[m])
0.00 0.61 0.47 σ(Items)
0.07 0.26 0.29 σ(Tasks)

Single Window Iterative
3.22 1.03 1.75 σ(Distance[m])
1.13 0.75 0.69 σ(Items)
0.35 0.30 0.38 σ(Tasks)

Single Window Greedy
66.85 30.51 12.30 σ(Distance[m])
6.65 3.40 1.38 σ(Items)
4.31 2.05 0.86 σ(Tasks)

smart-factory 2 4 6 stats

Single Window Global
0.61 2.41 3.41 σ(Distance[m])
0.42 0.41 0.38 σ(Items)
0.07 0.24 0.29 σ(Tasks)

Single Window Iterative
2.93 5.32 7.96 σ(Distance[m])
1.13 0.75 0.69 σ(Items)
0.35 0.30 0.38 σ(Tasks)

Single Window Greedy
69.54 54.90 22.17 σ(Distance[m])
4.38 3.20 1.38 σ(Items)
2.47 1.92 0.86 σ(Tasks)

Table 2: Load balancing of the three algorithms in a single window scenario, analysis per-
formed on 10 task sets of 12 single-item tasks.

the reduced size of the window for the global algorithm limits the aggregation
of the tasks. A reduced window forces the global algorithm to consider fewer
allocation possibilities, which in turn results in worse performances. The greedy
algorithm is, again, the worst. This is also evident in the load balancing in ta-
ble 4. Greedy obtains the worst results in terms of distribution, again because
the load is assigned mostly to a single robot. The decentralized algorithm also
shows better balancing in terms of tasks, items and travelled distance. In terms
of distribution of tasks and items the decentralized algorithm is superior to the
others, with lower standard deviation in all cases. This is less clear in terms
of travelled distance, where in some cases the global algorithm performs better
than the iterative. However the difference between the global and the decen-
tralized algorithms is not as pronounced as the one between the decentralized
and the greeedy algorithm.

6. Conclusions and future work

We proposed a novel variant of the MAPD problem where robots can transport
multiple items in one travel. We devised a distributed approach that guarantees
a solution to multi-item MAPD instances requiring weaker constraints with
respect to previous approaches and particularly with respect to the concept of
well formed infrastructures MAPD instances used in relevant literature.
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model5 2 4 6 stats

Global
837.10 ± 73.72 528.50 ± 36.63 495.30 ± 42.04 Time[s]
375.38 ± 30.14 407.95 ± 35.31 454.19 ± 36.18

∑
Dist[m]

Iterative
781.40 ± 78.18 535.60 ± 55.50 485.40 ± 60.47 Time[s]
340.76 ± 35.86 384.63 ± 38.08 430.59 ± 40.41

∑
Dist[m]

Greedy
1067.80 ± 84.49 667.20 ± 54.34 687.00 ± 59.71 Time[s]
378.30 ± 28.99 408.83 ± 35.34 415.53 ± 36.32

∑
Dist[m]

grid 2 4 6 stats

Global
540.50 ± 40.68 350.50 ± 20.24 293.70 ± 16.47 Time[s]
128.80 ± 6.66 148.84 ± 7.00 165.38 ± 6.68

∑
Dist[m]

Iterative
499.40 ± 36.91 340.80 ± 27.74 295.60 ± 26.73 Time[s]
117.90 ± 9.32 139.50 ± 11.96 169.07 ± 16.32

∑
Dist[m]

Greedy
632.60 ± 51.61 411.30 ± 10.89 411.70 ± 17.78 Time[s]
130.36 ± 6.42 146.31 ± 8.98 146.31 ± 8.79

∑
Dist[m]

smart-factory 2 4 6 stats

Global
1441.50 ± 110.97 998.70 ± 130.78 887.90 ± 56.59 Time[s]
687.52 ± 50.76 739.02 ± 61.45 802.33 ± 67.27

∑
Dist[m]

Iterative
1356.60 ± 150.74 926.50 ± 105.27 880.20 ± 84.26 Time[s]
631.46 ± 69.09 683.18 ± 78.31 759.20 ± 77.74

∑
Dist[m]

Greedy
1592.50 ± 136.23 1234.50 ± 93.12 1283.30 ± 73.41 Time[s]
690.09 ± 56.67 736.62 ± 52.63 772.30 ± 56.86

∑
Dist[m]

Table 3: Summary of the three algorithms’ performance in the multiple window sce-
nario, analysis performed on 10 task sets of 30 single-item tasks. Window size is 11
for the iterative algorithm and 4 for the other two.
Bold = Best result Italic = Rejected paired-sample t-test with a 5% significance level The t-test
is always done comparing the population of the highlighted value with the decentralized
algorithm’s one.

We evaluated our approach against two centralized competitors in a simu-
lated environment based on the ROS framework and considering realistic maps
for the operational environment. Results show that our approach obtains similar
results to the global centralized algorithm with much less computational effort.
This work paves the way for several interesting research directions, which in-
clude the extension of the algorithm to settings where unexpected events may
require to re-allocate the tasks or change the computed paths.
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model5 2 4 6 stats

Global
0.30 2.98 6.88 σ(Distance[m])
1.27 1.28 1.50 σ(Items)
0.99 0.90 1.02 σ(Tasks)

Iterative
6.05 3.33 8.51 σ(Distance[m])
0.71 1.08 1.08 σ(Items)
0.64 0.55 0.78 σ(Tasks)

Greedy
90.83 48.38 59.55 σ(Distance[m])
7.92 4.95 5.09 σ(Items)
4.95 3.04 3.46 σ(Tasks)

grid 2 4 6 stats

Global
7.98 1.74 2.30 σ(Distance[m])
3.39 1.41 1.09 σ(Items)
1.84 0.41 0.72 σ(Tasks)

Iterative
3.85 2.01 1.56 σ(Distance[m])
1.41 1.40 0.94 σ(Items)
1.06 0.94 0.64 σ(Tasks)

Greedy
26.97 16.25 22.77 σ(Distance[m])
8.06 4.93 5.44 σ(Items)
5.09 3.04 3.75 σ(Tasks)

smart-factory 2 4 6 stats

Global
2.91 5.65 2.51 σ(Distance[m])
0.99 0.72 0.62 σ(Items)
0.28 0.39 0.17 σ(Tasks)

Iterative
0.86 7.89 3.45 σ(Distance[m])
0.00 0.85 0.22 σ(Items)
0.07 0.33 0.21 σ(Tasks)

Greedy
73.81 100.92 122.66 σ(Distance[m])
4.95 5.01 5.36 σ(Items)
2.69 3.12 3.67 σ(Tasks)

Table 4: Load balancing of the three algorithms in a multiple window scenario, analysis
performed on 10 task sets of 30 single-item tasks. Window size is 11 for the iterative algorithm
and 4 for the other two.
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