
Path Efficient Level Set Estimation for Mobile Sensors

Lorenzo Bottarelli
Computer Science

Department
University of Verona

lorenzo.bottarelli@univr.it

Jason Blum
Robotic Institute

Carnagie Mellon University
and Platypus LLC

jasonblu@andrew.cmu.edu

Manuele Bicego
Computer Science

Department
University of Verona

manuele.bicego@univr.it
Alessandro Farinelli

Computer Science
Department

University of Verona
alessandro.farinelli@univr.it

ABSTRACT
The interest in using robotic sensors for monitoring spa-
tial phenomena is steadily increasing. In the context of
environmental analysis, operators typically focus their at-
tention where measurements belong to a region of interest
(e.g., when monitoring a body of water we might want to
determine where the pH level is above a critical threshold).
Most of the previous work in the literature represents the
environmental phenomena with a Gaussian Process model,
and then uses such a model to determine the best locations
for measurements [3, 7]. In this paper we consider a specific
scenario where a mobile platform with low computational
power can continuously acquire measurements with a negli-
gible cost. In this scenario, we seek to reduce the distance
traveled by the mobile platform as it gathers information
and to reduce the computation required by this path se-
lection process. Starting from the LSE algorithm [7], we
propose two novel approaches, PULSE and PULSE-batch,
that exploit a new fast path selection procedure. We eval-
uate the effectiveness of our approaches on two datasets: a
dataset of the pH level of the water, acquired with a mobile
watercraft, and a publicly available dataset that represents
CO2 maps. Results show that our techniques can compute
informative paths with a computation time that is an order
of magnitude lower than other techniques.

CCS Concepts
•Computing methodologies→Motion path planning;
Intelligent agents; Mobile agents;

Keywords
Informative Path Planning; Level Set Estimation; Mobile
Sensors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SAC 2017, April 03-07, 2017, Marrakech, Morocco
c© 2017 ACM. ISBN 978-1-4503-4486-9/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3019612.3019707

1. INTRODUCTION
With environmental monitoring we identify the analysis

and actions performed to characterize and monitor the qual-
ity of the environment. This encompasses the collection of
the information from the environment and the generation of
the model that represents the specific phenomena of interest.
This requires the collection of large data sets, frequently in
harsh conditions. In recent years the use of unmanned vehi-
cles for monitoring spatial phenomena has gained increasing
attention. One example of a environmental monitoring ap-
plication could be represented by the analysis of waters in a
lake. In this case the analysis focuses on the generation of
a model that describes how crucial parameters such as the
pH level vary across the surface. This monitoring operation
could be performed through the use of autonomous surface
vessels (ASVs) such as the one showed in Figure 1, or by
a heterogeneous system composed of marine, terrestrial and
airborne platforms [5].

Figure 1: Platypus Lutra equipped with pH, Dissolved oxy-
gen, temperature and electrical conductivity sensors; the
computational board is composed by an Arduino Due and a
smartphone.

When deploying unmanned vehicles for environmental mon-
itoring, the data collection process must consider limited re-
sources such as time and energy that limit the operation
range of the platforms. The objective is to acquire a suffi-
cient amount of data to generate an accurate model of the
environmental phenomena of interest. In this context [9],
it is important to select an informative path for the mobile
agents in order to acquire as much information as possi-
ble while reducing the total traveled distance and hence the
time and energy required to perform the analysis. Moreover,
autonomous mobile systems are usually equipped with low
computational capacity; if the path selection procedure is

performed on board during the monitoring operation, lower
computational complexity is highly desirable.

We can explore different path selection strategies [12].
Traditional nonadaptive (offline) methods generate the path
before any observations are made. In contrast, adaptive
(online) methods plan the path based on the previously col-
lected data. These adaptive techniques [2, 10, 13] incremen-
tally generate the model of the environmental phenomena
of interest during the data collection phase and focus the
information collection process on specific regions of the en-
vironment where the phenomena exhibits critical values.

For example, in a lake, such a region would encompass
the locations where the water’s pH or dissolved oxygen level
is considered dangerous for the environment. In another
example, we might want to detect contours of biological or
chemical plumes. This problem is typically referred to as
the “level set estimation problem” in the literature [8].

Previous work on the level set estimation problem such
as the one proposed by Dantu and Sukhatme [4] focuses on
a network composed by a combination of static and mobile
sensors. In Gotovos et al. [7] the proposed LSE algorithm
uses Gaussian Processes (GPs) to identify sampling points
that reduce uncertainty around a given threshold level of the
modeled function. The authors obtain a near-optimal clas-
sification for every location of the space with a low number
of sampled locations. In their contribution the main algo-
rithm does not explicitly take into account the path between
the sampling location. The authors propose a batch variant
where a set of new sampling locations is selected in a batch
such that it is possible to compute an efficient path between
these points.

Hitz et al. [8] describes a method designed for ASVs
equipped with a probe that allows an aquatic sensor to be
lowered into the water. Their LSE-DP algorithm, built on
the LSE algorithm from Gotovos et. al [7], uses a dynamic
programming approach with a receding horizon to plan a
feasible sampling path for the probe within a predefined ver-
tical transect plane.

More recently, Bottarelli et al. [3] proposed a new al-
gorithm also built on the LSE algorithm, but specifically
designed for mobile continuous sampling sensors where the
cost to perform an individual measurement is negligible. In
this setting the most crucial issue for the data collection pro-
cess is the energy required by the sensor to move. Hence,
in their work the authors aim at reducing the total trav-
eled distance required by the agent to achieve near-optimal
classification of the analyzed regions, rather than the num-
ber of samples extracted during the execution of the path
(which is an important criteria for previous work). The pro-
posed SBOLSE algorithm uses an orienteering formulation
[6] for the level set estimation problem. However, even with
the topological skeletonization technique presented by the
authors, the approach requires a computational effort that
limits its use with the on-board computation units of stan-
dard mobile platforms.

In this paper, we also address the level set estimation
problem by using adaptive techniques to plan efficient paths
for continuous-sampling mobile sensors. Our main objective
is to determine an informative path with a fast procedure.
Specifically our techniques are motivated by the hardware
specification of the platform shown in Figure 1. This plat-
form is equipped with various sensors that can measure pH,
dissolved oxygen, temperature and electrical conductivity

with sampling rates between 1 and 10 Hz. The computa-
tional hardware is composed of an Arduino Due board and
an Android smartphone. In our setting the energy required
to perform a measurement is negligible. The important is-
sues we have to address are the battery lifetime and the time
required for the selection of an informative path. The main
contributions of this paper to the state of the art are:

• We propose a novel algorithm called PULSE (Path-
Update Level Set Estimation) for selecting measure-
ment paths. The algorithm is specifically designed for
continuous-sampling mobile sensors and aims at reduc-
ing the computation time required to determine an ef-
ficient path while achieving near optimal classification.

• We propose a batch variant of the PULSE algorithm,
PULSE-batch, that trades off computation time and
total traveled distance.

• We empirically evaluate our algorithms on a real world
dataset of water pH level and on synthetic datasets ex-
tracted from CO2 maps. We show that our approaches
are better in terms of computation time required to
compute a short path, while achieving a near optimal
classification when compared to the state of the art
techniques for level set estimations.

2. PROBLEM STATEMENT AND
BACKGROUND

Following [7] and [3], we formalize the level set estimation
as an active learning problem, where we want to select a
path for the mobile sensor so as to optimize the information
gathering process.

An unknown scalar field represents the environmental phe-
nomena of interest, and every location in space has an asso-
ciated scalar value. More formally, given a set of locations
D ⊆ Rd and a threshold value h, we want to model the un-
known scalar field f : Rd 7→ R in order to classify all the loca-
tions x ∈ D into either the superlevel setH = {x | f(x) > h}
or the sublevel set L = {x | f(x) ≤ h}. We model the scalar
field with a Gaussian Process (GP) [11]. The problem asks
to select the set of locations xi where to perform (noisy)
measurements yi = f(xi) + ei while minimizing the total
traveled distance required for the sensor to analyze these
locations.

2.1 Gaussian Processes
Gaussian Processes (GPs) offer a way to model unknown

functions without using parameters and are a widely used
tool in machine learning [11]. In this work the unknown
function to be modeled using a GP is the unknown scalar
field f of the environmental phenomena of interest. A GP
is defined by a mean function µ(x) (that can be assumed to
be zero without loss of generality) and by a kernel function
(covariance function) k(x, x′) which represents the smooth-
ness properties of the modeled function. A GP can then be
denoted as GP(µ(x), k(x, x′)).

We will consider a set of noisy measurements Yt = {y1, y2,
· · · , yt} taken at locations Xt = {x1, x2, · · · , xt} and assume
that yi = f(xi) + ei where ei ∼ N (0, σ2

n) (i.e., measurement
noise with zero mean). Given the GP prior GP(0, k(x, x′)),
the posterior over f is still a GP and its mean and variance
can be computed as follows [11]:

µt(x) = kt(x)T (Kt + σ2
nI)
−1Yt (1)

σ2
t (x) = k(x, x)− kt(x)T (Kt + σ2I)−1kt(x) (2)

where kt(x) = [k(x1, x), · · · , k(xt, x)]T

and Kt = [k(x, x′)]x,x′∈Xt

Using these equations, we can build the GP with the new
measurements acquired by the sensor, however the update
of the posterior is computationally expensive as it requires
inverting an n × n matrix where n is the number of the
samples acquired. In real-world applications n can be thou-
sands of elements. The batch variant of our algorithm seeks
to reduce the frequency of this computation.

2.2 LSE
Given the area of interest, we can discretize it into a grid

where each element represents a small portion of the surface.
These elements compose the set of sample locations D, and
we want to classify each location xi ∈ D into two sets H or
L with respect to a threshold level h.

Following the LSE algorithm [7], we use the inferred mean
(1) and variance (2) from the GP to construct an interval:

Qt(x) =
[
µt−1(x)± β1/2

t σt−1(x)
]

(3)

for any x ∈ D. The parameter β represents a scaling factor
for the interval.

In order to classify every point x into H or L, they define
the following confidence interval using the the intersection
of all previous Qt(x) intervals for every point x:

Ct(x) =

t⋂
i=1

Qi(x) (4)

The classification of a point x depends on the position
of its confidence interval with respect to the threshold level
h. Specifically, for each location x ∈ D if its confidence
interval Ct(x) lies entirely above h, then f(x) > h with
high probability, and we can classify x into the superlevel
set H. Similarly, when the entire Ct(x) lies below h then
we can classify x into the sublevel set L. These conditions
are relaxed with an accuracy parameter ε as shown in the
following equations:

Ht = {x | min(Ct(x)) + ε > h} (5)

Lt = {x | max(Ct(x))− ε ≤ h} (6)

At time t, for every point with a confidence interval that
crosses the threshold, we have to defer the decision until
more information is available. We identify the set of unclas-
sified locations:

Ut = D \ (Lt ∪Ht) (7)

In order to classify the points in Ut according to the equa-
tions (5) and (6) we have to acquire more data selecting new
sampling locations xi ∈ Ut. To this end, the algorithm at
each iteration uses the confidence interval for each unclassi-
fied point to derive the following ambiguity value:

at(x) = min{max(Ct(x))− h, h−min(Ct(x))} (8)

The point xt with the highest ambiguity value represents
the most interesting location. As such, it becomes the next
point to measure.

In addition to the LSE algorithm, Gotovos et al. [7] dis-
cuss the batch version where multiple locations are selected
by taking mutual information into account. Although the
main goal of their approach is to select multiple locations
and to compute an efficient path between them, in both
cases their assumption is that the process of acquiring a
new point of data is costly. Therefore their main goal is to
minimize the number of sampling locations. Moreover, dur-
ing the movement of the mobile agent from one location to
next, the process does not acquire any further data.

3. PULSE ALGORITHM
Using the LSE technique, the mobile sensor is guided to-

ward the most informative points. LSE assumes that the
mobile sensor moves from the current position to the next
selected location following a straight line.

In what follows we present our Path-Update LSE (PULSE)
algorithm inspired by LSE, but specifically designed for con-
tinuous sampling sensors for which i) the cost required to
perform an individual measurement is negligible, ii) it is
necessary to optimize the total path of the agent in order
to reduce the battery consumption and iii) we need an ef-
ficient path selection procedure. The proposed technique
determines an informative path in order to reach the most
interesting location (i.e. the point in space with the highest
ambiguity about its classification) moving from the current
position through points that still have to be classified. In
this way it increases the information to path length ratio.

Algorithm 1 PULSE algorithm

Input: set D, threshold h, accuracy parameter ε,
prior known data X ⊂ D, starting location xstart
Output: sets H and L

1: t← 0
2: x0 ← xstart
3: H0 ← ∅, L0 ← ∅, U0 ← D
4: while Ht ∪ Lt 6= D do
5: t← t+ 1
6: Compute GP posterior µ(x) and σ2(x) for all x ∈ Ut

7: Classify and update Ht, Lt, Ut according to LSE[7]
8: xt−1 ← xt
9: xt ←next location according to LSE [7]

10: path← pathSelection(xt−1, xt, U)
11: Execute path

12: H ← Ht, L← Lt

The pseudo-code of Algorithm 1 describes the steps of
our PULSE approach. The algorithm maintains three sets
of points: the current superlevel Ht and sublevel Lt sets, as
well as the set of unclassified points Ut. At each iteration
t we update the Gaussian Process posterior by integrating
the new information gathered at the preceding iteration (line
6). Then we compute the confidence intervals Ct(x) for each
point x ∈ Ut(x), classify them in one of the three sets and
then compute the next sample to be evaluated using the am-
biguity defined by equation (8) (line 7). We then compute
a path between the current location xt−1 and the selected
point xt using the path selection procedure (Algorithm 2)
The algorithm terminates when Ht ∪ Lt = D, i.e. when
all points are classified and thus Ut = ∅. Note that during
the execution of the path (Algorithm 1, line 11) if an agent
moves through locations that are already classified, these

Algorithm 2 pathSelection procedure

Input: last position xt−1, next location xt, unclassified el-
ements Ut

Output: path

1: i← 0
2: xnext0 ← xt−1

3: path← xt−1

4: while xnexti 6= xt do
5: i← i+ 1
6: d← dist(xnexti−1 , xt)
7: A← ∅
8: for all x ∈ Ut do
9: if dist(x, xt) < d then

10: A← A ∪ x
11: xnexti ← minx∈A

(
dist(xi, xnexti−1)

)
12: path← path ∪ xnexti

are re-evaluated and re-classified considering new acquired
data. Moreover, note that Algorithm 1 differs from the LSE
Algorithm proposed in [7] only in the path selection proce-
dure we employ. Hence, the convergence property for LSE
proved in [7] also holds in our case (see the discussion in
Section 3.2 for more details).

3.1 Path Selection
At each time step t the algorithm keeps track of the start-

ing position xt−1 of the platform (i.e. the last position)
and the destination point assigned by the sample selection
criteria, i.e. the most interesting point xt. In order to se-
lect an informative path towards the destination the path
selection procedure analyzes each point x ∈ Ut, i.e. lo-
cations that still have to be classified – therefore poten-
tially carrying some useful information –, selecting a path
{xt−1 = xnext0 , xnext1 , · · · , xnextn = xt} with n ≥ 1. Note
that the number of points touched by the agent, n, is auto-
matically determined by the procedure. In the case of n = 1
the path corresponds to the straight line from the current
position to the selected destination.

Each xnexti point determined by the procedure meets the
condition to always approach the destination point, i.e.

dist(xnexti , xt) < dist(xnexti−1 , xt) (9)

where dist(x′, x′′) is the euclidean distance between loca-
tions x′ and x′′. In more detail, given the two points xnexti−1

and xt, the region of the space which contains points meeting
this condition defines a convex area (see example in figure
2) and we call this area Ati (Algorithm 2, lines 8-10). The
procedure analyzes all points xi ∈ Ut ∩ Ati and selects as
xnexti the closest point from the previous location along the
path (Algorithm 2, line 11).

3.2 Convergence analysis
Our path selection procedure selects only points that meet

the condition in equation (9) (Algorithm 2, lines 6 and 9).
As we build the path from xt−1 to xt the area Ati shrinks
and converges towards the destination point xt. This allows
the path to include informative points that lie inside this
area (example in Figure 2), while ensuring that the path
is going towards the most interesting point defined by the
ambiguity measure at(x) introduced in [7].

Figure 2: Example of runtime execution of the path selection
procedure. The white areas represent location that are still
unclassified. The circle represents the area A. On top the
beginning of the procedure and on bottom we can observe
the path that has been built after some iterations.

For what concerns the convergence analysis of our ap-
proach, notice that Gotovos et. al. with Theorem 1 in [7]
proves the convergence of their LSE algorithm. Considering
that PULSE uses the same classification and selection rules
of LSE, the path selection procedure builds a path that ter-
minates in the selected location, and that the information
gathered along the path is never less than 0, the convergence
is also valid for our algorithm.

3.3 Batch variant
We now propose a variant of the PULSE algorithm to se-

lect a set of informative locations in a single iteration (i.e.
after a single Gaussian Process update). This will act as
a trade-off between the computation time required and the
path’s efficiency. Following [7], we exploit the fact that the
updated predictive variance in equation (2) depends only
on the location of a measurement, not on the measurement
value. Assuming we will obtain a new sample at some loca-
tion, it is possible to evaluate the updated predictive vari-
ance, and thus the new ambiguity value, of every other point
xi ∈ Ut. This process is repeated adding the location with
the new highest ambiguity to a set.

It is possible to compute an efficient path that visits all
the locations in such a set. The order in which those loca-
tions should be visited is determined by solving a Travelling
Salesman Problem (TSP) [1]. Once we have the order of
locations to be visited, the path selection procedure (algo-
rithm 2) is applied to all pairs of consecutive locations in
order to obtain the final informative path. This algorithm
allows us to trade off adaptivity in favor of a reduction of the
total traveled distance required to classify all points x ∈ D.

4. EXPERIMENTS
In this section we now present the empirical evaluation

of our proposed techniques comparing them with literature
alternatives on the two datasets used in [3]. Specifically we
compare our PULSE and PULSE-batch with two variants
of the LSE and LSE batch algorithm from Gotovos et al.
[7] and with the SBOLSE algorithm proposed by Bottarelli
et al. [3]. The aim of this empirical evaluation is to assess
the gain in terms of computation time required by our tech-
niques with respect to the state of the art for the level set
estimation problem. Moreover, we also assess the quality of
the selected path, showing that our techniques are compet-
itive in terms of total traveled distance required to obtain
a near optimal classification. We identify the algorithms as
follows:

• PULSE: Our algorithm as explained in section 3.

• PULSEbXX : This algorithm is the batch variant of
PULSE as described in section 3.3.

• CS: This is a variant of LSE as described in [7] to
meet the continuous measuring setting. Locations on
the straight line between the last position and the next
selected point are analyzed, simulating a continuous
sampling sensor.

• CSbXX : Similar to CS, this is a variant of LSE batch
as described in [7] to meet the continuous measuring
setting.

• SBOLSE: This is the algorithm proposed by Bottarelli
et al. in [3].

In the two batch versions, XX identifies the cardinality
of the batch set, i.e. the number of locations in a TSP.

As previously done in [7] and [3], we assess the accuracy of
the classification using the F1-score. This is typically used
in information retrieval to measure the accuracy of binary
classification. Here we consider the locations in the super-
level set as positives and the locations in the sublevel set
as negatives. All the described algorithms have been imple-
mented and tested using MATLAB R2016a on a AMD FX
6300 processor with 16GB RAM.

4.1 Real data experiments
The real dataset consists of measurements of the pH level

extracted from waters of the Persian Gulf near Doha, Qatar
using the boat in Figure 1. The data forms a 68 × 93 grid
where each element represents a sampling location xi that
must be classified with respect to a given threshold. Each
point of the grid represents 0.5 square meters of the surface
that has been analyzed. The value associated with that
location is the average of all the samples extracted by the
sensors while moving the boat in that portion of the surface.

In our experiments we applied three different thresholds
(7.40, 7.42 and 7.44) to classify the scalar field. As done in
previous approaches [3, 7], we performed tests to determine
the β and ε parameter values that allow a high accuracy
for all the algorithms. We then assessed the results start-
ing from ten random initial priors composed by 10% of the
points in the grid, for a total of 30 tests with every algo-
rithm. These priors were used to fit the hyperparameters
of an isometric Matérn-3 [11] covariance function. For the

batch algorithms we performed tests with batches of differ-
ent sizes. We did not observe a significant reduction of the
total traveled distance with batches of size larger than 30.
Thus, we carried out the comparisons with batches of 30
points.

Table 1: F1-score, total traveled distance (meters) and com-
putation time (seconds) using the real world pH dataset. x
is the average of all experiments and SEx is the standard
error of the mean.

F1-score Traveled dist. Comp. time
x SEx x SEx x SEx

PULSE 97.46 0.063 587.8 10.82 11.1 0.27
PULSEb30 97.43 0.060 518.7 6.68 63.5 0.89
CS 98.22 0.039 1560.8 18.58 38.1 0.49
CSb30 97.47 0.055 671.7 13.71 82.4 1.74
SBOLSE 97.23 0.066 473.6 6.20 1006.2 45.99

As shown in Table 1 the F1-score is higher than 97% and
comparable between all the algorithms. With respect to
the total traveled distance, our PULSE and PULSEb30 al-
gorithms perform very well, with a traveled distance that
is lower than all but SBOLSE technique [3]. PULSE had a
computation time two orders of magnitude less than SBOLSE.
Compared to the variants of the LSE technique, PULSE can
obtain both a lower traveled distance and reduced computa-
tion time (see Figure 3 for a graphical representation of the
different paths).

4.2 Synthetic CO2 dataset experiments
The synthetic dataset consists of ten 60× 179 grids. The

motivation for using this dataset is to test the techniques
with more than 10,000 locations to classify. The dataset
has been extracted from portions of CO2 maps1 in order to
obtain a scalar field with a topology consistent with typical
environmental phenomena. We assume that each location
represents 1 square meter of surface to analyze, and we used
a threshold value equal to 85% of the maximum value in the
scalar field. As previously done with the real-world dataset,
we determined a parameter setting that allowed a high ac-
curacy with all the algorithms. We assessed the results with
five random initial priors composed of 10% of the points in
the grid. The priors were used to fit the hyperparameters
of an isometric Matérn-3 [11] covariance function. With five
priors per grid and ten grids, we performed a total of 50
tests with each algorithm.

Table 2: F1-score, total traveled distance (meters) and com-
putation time (seconds) using the synthetic CO2 dataset, x
is the average of all experiments and SEx is the standard
error of the mean.

F1-score Traveled dist. Comp. time
x SEx x SEx x SEx

PULSE 98.22 0.090 1709.4 35.37 23.9 0.75
PULSEb30 98.23 0.092 1356.4 23.08 163.0 4.11
CS 98.66 0.071 5588.1 136.86 99.4 2.91
CSb30 98.25 0.089 1782.7 34.05 223.5 5.08
SBOLSE 97.99 0.100 1355.6 26.16 3663.8 265.22

Result of these experiments are shown in Table 2. We
observed similar results to real data experiments. The total

1http://oco.jpl.nasa.gov/galleries/gallerydataproducts/

(a) (b) (c)

Figure 3: Real dataset experiments. The white areas represent location that are still unclassified and black lines display the
path selected by the algorithms: (a) CS, (b) PULSE and (c) SBOLSE.

traveled distances required by our PULSE and PULSEb30 al-
gorithms are lower than all but the SBOLSE technique. The
PULSEb30 traveled distance is less then one meter longer
that of SBOLSE, but with a computation time of 163 sec-
onds instead of 3663.8 seconds. The best algorithm in terms
of computation time is PULSE with just 23.9 seconds of
computation time required on average.

5. CONCLUSIONS
In this paper we proposed two new algorithms (PULSE

and PULSE-batch) to solve the level set estimation prob-
lem considering an autonomous surface vessel equipped with
continuous-measuring sensors and low computational capac-
ity. Our techniques efficiently compute an informative path
for the mobile agent in order to obtain a near-optimal clas-
sification. Results show that PULSE reduces computation
time compared to the state of the art, while remaining com-
petitive in distance traveled by the mobile sensor and clas-
sification accuracy. PULSE-batch represents a trade off be-
tween adaptivity and further reduction in total distance
traveled.

6. ACKNOWLEDGMENTS
This work was supported by the European Union’s Hori-

zon 2020 research and innovation programme under grant
agreement No 689341. This work reflects only the authors’
view and the EASME is not responsible for any use that
may be made of the information it contains.

7. REFERENCES
[1] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J.

Cook. The Traveling Salesman Problem: A
Computational Study (Princeton Series in Applied
Mathematics). Princeton University Press, Princeton,
NJ, USA, 2007.

[2] M. A. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal,
G. S. Sukhatme, W. J. Kaiser, M. Hansen, G. J.
Pottie, M. Srivastava, and D. Estrin. Call and
response: Experiments in sampling the environment.
In Proceedings of the 2Nd International Conference on
Embedded Networked Sensor Systems, SenSys ’04,
pages 25–38, New York, NY, USA, 2004. ACM.

[3] L. Bottarelli, M. Bicego, J. Blum, and A. Farinelli.
Skeleton-based orienteering for level set estimation. In
ECAI 2016 - 22nd European Conference on Artificial
Intelligence, 29 August-2 September 2016, The Hague,

The Netherlands - Including Prestigious Applications
of Artificial Intelligence (PAIS 2016), pages
1256–1264, 2016.

[4] K. Dantu and G. Sukhatme. Detecting and tracking
level sets of scalar fields using a robotic sensor
network. In Robotics and Automation, 2007 IEEE
International Conference on, pages 3665–3672, April
2007.

[5] M. Dunbabin and L. Marques. Robots for
environmental monitoring: Significant advancements
and applications. Robotics Automation Magazine,
IEEE, 19(1):24–39, March 2012.

[6] B. L. Golden, L. Levy, and R. Vohra. The orienteering
problem. Naval Research Logistics (NRL),
34(3):307–318, 1987.

[7] A. Gotovos, N. Casati, G. Hitz, and A. Krause. Active
learning for level set estimation. In Proceedings of the
Twenty-Third International Joint Conference on
Artificial Intelligence, IJCAI ’13, pages 1344–1350.
AAAI Press, 2013.

[8] G. Hitz, A. Gotovos, F. Pomerleau, M.-E. Garneau,
C. Pradalier, A. Krause, and R. Siegwart. Fully
autonomous focused exploration for robotic
environmental monitoring. In Robotics and
Automation (ICRA), 2014 IEEE International
Conference on, pages 2658–2664, May 2014.

[9] G. A. Hollinger and G. S. Sukhatme. Sampling-based
robotic information gathering algorithms. Int. J. Rob.
Res., 33(9):1271–1287, Aug. 2014.

[10] M. Rahimi, R. Pon, W. J. Kaiser, G. S. Sukhatme,
D. Estrin, and M. Srivastava. Adaptive sampling for
environmental robotics. In Robotics and Automation,
2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference on, volume 4, pages
3537–3544 Vol.4, April 2004.

[11] C. E. Rasmussen and W. C. K. I. Gaussian Processes
for Machine Learning. MIT Press, Cambridge, MA,
USA, 2006.

[12] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser.
Efficient informative sensing using multiple robots. J.
Artif. Int. Res., 34(1):707–755, Apr. 2009.

[13] A. Singh, R. Nowak, and P. Ramanathan. Active
learning for adaptive mobile sensing networks. In
Proceedings of the 5th International Conference on
Information Processing in Sensor Networks, IPSN ’06,
pages 60–68, New York, NY, USA, 2006. ACM.

