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Abstract

The use of robotic mobile sensors for environmental monitoring applications
has gained increasing attention in recent years. In this context, a common
application is to determine the region of space where the analyzed phenom-
ena is above or below a given threshold level – this problem is known as level
set estimation. One example is the analysis of water in a lake, where the
operators might want to determine where the dissolved oxygen level is above
a critical threshold value. Recent research proposes to model the spatial phe-
nomena of interest using Gaussian Processes, and then use an informative
path planning procedure to determine where to gather data. In this paper,
in contrast to previous works, we consider the case where a mobile platform
with low computational power can continuously acquire measurements with
a negligible energy cost. This scenario imposes a change in the perspective,
since now efficiency is achieved by reducing the distance traveled by the mo-
bile platform and the computation required by this path selection process.
In this paper we propose two active learning algorithms aimed at facing
this issue: specifically, i) SBOLSE casts informative path planning into an
orienteering problem and ii) PULSE that exploits a less accurate but com-
putationally faster path selection procedure. Evaluation of our algorithms,
both on a real world and a synthetic dataset show that our approaches can
compute informative paths that achieve a high quality classification, while
significantly reducing the travel distance and the computation time.

Keywords: Informative path planning, Mobile sensors, Active Learning,
Gaussian process, Orienteering

∗Corresponding author.
E-mail addresses: firstname.lastname@univr.it

Preprint submitted to Engineering Applications of Artificial IntelligenceSeptember 13, 2018



1. Introduction

Environmental monitoring encompasses the analysis and actions required
to characterize and monitor the quality of the environment. This includes the
collection of information from the environment and the generation of a model
that represents the specific phenomena of interest (La and Sheng, 2013; La
et al., 2015; Garces and Sbarbaro, 2011). Computational methods are often
used to facilitate environmental monitoring, for example Cheng et al. (2003)
propose and expert system for the analysis of the water quality in a city.
An other example is the monitoring of a body of water (e.g., lakes, rivers,
coastal areas and so forth). In this case the analysis focuses on the generation
of a model that describes how crucial parameters such as the presence of
harmful algal blooms (Muttil and Chau, 2007) or the dissolved oxygen (DO)
vary across the environment. Most environmental monitoring applications
require the collection of large data sets, frequently in harsh conditions. In
recent years the use of unmanned vehicles for monitoring spatial phenomena
has gained increasing attention (Cao et al., 2013). The monitoring operation
of a lake for example, could be performed through the use of autonomous
surface vessels (ASVs), or by a heterogeneous system composed of marine,
terrestrial and airborne platforms (Dunbabin and Marques, 2012).

Figure 1: Mobile platform that we used: Platypus Lutra equipped with pH, Dissolved
oxygen, temperature and electrical conductivity sensors. The computation is on board
and performed by an Arduino Due and a smartphone.

When deploying unmanned vehicles for environmental monitoring, the
data collection process must consider limited resources such as time, energy
and computation power that constrain the operation range of the platforms.
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The goal is to use a mobile platform with low on-board computation power,
such as the one showed in Figure 1, to generate an accurate model of the envi-
ronmental phenomena of interest. In this context (Hollinger and Sukhatme,
2014), it is important to select an informative path for the mobile agents
to acquire as much information as possible while reducing the total traveled
distance and hence the time and energy required to perform the analysis. As
a further issue, autonomous mobile systems are usually equipped with low
computational capacity. Therefore, if the path selection procedure is per-
formed on-board during the monitoring operation, it is crucial to reduce as
much as possible the computational complexity of the algorithms.

The literature offers different path selection strategies (Singh et al., 2009).
Traditional nonadaptive (offline) methods generate the path before any ob-
servations are made. In contrast, adaptive (online) methods plan the path
based on the previously collected data (Batalin et al., 2004; Rahimi et al.,
2004; Singh et al., 2006). These adaptive techniques incrementally generate
the model of the environmental phenomena of interest during the data col-
lection phase and focus the information collection process on specific regions
of the environment where the phenomena exhibits critical values. For exam-
ple, in a lake such a region could encompass the locations where the water’s
dissolved oxygen level is considered harmful for the environment. Another
example could be the detection of contours of biological or chemical plumes
(Pang and Farrell, 2006). From a general perspective, this can be seen as the
problem of deciding if a quantity of interest is above or below a pre-specified
threshold. This problem is typically referred to as the “level set estimation
problem” in the literature (Hitz et al., 2014).

Previous work on the level set estimation problem such as the one pro-
posed by Dantu and Sukhatme (2007) focused on a network composed by
a combination of static and mobile sensors. In the manuscript of Gotovos
et al. (2013) the proposed LSE algorithm uses Gaussian Processes (GPs) to
identify sampling points that reduce uncertainty around a given threshold
level of the modeled function. Even if the authors obtain a high quality clas-
sification with respect to threshold level (above or below) for the regions of
the space using a low number of sampled locations, in their contribution the
main algorithm does not explicitly take into account the path between the
sampling locations. To partially consider this aspect, the authors propose
a batch variant where a set of new sampling locations is selected in a batch
such that it is possible to compute an efficient path between these points.

Hitz et al. (2014) describe a method designed for ASVs equipped with a
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probe that allows an aquatic sensor to be lowered into the water. Their LSE-
DP algorithm, built on the LSE algorithm from Gotovos et al. (2013), uses
a dynamic programming approach with a receding horizon to plan a feasible
sampling path for the probe within a predefined vertical transect plane.

In a more recent work Hitz et al. (2017) introduce an evolutionary strategy
to optimize a path in continuous space. Specifically, authors parametrize a
path as a cardinal B-spline with n control points and propose a re-planning
scheme to adapt the planned paths according to the measurements obtained
from the environment.

This paper is inserted in the aforementioned scenario, and aims at facing
the problem of level set estimation by using Active Learning (AL) techniques
with sequential measurements. In a general discussion on active learning Liu
et al. (2009) present the use of active learning techniques on spatial data
where the cost is proportional to the distance traveled, ignoring the inter-
mediate points along the path. In contrast, we have an additional objective,
where we aim also at determining efficient paths for mobile sensors (instead
of determining single sampling locations) so to optimize the data collection
process. Specifically our techniques are motivated by the recent development
of low-cost, small mobile platforms that can perform continuous-sampling in
various body of waters (lakes, rivers and coastal areas). For example, con-
sider the autonomous surface vessel shown in Figure 1. This platform is small
(about 1 meter long and 50 cm wide) and it is equipped with various probes
that can measure parameters such as pH, dissolved oxygen, temperature,
and electrical conductivity with sampling rate between 1 and 10 Hz. In this
setting the cost in terms of energy to perform a single measurement is negli-
gible, and the most crucial issue for the data collection process is the energy
consumed to move the vessel. In fact, to meet the payload constraint of this
platform, batteries must have a limited capacity that results in constraints on
total path length. As a further constraint, we also want to take into account
the low computational power of the hardware of this platform (composed of
an Arduino Due board and an Android smartphone), which motivates the
derivation of algorithms with reduced computational complexity.

We introduce a novel algorithm (SBOLSE) that makes use of an orien-
teering problem formulation for the level set estimation. SBOLSE aims to
obtain a high quality classification of the analyzed regions while optimizing
the total path length required by the mobile agent, rather than the number
of samples extracted during the executions (which is an important criteria
for previous works in the LSE domain). Moreover, to match the low compu-
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tation power of mobile platforms, we introduce the use of several heuristics
which significantly reduces the time required by the algorithm for the selec-
tion of an informative path. Finally, we also introduce a novel greedy path
selection procedure (PULSE) which represents a baseline greedy strategy for
comparisons.

Specifically, the main contributions1 of this paper to the state of the art
are:

• We propose a novel algorithm called SBOLSE, that uses an orienteering
formulation to solve the level set estimation problem. The algorithm
is specifically designed for continuous-sampling mobile sensors.

• We propose four different heuristics with the aim to reduce the compu-
tation time required to determine an efficient path with the SBOLSE
algorithm.

• We propose a novel greedy algorithm called PULSE for selecting mea-
surement paths that exploits a less accurate but computationally faster
path selection procedure. PULSE only accounts for the presence of
information, not the magnitude of information gain. It is used as a
baseline strategy for comparisons in the continuous-sampling setting.

• We test our algorithms on a real world dataset of water pH level and
on synthetic datasets extracted from CO2 maps. We show that our
approaches are better in terms of computation time required and path
length, while achieving a high quality classification when compared to
the state of the art techniques for level set estimation.

Notice that, the SBOLSE algorithm is based on several methodologies derived
from different areas of computer science: LSE from information gathering,
skeletonization from image processing, orienteering from graph theory and
clustering. Our work shows that a clever combination of such methodolo-
gies results in an effective approach for addressing level set estimation with
continuous measurement sensors.

Although our techniques has been introduced for environmental monitor-
ing operations, they can be generalized to different applications where mobile

1Aspects of this work have already been presented in the conference papers (Bottarelli
et al., 2016) and (Bottarelli et al., 2017)
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sensors are used to model the information of the environment. Specifically,
applications where a mobile sensors has to take measurements from the en-
vironment with a battery constraint and hence it is required to compute an
efficient path. Examples can span across different context such as search
and rescue operations Scherer et al. (2015), precision agriculture Tokekar
et al. (2016); Popovic et al. (2016), sea-floor target localization McMahon
et al. (2017) and radio signal source localization Shahidian and Soltanizadeh
(2016).

2. Problem statement and background

2.1. Problem statement

Following Gotovos et al. (2013), Bottarelli et al. (2016) and Bottarelli
et al. (2017), we formalize the level set estimation as an active learning
problem, where we want to select a path for a mobile sensor so as to optimize
the information gathering process.

An unknown scalar field represents the environmental phenomena of in-
terest, and every location in space has an associated scalar value. More
formally, given a set of locations D ⊆ Rd and a threshold value h, we want
to model the unknown scalar field f : Rd 7→ R in order to classify all the
locations x ∈ D into either the superlevel set H = {x | f(x) > h} or the
sublevel set L = {x | f(x) ≤ h}. The problem is defined as the selection of
the set of locations xi where to perform (noisy) measurements yi = f(xi)+ei.
Such locations should be selected to maximize the classification accuracy of
all points, while minimizing the total traveled distance required for the sensor
to analyze these locations.

2.2. The LSE algorithm (Gotovos et al., 2013)

In this section we summarize the method of Gotovos et al. (2013), which
represents the starting point for our techniques. Gotovos et al. (2013) called
this technique LSE. This approach is based on Gaussian Processes (GP),
a technique which offers a way to model unknown functions without using
parameters. Such tools are widely used in machine learning (Rasmussen and
I., 2006; Kim and Kim, 2013; Ycel et al., 2013). In the paper proposed by
Gotovos et al. (2013), the unknown function to be modeled using a GP is the
unknown scalar field f of the environmental phenomena of interest. Briefly,
a GP is defined by a mean function µ(x) (that can be assumed to be zero
without loss of generality) and by a kernel function (covariance function)

6



k(x, x′) which represents the smoothness properties of the modeled function.
A GP can then be denoted as GP(µ(x), k(x, x′)).

Authors in (Gotovos et al., 2013) consider a set of noisy measurements
Yt = {y1, y2, · · · , yt} taken at locations Xt = {x1, x2, · · · , xt} and assume
that yi = f(xi) + ei where ei ∼ N (0, σ2

n) (i.e., measurement noise with zero
mean). Given the GP prior GP(0, k(x, x′)), the posterior over f is still a GP
and its mean and variance can be computed as follows (Rasmussen and I.,
2006):

µt(x) = kt(x)T (Kt + σ2
nI)
−1Yt (1)

σ2
t (x) = k(x, x)− kt(x)T (Kt + σ2I)−1kt(x) (2)

where kt(x) = [k(x1, x), · · · , k(xt, x)]T and Kt = [k(x, x′)]x,x′∈Xt

Using these equations, the GP is built with the new measurements ac-
quired by the sensor. However, in practical applications, the update of the
posterior is computationally expensive as it requires inverting an n×nmatrix.
n is the number of the samples acquired, which can be thousands of elements
in real-world applications. Hence, it is crucial to reduce the frequency of this
computation.

Given the region of interest, Gotovos et al. (2013) discretize it into a grid
where each element represents a small portion of the surface. These elements
compose the set of sample locations (points) D, and the goal is to classify
each location xi ∈ D into two sets H or L with respect to a threshold level
h. The LSE algorithm uses the inferred mean (1) and variance (2) from the
GP to construct an interval:

Qt(x) =
[
µt−1(x)± β1/2

t σt−1(x)
]

(3)

for any x ∈ D. The parameter βt represents a scaling factor for the interval.
The procedure for tuning this parameter can be found in theorems 1 and 2
in Gotovos et al. (2013).

Then, in order to classify every point x into H or L, authors in (Gotovos
et al., 2013) define the following confidence interval using the the intersection
of all previous Qt(x) intervals for every point x:

Ct(x) =
t⋂

i=1

Qi(x) (4)
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The classification of a point x depends on the position of its confidence
interval with respect to the threshold level h. Specifically, for each location
x ∈ D if its confidence interval Ct(x) lies entirely above h, then f(x) > h with
high probability, and we can classify x into the superlevel set H. Similarly,
when the entire Ct(x) lies below h then we can classify x into the sublevel set
L. These conditions are relaxed with an accuracy parameter ε (introduced
in Gotovos et al. (2013)) as shown in the following equations:

Ht = {x | min(Ct(x)) + ε > h} (5)

Lt = {x | max(Ct(x))− ε ≤ h} (6)

At time t, for every point with a confidence interval that crosses the
threshold, we have to defer the decision until more information is available.
The set of unclassified locations is then identified as:

Ut = D \ (Lt ∪Ht) (7)

In order to classify the points in Ut according to the equations (5) and
(6), it is necessary to acquire more data by selecting new sampling locations
xi ∈ Ut. To this end, the algorithm at each iteration uses the confidence
interval for each unclassified point to derive the following ambiguity value:

at(x) = min{max(Ct(x))− h, h−min(Ct(x))} (8)

The point xt with the highest ambiguity value represents the location with the
highest information content. As such, it becomes the next point to measure.

In addition to the LSE algorithm, Gotovos et al. (2013) discuss the batch
version where multiple locations are selected by taking mutual information
into account. Although the main goal of their approach is to select multiple
locations and to compute an efficient path between them, in both cases their
assumption is that the process of acquiring a new point of data is costly.
Therefore their main goal is to minimize the number of sampling locations.
Moreover, during the movement of the mobile agent from one location to
next, the agent does not acquire any further data. We will see in this paper
how GP-based active learning techniques can be derived to explicitly consider
the scenario of continuous data sampling.
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2.3. Orienteering
The Orienteering Problem (OP) originates from the sport game of ori-

enteering. In the orienteering game, the start and end points are specified
along with a set of other locations (i.e., checkpoints) which have an associ-
ated score. The players aim to visit checkpoints in order to maximize the
total score and reaching the end point within a given time frame. This prob-
lem can model several different contexts. For example, consider the problem
in which a traveling salesperson has a set of cities which he/she could visit.
Assuming that the saleperson knows the expected number of sales in each
city, the goal is to plan a route so as to maximize the total number of sales
while keeping the total length of such route within a given budget (i.e. the
maximum distance that can be traveled in one day).

Formally, the Orienteering Problem can be formulated in the following
way: given a set of N locations, each with a score Si ≥ 0, a starting location
index = 1, an ending location index = N and the travel time tij for all
couples of locations i and j (with i 6= j), the goal is to plan a route, limited
by a given budget Tmax, that visits a subset of these locations in order to
maximize the total collected score.

The OP can easily be defined using a weighted undirected graph G =
(V,E) where V = {v1, . . . , vN} is the set of locations (nodes) and E is the
set of edges. In this formulation the nonnegative score Si of location i is
associated with a vertex vi ∈ V , and the travel time tij between location i
and j is associated with each edge eij ∈ E. The orienteering problem consists
of determining a Hamiltonian path over a subset of V , including the start
node (v1) and end node (vN), having a total length that does not exceeds
the bound Tmax, in order to maximize the collected score.

Therefore, the OP is a combination of node selection and shortest path
computation between the graphs’ nodes, hence it can be cast as a combination
of the Traveling Salesman Problem (TSP) problems (Cormen et al., 2009)
and the Knapsack Problem (KP), where the KP goal is to maximize the total
score collected while the TSP aims at minimizing the travel distance. This
formulation is also referred to as a generalized travelling salesman problem
(GTSP) (Golden et al., 1987). The OP is known to be an NP-hard problem,
as it contains the well known traveling salesman problem as a special case.

This NP-hard problem arises in scheduling and routing applications, and
it is also known as the selective traveling salesperson problem (Laporte and
Martello, 1990; Thomadsen and Stidsen, 2003) or the maximum collection
problem (Kataoka and Morito, 1988). A number of practical applications

9



have been modeled as an orienteering problem and many heuristic approaches
have been developed to combat the inherent complexity of the problem. In
most cases, the OP is defined as a path to be found between distinct locations,
rather than a circuit where v1 ≡ vN . However, in some applications v1 can
coincide with vN but the difference between both formulations is not signifi-
cant. For a general review we suggest the survey proposed by Vansteenwegen
et al. (2011).

2.4. Topological Skeletonization

In shape analysis and digital image processing, skeletonization is a process
for reducing regions of an image to a thin (skeletal) representation while eras-
ing most of the original pixels (see example in Fig. 2). The skeletonization
preserves and usually emphasizes the geometrical properties of the shape,
such as its topology, connectivity, direction and length.

Skeletonization was first introduced by using an intuitive model of fire
propagation by Blum (1967). If one ”sets fire” at all points on the boundary
of a shape, the skeleton forms at the points in the region where two or more
”fires” meet. This intuitive description has different mathematical definitions
and in the literature it is sometimes referred to as medial axis or thinning
(Gonzalez and Woods, 2006).

Skeletonization is used in several applications such as digital image pro-
cessing, computer vision or path planning for a mobile robot among obstacles
(de Leon S. and A., 1998). There are many techniques that are tailored for
different application contexts. Such algorithms can vary in run time and
properties of the produced skeleton, however they all significantly compress
the input. In this paper we are interested in the skeletonization process to
reduce the number of points that we must consider when planning the path
for the robotic platforms.

2.5. Exemplar Based Clustering with Affinity Propagation

Clustering aims at partitioning a set of objects into groups (or clusters)
based on the concept of similarity. Objects in the same group should be
similar, whereas objects belonging to different groups should be dissimilar.
Clustering is the subject of active research in several fields such as statistics,
pattern recognition, and machine learning (Xu and Tian, 2015).

In this work, we are interested in clustering to reduce the computation
required by our algorithm, and we make use of a powerful clustering tech-
nique, called Affinity Propagation (Frey and Dueck, 2007). This technique
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Figure 2: Example of a topological skeletonization applied to an image.

faces the problem of clustering by assuming that each cluster is represented
by one object, called an exemplar. All points of the problem have to choose
one exemplar (i.e. a representative). Points which have chosen the same
exemplar are in the same cluster. The choice is estimated by recursively
exchanging messages between points, until a good set of exemplars emerges.
The efficiency and accuracy of this algorithm have been shown in different
applications (Frey and Dueck, 2007). Moreover, a useful property of Affinity
Propagation is that it does not need a specified number of clusters before-
hand; clusters emerges spontaneously from data.

Specifically, Affinity Propagation takes as input a set of real-valued sim-
ilarities between data points, where the similarity s(i, k) specifies how well
the data point with index k is suited to be the exemplar for data point i.
For example, if the goal is to minimize the squared error, each similarity
can be set to a negative squared error. In our context, the error is the Eu-
clidean distance: for points xi and xk, s(i, k) = −||xi − xk||2. Alternatively,
when appropriate for some applications, similarities may be set by hand. As
previously mentioned, the algorithm does not require an explicit number of
clusters. This number is automatically determined and is influenced by the
self similarities s(k, k), referred to as preferences, indicating how likely each
point is to become an exemplar.

3. SBOLSE ALGORITHM

Even if the LSE solutions proposed by Gotovos et al. (2013) proved to
be effective and accurate, they are not suitable for our constrained scenario.
Actually, with such methods the mobile sensor is guided toward the most
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informative locations without taking into account the path to reach such
points. For example, the LSE algorithm assumes that the mobile sensor
moves from one position to the next selected location following a straight
line. Another issue is that the measure is collected only at the final location
without considering all the points traversed by the sensor along its path. On
the other hand, here we consider applications where sensors can provide data
while the robotic platform is moving. For example, the mobile platforms we
use here are equipped with probes that measure various parameters (e.g., the
DO or the PH level) with a given frequency while the platform is moving.
In this scenario, our goal is then minimizing the total path length while
collecting as much information as possible to correctly classify all locations
xi ∈ D.

In what follows we present our Skeleton-Based Orienteering for Level Set
Estimation (SBOLSE) algorithm. It starts from the LSE framework but
is specifically designed for continuous measuring sensors in which the cost
(in terms of energy) required to take a measurement is negligible, but it
is necessary to optimize the total path of the mobile platform to minimize
battery consumption.

The proposed algorithm is based on a Gaussian Processes modeling of the
scalar field and considers the knowledge about unclassified locations xi ∈ Ut

to build an orienteering problem instance and to select a sequence of loca-
tions to visit. The algorithm optimizes the information that can be acquired
along the route while meeting the budget on the travel distance. Moreover,
we propose a heuristic approach based on the topological skeletonization to
combat the computational complexity associated with the OP, along with
several heuristics to reduce the number of orienteering executions required.
We empirically show that with these heuristics the classification accuracy
does not suffer a significant degradation while greatly reducing the compu-
tation time.

The code of Algorithm 1 describes the steps of our SBOLSE approach.
Our algorithm maintains three sets of points: the current sublevel Lt and su-
perlevel Ht sets, as well as the set of unclassified points Ut. At each iteration
t we update the GP posterior by integrating the new information gathered
at the preceding iteration (line 6). Then we compute the confidence intervals
Ct(x) for each point x ∈ Ut(x), classify them into one of the three sets, and
then compute the sequence of locations to be visited. To compute such a path
we consider the ambiguity defined by equation (8) of the unclassified points
and build an orienteering problem instance. Specifically, in line 9 we create
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Algorithm 1 SBOLSE algorithm

Input: set D, threshold h, accuracy parameter ε,
prior known data X ⊂ D, starting location xstart
Output: sets H and L

1: t← 0
2: x0 ← xstart
3: H0 ← ∅, L0 ← ∅, U0 ← D
4: while Ht ∪ Lt 6= D do
5: t← t+ 1
6: Compute GP posterior µ(x) and σ2(x) for all x ∈ Ut

7: Classify and update Ht, Lt, Ut according to LSE (Gotovos et al., 2013)
8: xc ← current position
9: G← buildGraph(xc, Ut)

10: path← orienteeringStep(G, budget)
11: Execute path
12: end while
13: H ← Ht, L← Lt

a graph from the unclassified points Ut (Algorithm 2) and then compute a
path (line 10) using the orienteeringStep procedure of Algorithm 3. The al-
gorithm terminates when Ht ∪Lt = D, i.e. when all points are classified and
thus Ut = ∅. Note that during the execution of the path (Algorithm 1, line
11) if the sensor moves over locations not yet analyzed but already classified
according to LSE technique (Gotovos et al., 2013), these are evaluated and
possibly re-classified considering newly acquired data.

3.1. Building the graph

In the buildGraph procedure we take all the unclassified locations Ut, and
we build an undirected weighted graph, where all nodes are connected. This
graph will then be used in the orienteering procedure.

As shown in Algorithm 2, the first node of the graph represents the current
location of the mobile sensor (line 1). This location represents the starting
position for the orienteering solver. Subsequently we build the nodes set V
and the edges set E. The function w(·) denotes the weight of a node or the
weight of an edge. The weight of a node w(vi) (line 7) corresponds to the
ambiguity measure (equation 8) of the location that the node represents.
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Algorithm 2 buildGraph procedure

Input: current position xc, unclassified elements Ut

Output: weighted graph G

1: V ← v1 ≡ xc
2: w(v1)← 0
3: n← 1
4: for all xi ∈ Ut do
5: n← n+ 1
6: V ← V ∪ vn ≡ xi
7: w(vn)← a(xi)
8: end for
9: E ← ∅

10: for all vi ∈ V do
11: for all vj ∈ V do
12: if vi 6= vj then
13: E ← E ∪ eij
14: w(eij)← ||vi − vj||
15: end if
16: end for
17: end for
18: G← (V,E)
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Algorithm 3 orienteeringStep procedure

Input: graph G = (V,E), budget B
Output: bestPath

1: bestPath← ∅
2: bestPathV alue← 0
3: for i in range(2, |V |) do
4: if ||v1 − vi|| ≤ budget then
5: path← orienteeringHeuristic(G, v1, vi, B)
6: if value(path) > bestPathV alue then
7: bestPath← path
8: bestPathV alue← value(path)
9: end if

10: end if
11: end for

The weight of the first node is an exception as this represents the current
position of the mobile sensor, hence the location has been already visited
and classified. The weight of the edges w(eij) (line 14) denotes the travel
distance between the locations represented by the nodes vi and vj.

3.2. Orienteering Step

In the orienteeringStep procedure we use the undirected weighted graph
G previously built and consider this as the input to the orienteering problem.
In particular we have a fixed starting point (i.e. the current location of the
sensor), but we do not have an ending location (which is required in the
classical formulation of the OP). Please note that, in principle, it would
clearly make sense to design an orienteering problem instance where the
starting point is equal to the destination point. However in the classic OP
the rewards of every node are fixed: in our case, rewards change during
the execution of the algorithm since the information value of every point
decreases while the sensor acquires new data. Hence, making a single run
of OP with a budget equal to the total battery lifetime, and with a starting
point equal to the ending point, would not take into account the dynamics
of the information inherent in such a scenario. Therefore, we iterate the
process for smaller segments, and this allows us to update the model (with
a GP update) more frequently, considering the newly acquired data. When
measuring at a point we also obtain information about nearby locations.

15



Frequent updates allow the algorithm to make better decisions about future
path choices. In other words, the choice of the budget (length) of these
segments allows a trade-off between adaptivity and the horizon of our path
planning procedure.

To choose the destination we perform an orienteering procedure multiple
times (Algorithm 3, line 5), assuming as destination every unclassified point
in the graph that is reachable with the given budget. The choice of repeating
the orienteering step multiple times (one for every possible reachable desti-
nation) represents the simplest choice for formalizing this problem and this
aspect is improved with the end-point heuristics described in Section 3.4. Ev-
ery time we solve an orienteering instance with a different destination point
we obtain a new path. The procedure keeps track of the best discovered one
and returns this as final route to be executed from the SBOLSE algorithm.
Specifically with value(path) (line 6 and 8) we indicate the summation of
the nodes’ weights in that route, that is value(path) =

∑
vi∈pathw(vi). Since

the OP aims at maximizing the score for a given travel budget, using this
procedure we obtain a path that maximizes the information collected about
the unclassified locations for the level set estimation problem.

3.3. Skeletonization

In practical applications of the level set estimation problem the input is
a set of dense points that must be classified. Specifically, when the data
acquisition process starts, we must consider the entire surface of the selected
portion of the environment. These data are typically discretized and orga-
nized in a grid where each entry represents a small portion of the surface
(i.e., a square of 50 centimeters or 1 meter in our experiments).

Now, given the smoothness property of the environmental phenomena,
locations with high classification uncertainty usually cluster into areas where
the unknown scalar field has higher probability to cross the threshold level.
Considering all such points is redundant and this motivates the use of the
topological skeletonization technique to compress the input.

Specifically, we consider the grid containing the information about the
ambiguity measure (eq. 8) of the unclassified points Ut as a binary image,
where unclassified points are set to 1 and classified points are 0. We then ap-
ply a skeletonization technique to such image, and we maintain as interesting
points to be classified only the points of the resulting skeleton. This greatly
reduces the number of locations that we must consider in the buildGraph pro-
cedure previously presented in section 3.1 (see an example in Figures 3a and
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3b). Note that in the buildGraph procedure each point that is maintained
after the skeletonization represents a node of a complete graph.

(a) (b)

(c) (d)

Figure 3: Example of the topological skeletonization and Exemplar Based Clustering
heuristic applied to the data matrix containing the ambiguity measure for the unclassified
points Ut. 3a data matrix before the skeletonization, a darker color corresponds to an
higher value of ambiguity. 3b matrix after the skeletonization operation. 3c Exemplars
selected with the EBC heuristic and 3d the corresponding clusters identified with different
colors.

3.4. Orienteering with end-point heuristics

The major computation bottleneck of the naive SBOLSE algorithm can be
identified in the multiple executions of the orienteering step (Algorithm 3, line
5), assuming as its destination every unclassified location in the graph that
is reachable with the given budget. Hence, we aim at reducing the number
of the orienteering executions by selecting only a subset of the unclassified
locations as potential end points.
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Algorithm 4 orienteeringStep procedure with heuristics

Input: graph G = (V,E), budget B
Output: bestPath

1: bestPath← ∅
2: bestPathV alue← 0
3: V ′ ← heuristic(V )
4: for i in range(2, |V ′|) do
5: if ||v1 − vi|| ≤ budget then
6: path← orienteeringHeuristic(G, v1, vi, B)
7: if value(path) > bestPathV alue then
8: bestPath← path
9: bestPathV alue← value(path)

10: end if
11: end if
12: end for

The new orienteering step procedure is described in Algorithm 4. We can
notice that the only differences with respect to Algorithm 3 are in line 3,
where we determine a new set of nodes V ′ using a heuristic, and line 4 that
loops on the newly created V ′ instead of V .

In what follows we propose the main heuristic that we implemented and
used in order to determine the new locations set V ′. Three additional baseline
heuristics can be found in the Appendix A.

3.4.1. EBC heuristic

The main heuristic we propose is based on the Exemplar Based Clustering
(EBC) performed with the Affinity Propagation technique (Frey and Dueck,
2007) introduced in section 2.5. The main idea behind this technique is to
exploit the Affinity Propagation algorithm on the unclassified locations and
use the selected exemplars as the set of valid end points for the orienteering
procedure. As described in section 2.5 the Affinity Propagation procedure
takes as input a set of real-value similarities between points and a set of
real numbers which identify the preference of a location to become an exem-
plar. In our application what we want to obtain is a set of points reasonably
scattered in space and with high information content. Similarities and pref-
erences have to be set accordingly. Specifically, the similarity between two
points is related to their proximity, and preferences are related to the infor-
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mativeness. More details on how we set these measures in our experiments
can be found in Section 5. An example of the effects of the Exemplar Base
Clustering phase on the real dataset can be observe in Figs. 3c and 3d.

3.5. Theoretical analysis

For what concerns the theoretical analysis of our approach, notice that
(Gotovos et al., 2013) with Theorem 1 prove the convergence of the LSE
algorithm. Even though the selection procedure of our SBOLSE algorithm
differs from LSE, we used the same classification rules (Algorithm 1, lines
6-7). As in LSE, our technique iterates with the while loop until every point
is classified. Hence we can ensure the convergence of the SBOLSE algorithm
with a high quality classification as they do.

The computational complexity of the technique can be described as fol-
lows. Let’s consider the worst case scenario; this scenario is represented by
the case where at each iteration of the algorithm we move the sensor in a
location adjacent to the current position and we are able to classify only this
new measured location. In this case the while loop of the algorithm has to be
performed |D| times. The complexity of the body of the loop is the sum of
four main components: (i) the computation of the Gaussian Process that re-
quiresO(|D|3) due to the need to invert a |D|×|D|matrix. (ii) The execution
of the buildGraph sub-procedure which has a complexity O(|Ut|2). The cardi-
nality of set Ut is |D| at the first iteration and decreases over time according
to how many points have been classified. (iii) The classification according
to LSE (Gotovos et al., 2013) requires O(|D|). (iv) The execution of the
orienteeringStep sub-procedure. The complexity of this step depends on the
actual heuristics used and very efficient solutions can be found, O(log2OPT )
where OPT is the number of nodes visited by an optimal solution (Chekuri et
al., 2012). As previously mentioned in section 3.4 the major bottleneck is the
multiple executions of the orienteering step that, in the worst case scenario,
are |D| − t. Even with a less efficient implementation of the orienteering
heuristic (e.g. a O(|D|3) the execution of the orienteeringStep sub-procedure
is on the order of O(|D|4).

Hence, the combined complexity of the algorithm is on the order of
O(|D|5). Although the complexity seems very high, this is by far the worst
case scenario. Consider that, in practical applications the algorithm does not
classifies a single point at each iteration but rather a set of new locations.
Moreover, with the use of the skeletonization and the end-point heuristics
the computational effort associated to the orienteeringStep is significantly
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reduced, hence, the algorithm can run much faster. In our experiments in
section 5, we detail the actual computation time required to perform the
technique using two different datasets.

4. PULSE Algorithm

In what follows we present another algorithm, inspired by LSE, which we
call Path-Update LSE (PULSE) algorithm. As with the previous SBOLSE
algorithm, this is specifically designed for continuous sampling sensors for
which i) the cost required to perform an individual measurement is negligible,
ii) it is necessary to optimize the total path of the agent in order to reduce the
battery consumption and iii) we need an efficient path selection procedure.
The proposed technique determines an informative path in order to reach the
most interesting location (i.e. the point in space with the highest ambiguity
about its classification), moving from the current position through points that
still have to be classified. In contrast to SBOLSE, in which the orienteering
routine considers the amount of information in each location, this PULSE
technique is a greedy approach that builds a path using only the presence
of the information in a location without taking into account the amount.
Moreover, in this case we do not have a budget that gives us a tradeoff
between adaptivity and path planning horizon. The purpose of this algorithm
is to develop a fast baseline technique for continuous sampling sensors that
ignores the amount of information. We use this technique as a comparison for
SBOLSE, showing that the orienteering formulation is an important factor
for informative path planning.

The pseudo-code of Algorithm 5 describes the steps of our PULSE ap-
proach. It is very similar to SBOLSE (differences in lines 8-9-10). The
algorithm maintains three sets of points: the current superlevel Ht and sub-
level Lt sets, as well as the set of unclassified points Ut. At each iteration t we
update the Gaussian Process posterior by integrating the new information
gathered at the preceding iteration (line 6). Then we compute the confidence
intervals Ct(x) for each point x ∈ Ut(x), classify them in one of the three sets
and then compute the next sample to be evaluated using the ambiguity de-
fined by equation (8) (line 7). We then compute a path between the current
location xt−1 and the selected point xt using the path selection procedure
(Algorithm 6). The algorithm terminates when Ht ∪ Lt = D, i.e. when all
points are classified and thus Ut = ∅. Note that during the execution of
the path (Algorithm 5, line 11) if an agent moves through locations that are
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Algorithm 5 PULSE algorithm

Input: set D, threshold h, accuracy parameter ε,
prior known data X ⊂ D, starting location xstart
Output: sets H and L

1: t← 0
2: x0 ← xstart
3: H0 ← ∅, L0 ← ∅, U0 ← D
4: while Ht ∪ Lt 6= D do
5: t← t+ 1
6: Compute GP posterior µ(x) and σ2(x) for all x ∈ Ut

7: Classify and update Ht, Lt, Ut according to LSE (Gotovos et al., 2013)
8: xt−1 ← xt
9: xt ←next location according to LSE (Gotovos et al., 2013)

10: path← pathSelection(xt−1, xt, U)
11: Execute path
12: end while
13: H ← Ht, L← Lt

already classified, these are re-evaluated and re-classified considering newly
acquired data.

4.1. Path Selection

At each time step t the algorithm keeps track of the starting position xt−1
of the platform (i.e. the last position) and the destination point assigned by
the sample selection criteria, i.e. the most interesting point xt. In order
to select an informative path towards the destination, the path selection
procedure analyzes each point x ∈ Ut, i.e. locations that still have to be
classified and therefore potentially carrying some useful information, selecting
a path {xt−1 = xnext0 , xnext1 , · · · , xnextn = xt} with n ≥ 1. Note that the
number of points touched by the agent, n, is automatically determined by
the procedure. In the case of n = 1 the path corresponds to the straight line
from the current position to the selected destination.

Each xnexti point determined by the procedure meets the condition to
always approach the destination point, i.e.

||xnexti − xt|| < ||xnexti−1
− xt|| (9)
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Algorithm 6 pathSelection procedure

Input: last position xt−1, next location xt, unclassified elements Ut

Output: path

1: i← 0
2: xnext0 ← xt−1
3: path← xt−1
4: while xnexti 6= xt do
5: i← i+ 1
6: d← ||xnexti−1

− xt||
7: A← ∅
8: for all x ∈ Ut do
9: if ||x− xt|| < d then

10: A← A ∪ x
11: end if
12: end for

13: xnexti ← minx∈A

(
||xi − xnexti−1

||
)

14: path← path ∪ xnexti
15: end while

where ||x′ − x′′|| is the Euclidean distance between locations x′ and x′′. In
more detail, given the two points xnexti−1

and xt, the region of the space which
contains points meeting this condition defines a convex area (see example in
figure 4) and we call this area Ati (Algorithm 6, lines 8-10). The procedure
analyzes all points xi ∈ Ut ∩ Ati and selects as xnexti the closest point from
the previous location, generating the path (Algorithm 6, line 11).

Note that Algorithm 5 differs from the LSE Algorithm proposed by Go-
tovos et al. (2013) only in the path selection procedure we employ. Specifi-
cally, our path selection procedure selects only points that meet the condition
in equation (9) (Algorithm 6, lines 6 and 9). As we build the path from xt−1
to xt the area Ati shrinks and converges towards the destination point xt.
This allows the path to include informative points that lie inside this area
(example in Figure 4), while ensuring that the path is going towards the
most interesting point defined by the ambiguity measure at(x) introduced by
Gotovos et al. (2013). For what concerns the convergence analysis of this
approach the same argument made in Section 3.5 is valid.
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Figure 4: Example of runtime execution of the path selection procedure. The white areas
represent location that are still unclassified. The circle represents the area A. On top the
beginning of the procedure and on bottom we can observe the path that has been built
after some iterations.

4.2. Batch variant

Here we describe a variant of the PULSE algorithm which is aimed at
selecting a set of informative locations in a single iteration (i.e. after a
single Gaussian Process update). This will act as a trade-off between the
computation time required and the path’s efficiency. Following Gotovos et al.
(2013), we exploit the fact that the updated predictive variance in equation
(2) depends only on the location of a measurement, not on the measurement
value. Assuming we will obtain a new sample at some location, it is possible
to evaluate the updated predictive variance, and thus the new ambiguity
value, of every other point xi ∈ Ut. This process is repeated adding the
location with the new highest ambiguity to a set.

It is possible to compute an efficient path that visits all the locations in
such a set. The order in which those locations should be visited is determined
by solving a Travelling Salesman Problem (TSP) (Applegate et al., 2007).
Once we have the order of locations to be visited, the path selection procedure
(Algorithm 6) is applied to all pairs of consecutive locations in order to obtain
the final informative path. This algorithm allows us to trade off adaptivity
in favor of a reduction of the total traveled distance required to classify all
points x ∈ D.

5. Experiments

In this section we present the empirical evaluation of our proposed tech-
niques, comparing them with literature alternatives on two datasets, ana-
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(a) (b)

(c) (d)

Figure 5: Real dataset experiments. The white areas represent location that are still
unclassified and black lines display a portion of the path selected by the algorithms: (a)
CS, (b) SBOLSE, (c) PULSE and (d) ARS-CIPP.

lyzing different aspects of the approaches. More in detail, in Section 5.1 we
describe the datasets we used in our experiments; in Section 5.2 we present
the comparison between all of our algorithms (as well as state of the art
competitors) on a real world dataset; and finally, in Section 5.3, we present
the results on a synthetic dataset. We employed this second dataset to have
experiments on larger instances.

The algorithms we compare are the following:

• PULSE: Our algorithm as explained in section 4.

• PULSEbXX: This algorithm is the batch variant of PULSE as de-
scribed in section 4.2.

• CS: This is a variant of LSE as described by Gotovos et al. (2013)
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for the continuous measuring setting. Locations on the straight line
between the last position and the next selected point are analyzed,
simulating a continuous sampling sensor.

• CSbXX: Similar to CS, this is a variant of LSE batch as described by
Gotovos et al. (2013) for the continuous measuring setting.

• SBOLSE: Our algorithm described in Section 3.

• SB-EBC: SBOLSE algorithm with Exemplar Based Clustering heuris-
tic as described in section 3.4.1.

• ARS-CIPPn: This is the adaptive re-planning scheme algorithm pro-
posed by Hitz et al. (2017). The number n represents the number of
control points of the B-spline that is optimized by the algorithm.

In the two batch versions, XX identifies the cardinality of the batch set,
i.e. the number of locations in a TSP.

Regarding our SBOLSE algorithm and its heuristics variants, we imple-
mented a simple orienteering algorithm inspired by the center of gravity tech-
nique as proposed by Golden et al. (1987). Notice that the performance of
the SBOLSE technique presented in the following sections depends on the
performance of the orienteering heuristic implemented and this can be sub-
stantially improved (e.g., by using a more advanced heuristic available in
literature).

For the SBOLSE algorithm with the EBC heuristic we set the measures
required by the affinity propagation algorithm as follows:

• Similarity: We want to associate the proximity of two points to their
similarity. Moreover all the similarity measures have to be positive.
To do so we compute the maximum distance possible between any
two locations (that we identify as maxDist) and we set the similarity
between point k and point i as s(k, i) = (maxDist − ||k − i||). The
set of similarity thus obtained is normalized so as to have all values
between 0 and 1.

• Preference: We want to associate the informativeness of a location
with the preference to become an exemplar for other neighboring points.
To do so we simply set the preference for a point k with the ambiguity
measure of that location, that is s(k, k) = at(k). The set of preferences
is then normalized so as to have all values between 0 and 1.
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We performed the skeletonization with a basic technique, based on mor-
phological operators, as implemented in the MATLAB function bwmorph.

The aims of this empirical evaluation are to assess the quality of the
selected paths, showing that our techniques are competitive in terms of total
traveled distance required to obtain a high quality classification and the gain
in terms of computation time required by our techniques with respect to the
state of the art for the level set estimation problem. As previously done by
Gotovos et al. (2013), Bottarelli et al. (2016) and Bottarelli et al. (2017), we
assess the accuracy of the classification using the F1-score. This is typically
used in information retrieval to measure the accuracy of binary classification.
Here we consider the locations in the superlevel set as positives and the
locations in the sublevel set as negatives. All the described algorithms have
been implemented and tested using MATLAB R2016a on a AMD FX 6300
processor with 16GB RAM.

5.1. Datasets

The real dataset consists of measurements of the pH level extracted from
waters of the Persian Gulf near Doha, Qatar using the boat in Figure 1.
The data forms a 68 × 93 grid where each element represents a sampling
location xi that must be classified with respect to a given threshold. Each
point of the grid represents 0.5 square meters of the surface that has been
analyzed. The value associated with that location is the average of all the
samples extracted by the sensors while moving the boat in that portion of the
surface. In our experiments we applied three different thresholds (7.40, 7.42
and 7.44) to classify the scalar field. We then assessed the results starting
from ten random initial priors composed by 10% of the points in the grid,
for a total of 30 tests with every algorithm. These priors were used to fit the
hyper-parameters of an isometric Matérn-3 (Rasmussen and I., 2006) kernel
function.

The synthetic dataset consists of ten 60× 179 grids. The motivation for
using this dataset is to test the techniques with more than 10,000 locations
to classify. The dataset has been extracted from portions of CO2 maps2 in
order to obtain a scalar field with a topology consistent with typical envi-
ronmental phenomena. We assume that each location represents 1 square
meter of surface to analyze, and we used a threshold value equal to 85% of

2http://oco.jpl.nasa.gov/galleries/gallerydataproducts/
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the maximum value in the scalar field. We assessed the results with five ran-
dom initial priors for the Gaussian Process composed of 10% of the points
in the grid. The priors were used to fit the hyperparameters of an isometric
Matérn-3 (Rasmussen and I., 2006) kernel function. With five priors per grid
and ten grids, we performed a total of 50 tests with each algorithm.

5.2. Real data experiments

For what concerns the real dataset, as done in previous approaches (Go-
tovos et al., 2013; Bottarelli et al., 2016, 2017) we performed tests to deter-
mine the β and ε parameter values that allow a high accuracy for all the
algorithms. For the batch algorithms we performed tests with batches of
different sizes. We did not observe a significant reduction of the total trav-
eled distance with batches of size larger than 30. Thus, we carried out the
comparisons with batches of 30 points. For the ARS-CIPPn we performed
tests with 3-7-11-15-19 control points. In the following tables we report the
results with 7 control points since this configuration has obtained the best
results both in terms of total traveled distance and runtime. The additional
results can be found in Appendix C Table C.5.

Table 1: F1-score, total traveled distance (meters) and computation time (seconds) using
the real world pH dataset. x is the average of all 30 experiments and SEx is the standard
error of the mean.

F1-score Traveled dist. (m) Comp. time (s)
x SEx x SEx x SEx

PULSE 97.46 0.063 587.8 10.82 11.1 0.27
PULSEb30 97.43 0.060 518.7 6.68 63.5 0.89
CS 98.22 0.039 1560.8 18.58 38.1 0.49
CSb30 97.47 0.055 671.7 13.71 82.4 1.74
SBOLSE 97.23 0.066 473.6 6.20 1006.2 45.99
SB-EBC 97.25 0.064 495.1 8.08 124.4 4.19
ARS-CIPP7 97.57 0.045 736.1 10.30 114.5 1.70

As we can observe in Table 1 the F1-score is consistently higher than 97%
for all the algorithms. Regarding the total traveled distance our SBOLSE
algorithm performs very well, with a traveled distance that is lower than all
other techniques but with the higher computation time required. SBOLSE
with our EBC heuristics represents the best trade-off between total path
and computation required, but with a time that is one order of magnitude
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lower than the basic version without the heuristic. Moreover, notice that the
performance of SBOLSE depends on the orienteering algorithm implemented.
As previously stated in Section 5 these can be substantially improved.

We can observe that PULSEb30 represents a good trade-off as well, how-
ever the average path required from the SB-EBC is lower and statistically
significant according to a t-test with α = 0.05. It is possible to observe
a graphical representation of the different paths chosen by CS, SBOLSE,
PULSE and ARS-CIPP in Figure 5.

Notice that, results reported in Table 1 represents a full execution of the
algorithms until convergence is reached. In case of a limited budget (i.e.,
a limited total travel distance that the mobile sensor can run) such that
it is not possible to classify all points, our SBOLSE and SB-EBC obtain a
clear advantage in terms of F1-score. In Fig. 6a it is possible to observe the
F1-score as a function of the traveled distance. We can notice that the F1-
scores of SBOLSE and SBOLSE with the EBC heuristic outperform the other
techniques. This translates directly in an advantage for our techniques in case
with a limited budget. If we would have to interrupt the techniques before
the convergence, due to a limited battery capacity of the mobile sensor, our
techniques would have reached a better classification accuracy. For example,
if we stop after 300 meters in the real world dataset SBOLSE would have an
F1-score of 95.29 with a gain of 1.39 with respect to the next best competitor
ARS-CIPP7 that obtains an F1-score of 93.9.

5.3. Synthetic CO2 dataset experiments

Table 2: F1-score, total traveled distance (meters) and computation time (seconds) using
the synthetic CO2 dataset, x is the average of all 50 experiments and SEx is the standard
error of the mean.

F1-score Traveled dist. (m) Comp. time (s)
x SEx x SEx x SEx

PULSE 98.22 0.090 1709.4 35.37 23.9 0.75
PULSEb30 98.23 0.092 1356.4 23.08 163.0 4.11
CS 98.66 0.071 5588.1 136.86 99.4 2.91
CSb30 98.25 0.089 1782.7 34.05 223.5 5.08
SBOLSE 97.99 0.100 1355.6 26.16 3663.8 265.22
SB-EBC 98.03 0.096 1460.8 25.89 168.5 7.95
ARS-CIPP7 98.25 0.089 2616.0 63.44 192.9 4.75
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As previously done with the real-world dataset, we determined a param-
eter setting that allowed a high accuracy with all the algorithms. Result of
experiments on the synthetic dataset are shown in Table 2. As obtained in
the real world dataset, also in the synthetic one the SBOLSE algorithm shows
the best performance in term of traveled distance required to obtain a high
quality classification. However in this case the advantage is minimal (i.e.,
1355.6 meters instead of 1356.4 performed by PULSEb30). These results lead
to the conclusion that the advantage of the SBOLSE technique is dataset
dependent. Moreover, notice that the performance of SBOLSE depends on
the orienteering algorithm implemented. As previously stated in Section 5
this can be substantially improved.

Also in this synthetic dataset the advantage of SBOLSE comes with a
prohibitive computation time. The best trade-off is obtained using either
the exemplar based clustering heuristic with a minor increase in the path
length (+7.7%) but with a substantial reduction of the computation time (-
95.5%), or using the PULSE batch algorithm with a comparable path length
and computation time.

Similarly to what explained in section 5.2, also by using the synthetic
dataset we can notice a clear advantage of SBOLSE and SB-EBC in terms
of F1-score in case of a limited budget. We can notice in Fig. 6b that
the F1-scores of our techniques outperform the other, that is, for a smaller
budget constraint with SBOLSE and SB-EBC it is possible to obtain a better
classification accuracy. For example, if we stop after 1000 meters in the
synthetic dataset SBOLSE would have an F1-score of 98.7 with a gain of
1.15 with respect to the next best competitor ARS-CIPP7 that obtains an
F1-score of 97.55.

6. Conclusions

In this paper we proposed a novel set of algorithms for a specific environ-
mental monitoring application called the level set estimation problem. Our
algorithms are specifically designed for continuous-measuring mobile sensors
where the cost to perform a measurement is negligible. In this context we
aim at optimizing the total path length required from the platform and re-
duce time required to compute an informative path. The different variants
are able to obtain a high quality classification with a shorter path and a
lower computation time compared to the current stat of the art algorithms
for the level set estimation problem. As future work we will address the multi
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(a) (b)

Figure 6: Evolution of the F1-score as a function of the distance traveled: (a) on a real-
world instance; (b) on a synthetic instance.

agent case for the level set estimation problem. Team orienteering problem
techniques should offer a viable solution in this scenario.
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Appendix A. Orienteering end-point baseline heuristics

Here we describe three different baseline end-point heuristics for SBOLSE
that we implemented. Even if they represent common straightforward ap-
proaches to select elements from a set, with the reduction of the number of
orienteering executions, their impact in the reduction of computational com-
plexity of our algorithm is substantial. Specifically, we tested the following
methods:
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• Random(p): With this simple heuristic, we randomly select a specified
percentage p of the unclassified locations, in order to become the set of
valid orienteering end points.

• Sparse(p): With this second heuristic, we select from the set of un-
classified locations the specified percentage p of point with the higher
ambiguity value (i.e. the locations with the higher amount of informa-
tion).

• Sample(p): With this last heuristic we perform a discrete random
sampling, where the probability of a point to be selected is weighted
by the ambiguity value of that location.

Appendix B. End-point heuristics experiments

In this section we present the empirical evaluation using the orienteering
end-point heuristics with respect to the standard SBOLSE algorithm. We
performed tests with the four heuristics on both the real world dataset and
the synthetic datasets described in section 5.1. We identify the different
techniques as follows::

• SB-Random(p): SBOLSE algorithm with random sparsification heuris-
tic as described in section Appendix A.

• SB-Sparse(p): SBOLSE algorithm with lowest data point sparsifica-
tion heuristic as described in section Appendix A.

• SB-Sample(p): SBOLSE algorithm with discrete random sampling
heuristic as described in section Appendix A.

In these heuristics, (p) identifies the heuristic parameter (percentage of
points). Specifically, we performed tests varying the percentage parameter
from 90% down to 10% of the points.

Appendix B.1. End-point heuristics results

We obtained a significant reduction in computation time on the real world
dataset. As we can observe on Table B.3, even with a selection of 90% of the
points we obtained a significant reduction on the computation time of roughly
15% with random and sparse. We obtained up to a reduction of roughly 88%
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Table B.3: Average time (seconds) on the real-world and synthetic datasets varying the
Random, Sparse and Sample heuristics’ parameter

90 80 70 60 50 40 30 20 10
Real data
SBOLSE 1006.2
SBOLSE-EBC 124.4
SB-Random 858.3 762.1 681.9 582.5 479.8 396.1 306.5 200.3 117.6
SB-Sparse 857.1 763.4 676.8 576.2 488.8 389.7 301.0 207.6 111.7
SB-Sample 563.7 533.6 482.8 439.2 390.8 329.2 259.2 192.7 110.4
Synthetic data
SBOLSE 3663.8
SBOLSE-EBC 168.5
SB-Random 1544.2 1378.8 1225.1 1038.2 880.2 692.7 537.8 389.5 227.7
SB-Sparse 1555.8 1411.7 1212.3 1047.0 868.8 693.8 537.4 381.0 222,1
SB-Sample 1004.0 924.9 850.1 768.9 663.1 593.0 472.5 349.5 212.4

when we select only 10% of the points. With the sample heuristic we obtain
a reduction of 44% up to 89% with the same parameters. While obtaining a
significant reduction on the computation time, we can observe in Table B.4
that we have a small increase in the total path length required. Specifically,
with just 10% of the points selected we obtained an increase in path length
of roughly 20-22% with the three random, sparse and sample heuristics. The
trend of the F1-score as a function of the traveled distance on a real world
instance is shown in Fig. B.7. The trend of SBOLSE, SB-EBC, and the
three other heuristics is very similar, with a distance traveled that is slightly
longer for the heuristics compared to the standard SBOLSE algorithm.

Table B.4: Average traveled distance (meters) on the real-world and synthetic datasets
varying the Random, Sparse and Sample heuristics’ parameter

90 80 70 60 50 40 30 20 10
Real data
SBOLSE 473.6
SBOLSE-EBC 495.1
SB-Random 472.7 486.4 486.6 494.4 494.3 509.9 515.6 530.8 572.7
SB-Sparse 478.5 473.3 494.0 487.8 503.5 500.5 501.7 529.8 578.3
SB-Sample 498.6 498.2 501.4 490.0 503.5 513.1 521.1 530.5 569.8
Synthetic data
SBOLSE 1355.6
SBOLSE-EBC 1460.8
SB-Random 1386.1 1396.4 1407.3 1379.7 1438.5 1451.6 1534.8 1517.7 1645.1
SB-Sparse 1368.9 1367.6 1381.8 1367.8 1420.0 1425.7 1443.0 1508.4 1650.6
SB-Sample 1440.2 1401.0 1414.3 1424.3 1469.0 1479.5 1489.9 1546.1 1670.9

For the synthetic dataset we obtained an even greater reduction in com-

32



Figure B.7: Runtime F1-score comparison on the typical example instance of the real
dataset, varying the path length between SBOLSE, SB-EBC, SB-Random, SB-Sparse,
and SB-Sample algorithms.

putation time. As we can observe on Table B.3 with a selection of 90% of the
points we obtained a reduction of roughly 58% up to 93% with a selection
of 10% of the points. With the sample heuristic we obtained a reduction
of 72% up to 94% with the same parameters. As previously discussed for
the real-world dataset, the reduction in computation time implies a small
increase in the path length (see Table B.4). Specifically, with only 10% of
the points selected we obtained an increase of roughly 21-23% with the three
heuristics.

Appendix C. Complete results

For completeness, in Tables C.5 and C.6 we report the same results of
Tables 1 and 2 with the additional heuristics presented in Appendix A. Re-
garding the SB-Random, SB-Sparse and SB-Sample we report results with
parameter p = 10 because it represents a good tradeoff between time and
path length. Moreover, in the following tables we also present the complete
experiments performed with the technique proposed by Hitz et al. (2017).
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Table C.5: F1-score, total traveled distance (meters) and computation time (seconds)
using the real world pH dataset. x is the average of all 30 experiments and SEx is the
standard error of the mean.

F1-score Traveled dist. (m) Comp. time (s)
x SEx x SEx x SEx

PULSE 97.46 0.063 587.8 10.82 11.1 0.27
PULSEb30 97.43 0.060 518.7 6.68 63.5 0.89
CS 98.22 0.039 1560.8 18.58 38.1 0.49
CSb30 97.47 0.055 671.7 13.71 82.4 1.74
SBOLSE 97.23 0.066 473.6 6.20 1006.2 45.99
SB-EBC 97.25 0.064 495.1 8.08 124.4 4.19
SB-Random(10) 97.35 0.057 572.7 10.16 117.6 5.07
SB-Sparse(10) 97.36 0.068 578.3 11.45 111.7 4.32
SB-Sample(10) 97.32 0.066 569.8 9.57 110.4 3.95
ARS-CIPP3 97.60 0.058 899.2 13.44 147.7 2.57
ARS-CIPP7 97.57 0.045 736.1 10.30 114.5 1.70
ARS-CIPP11 97.64 0.054 812.9 11.95 150.4 2.69
ARS-CIPP15 97.68 0.050 895.8 15.36 187.4 4.18
ARS-CIPP19 97.75 0.056 962.1 11.05 227.7 3.70
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