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APPENDIX
In this appendix, we first discuss the relation between GCCF and the CCF framework
by Rahwan et al. [2011] in Section A.1. Then, in Sections A.2–A.4 we provide the proofs
of propositions and theorems not included in our manuscript. Finally, in Section A.5
and Section A.6 we provide some additional details and experiments.

A.1. Relation with the CCF framework
Rahwan et al. [2011] also considered scenarios in which constraints enforce (or pro-
hibit) the co-existence of agents in a coalition, introducing the problem of Constrained
Coalition Formation (CCF) to adequately deal with these constraints. The authors also
identify a natural, simpler subclass of CCF games, namely Basic CCF (BCCF) games,
providing the state of the art algorithm for such problems.

Formally, Rahwan et al. define a CCF game as a coalitional game together with a set
of feasible coalition structures CS ⊆ Π(A). The input to a CCF problem is a CCF game
and its objective is to identify the most valuable coalition structure which is feasible,
i.e., CS∗ = arg maxCS∈CS V (CS). Furthermore, they identify a natural subclass of CCF
games, namely Basic CCF (BCCF) games. A BCCF is a coalitional game together with:
(i) a set of positive constrains P ⊆ 2A, (ii) a set of negative constraints N ⊆ 2A, and
(iii) a set of allowed sizes S ⊆ N. A coalition C satisfies a positive constraint P ∈ P
if P ⊆ C. A coalition C violates a negative constraint N ∈ N if N ⊆ C. The size of a
coalition C is allowed if |C| ∈ S. In a BCCF game a coalition C is considered feasible
if C satisfies at least one positive constraint, does not violate any negative constraint
and its size is allowed. At first sight, it appears that the GCCF and the BCCF problems
may be related, since they both focus on constrained CF. Moreover, it is easy to see that
such classes are not disjoint, since unconstrained CF (i.e., a CCF game on which every
coalition is feasible) can be represented both as a GCCF (taking a clique as its graph
G) and as a BCCF (including in the set of positive constraints all the coalitions with
one player). Nonetheless, we show that GCCF and BCCF are different problems and
hence, the algorithm for BCCF provided by Rahwan et al. cannot be applied to GCCF.

PROPOSITION A.1. GCCF games are not a subset of BCCF games, and BCCF games
are not a subset of GCCF games.

PROOF.

A.1.1. There are GCCF games which are not BCCF games. Our first example is a GCCF
game with three agents A = {1, 2, 3}. The set of edges of G is E = {(1, 2), (2, 3)}. Thus,
the set of feasible coalitions is FC(G) = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}, that is,
the only non-feasible coalition is {1, 3}. We will now show that this game cannot be
encoded as a BCCF game. For the sake of contradiction, assume that it can. Since
the single element coalitions {1}, {2}, {3} are feasible, the set of positive constraints
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P should include {1}, {2}, {3}. Since the grand coalition {1, 2, 3} is feasible, the set of
negative constraints N should be empty. Since there are feasible coalitions with one,
two, and three elements, the set of allowed sizes should be S = {1, 2, 3}. It is easy to
see that coalition {1, 3} is feasible on the candidate BCCF game, and thus that our
example GCCF game is not a BCCF game.

A.1.2. There are BCCF games which are not GCCF games. Our second example is a BCCF
game with two agents A = {1, 2}. The set of positive constraints P is {{1}}, the set of
negative constraints N is empty and the set of allowed sizes is just S = {2}. Thus, the
set of feasible coalitions is FC(G) = {{1, 2}}. Again assume that we can encode this
game as a GCCF game. Since in every GCCF game, the single element coalitions are
feasible, we reach a contradiction.

Henceforth, the relationship between GCCF and BCCF is represented in Figure 11.

CCF games

GCCF games BCCF gamesCoalitional games

Fig. 11: Relationships between the CCF families.

A.2. Proof of Proposition 4.3
Let Gc be a 2-coloured graph, in which each vertex is labelled with a coalition. Recall
that a red edge e between coalitions C1 and C2 encodes a constraint imposing that each
pair of elements (c1, c2), where c1 ∈ C1 and c2 ∈ C2, does not lie in the same coalition.

DEFINITION 9. Given a 2-coloured graph Gc, we say that a coalition structure is
compatible with Gc if it can be obtained by contracting green edges and without break-
ing any of the constraints imposed by red edges.

DEFINITION 10. A green edge e is red-colourable with respect to CS if CS satisfies
the constraint imposed by e when we colour it red.

DEFINITION 11. Given a coalition structure CS and an edge e, we say that e is
contractible with respect to CS if the coalition formed by contracting e is included into
one of the coalitions of CS.

Note that if CS is compatible with Gc each edge should be either red-colourable or con-
tractible with respect to CS. Based on these definitions we can prove Proposition 4.3.

PROPOSITION 4.3. Given a 2-coloured graph Gc, the tree rooted at Gc contains all
the coalition structures compatible with Gc, and each of them appears only once.

PROOF. By induction on the number of green edges. If there is no green edge, then
the tree has just one element which corresponds to the only coalition structure com-
patible with Gc. Assume that the statement is true for n−1 green edges. Let Gc have n
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green edges and CS be a coalition structure compatible with Gc. If no edge in Gc is con-
tractible with respect to CS, then CS is the coalition represented by Gc, and it cannot
be in any of its children, because each of them contracts an edge in Gc. Thus CS ap-
pears in the tree rooted at Gc only once (at the root). Assume then that there is at least
one green edge in Gc contractible with respect to CS. Then CS cannot be the coalition
structure at the root. We would like to identify a child G′ such that CS is compatible
with G′. The first child of the root contracts an edge e. If e is contractible with respect
to CS, then the first child of Gc is compatible with CS. Otherwise e is red-colourable
with respect to CS. The same procedure goes on with the remaining children. Thus,
by construction, the root has three kind of children with respect to CS: some which
contract a red-colourable edge, a single child G′ that contracts a contractible edge and
red-colours some red-colourable edges, and from there on some that red-colours a con-
tractible edge. It is easy to see that CS is compatible only with one child, namely G′.
Now G′ has at most n−1 green edges and by induction CS must appear in that subtree
only once. Thus, it appears in the tree rooted at Gc only once.

A.3. Proofs in Section 6.1
In this section we provide the proofs of Propositions 6.1 and 6.2.

DEFINITION 6. Given a graph G, a function V : CS(G) → R is an m + a function if
it is the sum of a superadditive function V + : CS(G) → R and a subadditive function
V − : CS(G)→ R.

PROPOSITION 6.1. The collective energy purchasing function

V (CS) =
∑
C∈CS

[
T∑
t=1

qtS (C) · pS + T · qF (C) · pF

]
︸ ︷︷ ︸

V +(CS)

+
∑
C∈CS

κ (C)︸ ︷︷ ︸
V −(CS)

(7)

is an m+ a function.

PROOF. As shown in Equation 7, such function can be seen as an m + a function,
being the sum of a superadditive function, consisting of the cost of the energy necessary
to fulfil the aggregated consumption profiles of the coalitions, and a subadditive one
(i.e., the sum of the coalition management costs). On the one hand, since the baseline
(i.e., the minimum) of the aggregate energy profile of a coalition C12 = C1 ∪ C2 is no
less than the sum of the baselines of the energy profiles of C1 and C2, the members of
C12 can buy from the forward market an amount of energy which is no less than the
sum of the amounts that could have been bought by C1 and C2 separately.10 Therefore,
the energy (·) function is superadditive. On the other hand, it is trivial to verify that
κ (·) is a subadditive function.

PROPOSITION 6.2. The edge sum with coordination cost function

V (CS) =
∑
C∈CS

 ∑
e∈edges(C)

w+(e)


︸ ︷︷ ︸

V +(CS)

+
∑
C∈CS

 ∑
e∈edges(C)

w−(e) + κ (C)


︸ ︷︷ ︸

V −(CS)

. (8)

is an m+ a function.

10A more detailed discussion is provided by Vinyals et al. [2012].
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PROOF. Equation 8 highlights the V +(·) and V −(·) components of this function. On
the one hand, v+(C) =

∑
e∈edges(C) w

+(e) is clearly superadditive, since a coalition
C12 = C1 ∪ C2 contains an amounts of positive edges which is no less than the total
amount of positive edges in C1 and C2 taken separately, hence v+(C12) ≥ v+(C1) +
v+(C2). Similarly, it is easy to prove that

∑
e∈edges(C) w

−(e) is a subadditive function.
Hence, the edge sum with coordination cost function is an m+ a function.

A.4. Proof of Theorem 5.1
We now provide the proof of Theorem 5.1, detailing some properties of our domain.

LEMMA A.5. CS (G) is a lattice, i.e., a partially ordered set, in which every two
elements CSi and CSj have a supremum (CSi ∨ CSj) and an infimum (CSi ∧ CSj).
In particular, we define the following partial order over coalition structures.

DEFINITION 13. Given any two coalition structures CSi and CSj , we say thatCSi ≤
CSj if every element of CSi is a subset of some element of CSj .

As an example, {A,B} {C} ≤ {A,B,C}, but the order between {A,B} {C} and
{A} {B,C} is not defined. It is well known that with this partial order the set of parti-
tions forms a complete lattice (see Section V.4 in [Grätzer 2011]), called the partition
lattice or equivalence lattice. It is easy to see that our domain of interest is the sub-
lattice generated by the set of feasible coalition structures and thus it is a lattice.
Furthermore, in our scenario, the grand coalition represents a supremum of any two
elements, while the coalition structure of all singletons represents an infimum.

LEMMA A.6. The elements of CS(G) can be arranged in an order-preserving tree:
whenever CSj is a descendant of CSi in the tree, then CSj ≥ CSi. Thus, CSi is the
infimum of the subtree rooted at CSi, i.e., CSi =

∧
ST (CSi) = inf ST (CSi).

In the search tree defined in Section 4 each child is the result of contracting an edge in
the parent. As a consequence of the contraction, two of the coalitions in the parent are
merged, making the child partition coarser than that of the parent. Hence, by direct
application of Lemma A.5, the above statement holds.

DEFINITION 7. Given a coalition structure CSi represented by the 2-coloured graph
Gc, the coalition structure CSi can be obtained by removing all red edges from Gc and
then contracting all the remaining green edges (which is equivalent to find the connected
components in the graph after the removal of all red edges).

LEMMA A.7. Given a node CSi, CSi is bigger than any of the elements of the subtree,
i.e., CSi ≥

∨
ST (CSi) = supST (CSi).

Since CSi represents the connected components in the graph after the removal of all
red edges, it can be interpreted as the coarsest partition forgetting that we decided not
to contract some edges. Clearly, any partition in the subtree will be at most as coarse
as this one. Given the above, we can now provide the proof of Theorem 5.1.

THEOREM 5.1. Given an m+a function V : CS(G)→ R, then M (CSi) = V − (CSi) +
V +

(
CSi

)
is an upper bound for the value assumed by such function in every coalition

structure of the subtree ST (CSi) rooted at CSi, i.e., M (CSi) = V − (CSi) + V +
(
CSi

)
≥

max{V (CSj) | CSj ∈ ST (CSi)}.
PROOF. Consider that, for the subtree rooted at CSi, the maximum of a

subadditive function will be achieved at CSi (Lemma A.6), i.e., V −(CSi) ≥
max {V −(CSj) | CSj ∈ ST (CSi)}. On the other hand, the maximum of a superadditive
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function will be reached at one of the leaves. However, since assessing the supremum
CSi of the subtree is computationally efficient (Lemma A.7), we can bound V +(·) in
the subtree as V +

(
CSi

)
≥ max {V +(CSj) | CSj ∈ ST (CSi)} . Finally, since we assume

that V (·) is an m+ a function, then we can provide an upper bound for such a function
by composing these two results, i.e., M (CSi) = V − (CSi) + V +

(
CSi

)
.

A.5. Network topologies
In what follows, we provide some details on the two network topologies we adopted in
our experimental evaluation, i.e., scale-free networks and community networks.

A.5.1. Scale-free networks. Scale-free networks are a widely adopted network topology
thanks to their ability of adequately describing the features of many real-world sce-
narios. One of the simplest properties of a network that can be measured directly is
the degree distribution, or the fraction P (k) of nodes having k connections (degree k).
Direct measurements of the degree distribution for networks of the Internet [Barabási
and Albert 1999], WWW (where hypertext links constitute directed edges) [Broder
et al. 2000], citations of scientific articles [Redner 1998], metabolic networks [Jeong
et al. 2000], and many more, show that such a distribution does not follow the rules of
random graphs. Rather, these nets often exhibit a scale-free degree distribution, i.e.,

P (k) = ck−λ, k = m, . . . ,K,

where c ≈ (λ− 1)mλ−1 is a normalisation factor and m and K are the lower and upper
cutoff for the connectivity of the node [Cohen et al. 2003].

Several models have been presented for the evolution of scale-free networks, each of
which may lead to a different ensemble. The first suggestion was the preferential at-
tachment model by Albert and Barabási [2002], which generates a scale-free network
starting with an initial connected network of m0 nodes, and adding each subsequent
node one at a time with a probability that is proportional to the number of links that
the existing nodes already have. Formally, the probability pi that the new node is con-
nected to node i is pi = ki∑

j kj
, where ki is the degree of node i and the sum

∑
j kj is

made over all pre-existing nodes j. Heavily linked nodes (“hubs”) tend to quickly accu-
mulate even more links, while nodes with only a few links are unlikely to be chosen as
the destination for a new link. The new nodes have a “preference” to attach themselves
to the already heavily linked nodes.

Scale-free networks provide a good description of many realistic scenarios. Nonethe-
less, recent studies have developed a different network topology (i.e., community net-
works) to model such phenomena, as described hereafter.

A.5.2. Community networks. Many realistic scenarios in which GCCF can be success-
fully applied exhibit an underlying structure determined by sparse synergies which
naturally results from interactions between agents. These fields of application include
social networks, authorships, collective energy purchasing and carpooling. One funda-
mental feature of these networks of agents is represented by their mesoscopic struc-
ture, characterised by the presence of groups of nodes, called communities or modules,
with a high density of links between nodes of the same group and a comparatively low
density of links between nodes of different groups. This compartmental organisation
of networks is very common in systems of diverse origin, hence analysing the per-
formance of our approach with the adoption of this particular graph topology is very
important. In fact, many of the above-mentioned real-world networks, believed to be
scale-free networks, exhibit a community network structure [Kolda et al. 2014b].
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In particular, in our experiments community networks are provided by the Block
Two-Level Erdős-Rényi (BTER) model11 [Kolda et al. 2014b]. Such a model is based on
the idea of a graph comprising communities in the form of dense ER subgraphs (i.e.,
generated with the Erdős-Rényi model), hence matching well real-world graphs. The
generation of community networks with the BTER model is divided in two phases:
in the first one, BTER builds a collection of ER subgraphs in such a way that the
specified degree distribution is respected. The BTER model allows one to construct a
graph with any degree distribution. Real-world degree distributions might be idealised
as power laws, but it is by no means a completely accurate description. When the
degree distribution is heavy tailed, then the BTER graph naturally has scale-free ER
subgraphs. The internal connectivity of the ER graphs is specified by the user and can
be tuned to match observed data. These communities are then interconnected in the
second phase, in which a Chung-Lu model [Aiello et al. 2000] is used over the excess
degrees to form the edges that connect communities.

A.6. DyCE vs CFSS on community networks
We report here the additional experiments not included in Section 7.1 due to space con-
straints. In particular, here we discuss the results of the comparison between CFSS
and DyCE when considering the community network topology and the collective en-
ergy purchasing characteristic function. We generated community networks with the
BTER model [Kolda et al. 2014b], with an average degree (denoted as deg) within
{2, 4, 6}. Figure 12 shows that both algorithms achieves a performance comparable to
the scale-free network scenario, hence the discussion in Section 7.1 also applies here.
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Fig. 12: Collective energy purchasing,
community networks.

11We use the FEASTPACK v1.1 MATLAB implementation [Kolda et al. 2014a] of the BTER model.
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