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Abstract

In this work, we adopt a cooperative game theoretic approach in order to

tackle the social ridesharing (SR) problem, where a set of commuters, connected

through a social network, form coalitions and arrange one-time rides at short

notice. In particular, we address two fundamental aspects of this problem. First,

we focus on the optimisation problem of forming the travellers coalitions that

minimise the travel cost of the overall system. To this end, we model the forma-

tion problem as a Graph-Constrained Coalition Formation (GCCF) one, where

the set of feasible coalitions is restricted by a graph (i.e., the social network).

Our approach allows users to specify both spatial and temporal preferences for

the trips. Second, we tackle the payment allocation aspect of SR, by propos-

ing the first approach that computes kernel-stable payments for systems with

thousands of agents. We conduct a systematic empirical evaluation that uses

real-world datasets (i.e., GeoLife and Twitter). We are able to compute optimal

solutions for medium-sized systems (i.e., with 100 agents), and high quality so-

lutions for very large systems (i.e., up to 2000 agents). Our results show that

our approach improves the social welfare (i.e., reduces travel costs) by up to

36.22% with respect to the scenario with no ridesharing. Finally, our payment
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allocation method computes kernel-stable payments for 2000 agents in less than

an hour—while the state of the art is able to compute payments only for up to

100 agents, and does so 84 times slower than our approach.

Keywords: Coalition formation, ridesharing, social networks, graphs

1. Introduction

The concept of real-time ridesharing, where people arrange one-time rides at

short notice with their private cars, is rapidly shifting the way people com-

mute for their daily activities. Companies such as Maramoja1 or Lyft2 allow

users to quickly share their positions and arrange rides with other people they

know/trust within minutes, hence providing a credible alternative to standard

transportation systems (such as taxis or public transport). A clear trend for

such companies is to build a community of users, where commuters can rate

drivers/passengers, and then use such information to automatically form groups

of commuters that know/trust each other. Following this trend, here we provide

an approach that, given the desired starting point and destination, and the time

constraints on the pick-up and the arrival of the commuters, can form groups

that share cars to lower associated transportation costs (i.e., travel time and

fuel), while considering the constraints imposed by the social network. We call

this problem the social ridesharing (SR) problem. In particular, we provide a

model for the SR problem casting this as a Graph-Constrained Coalition For-

mation (GCCF) problem. Specifically, following relevant literature on GCCF

[36, 45], we consider a coalition to be feasible, only if the commuters involved

in such coalition form a connected subgraph of the social network.

Within such SR scenario, we first address the optimisation problem of min-

imising the total cost of all the coalitions formed by the system. Given this, we

define the value of each coalition as the travel cost of the associated car. Specif-

ically, we present the first model that encodes the above discussed scenario as a

1https://maramoja.co.ke.
2https://www.lyft.com.
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GCCF problem, and we provide a novel formulation of coalitional values on the

basis of the spatial preferences of the agents. Subsequently, we generalise our

model incorporating the temporal preferences of the agents, so to allow them

to express constraints on the departure and the arriving time. Our approach

allows us to derive efficient methods for the computation of the path and the

departure time of the driver, which provide the optimal solution the considered

model.3 Finally, we show how to solve the GCCF problem associated to the SR

scenario by means of a modified version of CFSS (i.e., the state of the art ap-

proach for solving GCCF), a branch and bound algorithm proposed in previous

work [7] that is based on the graph-theoretic concept of edge contraction. Specif-

ically, in this paper we propose SR-CFSS, which significantly extends CFSS by

implementing a novel bounding technique devised for the SR scenario, and by

ensuring the validity of the constraints imposed by our SR model.

We empirically evaluate our approach on real-world datasets for both spatial

(i.e., GeoLife by Microsoft Research [50]) and social data (i.e., Twitter [30]).

Results show that our approach can produce significant cost reductions (up

to −36.22% with respect to no ridesharing) and it scales to large numbers of

agents, computing approximate solutions for very large systems (i.e., up to 2000

agents) and providing good quality guarantees (i.e., 71% of the optimal in the

worst case) within minutes.

Having solved the optimisation problem posed by GCCF, we then turn to

the problem of splitting the travel costs (corresponding to each car) among

its passengers, i.e., we solve the payment allocation problem. Payments to the

commuters need to be computed given the passengers’ distinct needs (e.g.,

shorter/longer trips), roles (e.g., drivers/riders, less/more socially connected)

and opportunity costs (e.g., taking a bus, their car, or a taxi).

One key aspect of payment allocation in Coalition Formation (CF) is the

game-theoretic concept of stability, which measures how agents are keen to

maintain the provided payments instead of deviating to a configuration deemed

3In general, both these problems are not tractable [27, 31].
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to be more rewarding from their individual point of view. Here, we induce stable

payments in the context of the SR problem, employing the kernel [14] stability

concept. Kernel-stable payoffs are perceived as fair, since they ensure that agents

do not feel compelled to claim part of their partners’ payoff. Kernel stability

has been widely studied in cooperative game theory, and various approaches

have been proposed to compute kernel-stable payments [29, 39]. However, as we

discuss in Section 5, state of the art approaches exhibit inefficiency (i.e., they do

not avoid considering infeasible solutions) and redundancy (i.e., they consider

coalitions more than once). These drawbacks severely limit their scalability. In

contrast, a better way to tackle this problem is to exploit the structure of the

graph in order to consider only the coalitions that are indeed feasible, so to

avoid any unnecessary computation.

We achieve this by means of the PK (Payments in the Kernel) algorithm,

our method to compute a kernel-stable allocation given a coalition structure,

and we apply it to the SR scenario. In particular, we address the shortcomings

of the state of the art algorithm [39] in real-world scenarios, by designing an

efficient parallel approach that scales up to thousands of agents. Specifically,

we benchmark PK adopting the same realistic environment used for testing

SR-CFSS, showing that our method computes payments for 2000 agents in less

than an hour and it is 84 times faster than the state of the art in the best case.

Moreover, our method can be efficiently parallelised, i.e., it achieves a speed-up

of 10.6× on a 12-core CPU with respect to the serial approach.

Finally, we develop new insights into the relationship between payments

incurred by a user by virtue of its position in its social network and its role

(rider or driver). In general, our experimental results suggest that the kernel can

be a valuable stability concept in the context of SR, as it results in a reasonable

payment allocation that can be directly correlated with some simple properties

of the agents in the system (i.e., network centrality and being a driver/rider).

In more detail, this paper advances4 the state of the art as follows:

4Aspects of this work had already been presented in [8, 9]. This paper presents a signif-

4



• We model SR as GCCF that considers the desired starting point and

destination, and the time constraints on the pick-up and the arrival.

• We propose SR-CFSS, a significantly extended version of CFSS (i.e., the

state of the art approach for solving GCCF), to provide optimal solutions,

and approximate solutions with quality guarantees for large-scale systems.

• We propose PK, the first approach able to compute kernel-stable payments

for systems with thousands of agents.

• We evaluate our algorithms with realistic datasets, i.e., GeoLife from Mi-

crosoft Research for the geospatial data and Twitter for social networks.

Results show that SR-CFSS computes optimal solutions in minutes for

systems including up to 100 agents, and provides approximate solutions

for systems including up to 2000 agents, with good quality guarantees

(i.e., with a maximum performance ratio of 1.41 in the worst case). PK is

able to compute payments for 2000 agents in less than an hour and it is

84 times faster than the state of the art in the best case.

• We analyse the relationship between payments incurred by a user by virtue

of its position in the social network and its role (rider/driver).

The rest of the paper is organised as follows. Section 2 illustrates the background

on the GCCF problem, the kernel, and discusses the relationship between our

work and the existing literature. Section 3 details our GCCF model for SR

and Section 4 extends such model to include time constraints. In Section 5 we

discuss PK, our approach to compute kernel-stable payments. Sections 6 and 7

present our experimental evaluation, where we benchmark SR-CFSS and PK,

respectively. Section 8 concludes the paper and outlines future work.

icantly extended model, which allows each commuter to express temporal preferences, i.e.,
agents can specify an ideal pick-up and arriving time. This extension is of utmost importance
in order to provide a SR model that can be applied in realistic scenarios, in which time signif-
icantly influences the travel needs of the commuters and, hence, plays a fundamental role for
SR. Furthermore, we conduct an additional experimental evaluation on real-world datasets,
in order to investigate the influence of the introduction of time constraints on our approach.

5



2. Background & related work

The purpose of this section is threefold. In Section 2.1 we define the GCCF

problem, and we provide some background on the state of the art algorithm

to solve it, i.e., CFSS. In Section 2.2 we discuss payment computation and the

stability concept adopted by our approach, i.e., the kernel. Finally, in Section 2.3

we discuss the relationship between our work and the literature on ridesharing.

2.1. GCCF problem definition

The Coalition Structure Generation (CSG) problem [38] takes as input a finite

set of n agents A = {a1, . . . , an} and a characteristic function v : 2A → R, that

maps each coalition S ∈ 2A to its value, describing how much collective payoff

a set of players can gain by forming a coalition. A coalition structure CS is

a partition of the set of agents into disjoint coalitions. The set of all coalition

structures is Π (A). The value of a coalition structure CS is assessed as the sum

of the values of its composing coalitions, i.e., V (CS) =
∑
S∈CS v (S) .

CSG aims at identifying CS∗, the most valuable coalition structure, i.e.,

CS∗ = arg maxCS∈Π(A) V (CS). The computational complexity of the CSG

problem is due to the size of its search space. In fact, a set of n agents can

be partitioned in Ω(( n
ln(n) )n) ways, i.e., the nth Bell number [6], since, in stan-

dard CSG, every possible subset of agents is potentially a valid coalition.

In many realistic scenarios, constraints influence the process of coalition

formation. Following the work of Myerson [36] and Demange [16], and more

recent work by Voice et al. [44, 45], in this paper we focus on a specific type of

constraints that encodes synergies or relationships among the agents and that

can be expressed by a graph, where nodes represent agents and edges encode the

relationships between the agents. In this setting, edges enable connected agents

to form a coalition and a coalition is considered feasible only if its members

represent the vertices of a connected subgraph. In order to model these settings,

Myerson [36] first proposed a definition of feasible coalition by considering an

undirected graph G = (A,E), where E ⊆ A×A is a set of edges between agents,

representing the relationships between them:
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Definition 1 (feasible coalition). A coalition S is feasible if all of its members

are connected in the subgraph of G induced by S, i.e., for each pair of players

ai, aj ∈ S there is a path in G that connects ai and aj without going out of S.

Thus, given a graph G the set of feasible coalitions is FC (G) = {S ⊆ A |

The subgraph induced by S on G is connected}. A Graph-Constrained Coali-

tion Formation (GCCF) problem is a CSG problem together with a graph G,

where a coalition S is considered feasible if S ∈ FC (G). In GCCF problems a

coalition structure CS is considered feasible if each of its coalitions is feasible,

i.e., CS (G) = {CS ∈ Π (A) | CS ⊆ FC (G)}. The goal for a GCCF problem

is to identify CS∗, which is the most valuable feasible coalition structure, i.e.,

CS∗ = arg maxCS∈CS(G) V (CS). After the definition of the GCCF problem, we

now present CFSS, the state of the art algorithm to solve it.

2.1.1. The CFSS algorithm

CFSS [7] is a search-based algorithm that solves the GCCF problem. CFSS

works by representing the solution space CS (G) of the GCCF problem as a

rooted search tree, which is guaranteed to contain each CS ∈ CS (G) only once

without any redundancy. Each solution in such search tree is constructed by a

unique sequence of edge contraction operations starting from the initial graph

G. Intuitively, the contraction of an edge represents the merging of the coalitions

associated to its incident vertices, as shown in Figure 1. Such an operation can

be used to generate the entire search space CS (G), which can be traversed with

polynomial memory requirements in order to find the optimal solution. This is

possible because CFSS is based on a depth-first traversal (see Algorithm 9 in

Appendix C) of the search tree, and, hence, at each point of the search, only the

ancestors of the current node need to be maintained in memory. For this reason,

CFSS can solve large-scale GCCF instances with more than 2000 agents [7]. The

superior scalability of CFSS with respect to classic CSG solution algorithms is

also possible thanks to the reduced search space that must be explored, due to

the presence of the graph that constrains the number of feasible coalitions. An

in-depth discussion about the CFSS algorithm is provided by Bistaffa et al. [7].
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{a1}

{a2}

{a3}

{a4}

(a) Before contraction

{a2}{a1, a3}{a4}

(b) After contraction

Figure 1: Example of an edge contraction.

Having discussed the optimisation part of GCCF, we now discuss the second

fundamental aspect of CF, i.e., payment computation, which, as mentioned in

the introduction, is crucial in the context of SR.

2.2. Payment computation

The payment computation problem involves the computation of a payoff vector

x, which specifies a payoff x[i] for each agent ai ∈ A as a compensation of their

contributions. This problem has been thoroughly studied in the cooperative-

game theory literature, thus we suggest the reader to refer to the book by Chalki-

adakis et al. [10] for a more extensive discussion of all the technical aspect on

this subject. In the context of this discussion, we are particularly interested in

computing payoff vectors that are efficient (i.e., the entire value of S is split

among the members of S) and individually rational (i.e., each agent ai receives

a payoff x[i] that is at least the value of its singleton). Efficiency and individ-

ual rationality are fundamental in real-world applications such as SR, as they

formalise natural properties that are often assumed in practice. Efficiency ex-

presses the principle that the entire travel cost of each car should be divided

among its passengers, while individual rationality states that a rational agent

does not join a car if such an action results in a cost higher than going alone.

Furthermore, computing payments that are stable is of utmost importance

in systems with selfish rational agents, i.e., agents who are only interested in

the maximisation of their payoffs [10]. As such, payoffs have to be distributed

among agents to ensure that members are rewarded according to their bargain-

ing power [10]. Stability ensures that agents will not deviate from the provided

solution to a different one that is better from their individual point of view. In
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cooperative game-theory, stability has been defined with several concepts, e.g.,

the stable set, the nucleous, the kernel, and the core [10]. The core is one of the

most widely studied stability concepts, but its computation has an exponential

complexity with respect to the number of agents [11]. As such, it is not suitable

for large-scale systems, as confirmed by our past research [43]. Furthermore, it

is not guaranteed that core-stable solutions always exist [10], as evidenced by

our experiments in Appendix B. Thus, in this paper we focus on the kernel.

2.2.1. The kernel

The kernel is a stability concept introduced by Davis and Maschler [14]. A key

feature of the kernel is that it is always possible to compute a kernel-stable

payoff allocation. Moreover, a number of approaches [8, 29] can compute an

approximation of the kernel when the size of coalitions is limited in a polynomial

time with respect to the number of agents. The kernel provides stability within

a given coalition structure, and under a given payoff allocation, by defining

how payoffs should be distributed so that agents cannot outweigh (cf. below)

their current partners, i.e., the other members of their coalition. Kernel-stable

payoffs are perceived as fair,5 since they ensure that agents do not feel compelled

to claim part of their partners payoff. We define the excess of a coalition S

with respect to a given payoff vector x as e (S, x)=v (S)−x (S), where x (S) =∑
ai∈S x[i]. A positive excess is interpreted as a measure of threat: in the current

payoff distribution, if some agents deviate by forming coalition with positive

excess, they are able to increase their payoff by redistributing the coalitional

excess among themselves. On this basis, we define the notion of surplus.

Definition 2 (surplus). Given a coalition structure CS and a coalition S ∈ CS,

5Fairness can also be achieved by considering the Shapley value [10]. Nonetheless, comput-
ing the Shapley value is computationally intractable in general and next to impossible in large
settings (see, e.g., [17, 33]). Of course, approximation approaches exist for specific classes of
games [4] and in fact a fully polynomial-time Shapley-value approximation scheme does exist
for super-modular environments [32]; however, super-modularity cannot be readily assumed
in our domain. At the same time, practical algorithms for approximating the Shapley value in
graph-restricted games have recently appeared [40]. Testing these approaches in our domain
is future work.
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we consider ai, aj ∈ S. Then, the surplus sij of ai over aj with respect to a given

payoff configuration x, is defined by

sij = max S′∈2A

ai∈S′,aj /∈S′
e (S′, x) , (1)

In other words, sij is the maximum of the excesses of all coalitions S′ that

include ai and exclude aj , with S′ not in the given coalition structure CS (since

under CS agents ai and aj belong to the same coalition S). We say that agent

ai outweighs agent aj if sij > sji. When this is the case, ai can claim part of

aj ’s payoff by threatening to walk away (or to expel aj) from their coalition.

When any two agents in a coalition cannot outweigh one another, the payoff

vector lies in the kernel – i.e., it is stable. In addition, the set of kernel-stable

payoff vectors is always non-empty [10].

Stearns [41] provides a payoff transfer scheme which converges to a vector

in the kernel by means of payoff transfers from agents with less bargaining

power to their more powerful partners, until the latter cannot claim more payoff

from the former. Unfortunately, this may require an infinite number of steps to

terminate. To alleviate this issue, Klusch and Shehory [29] introduced the ε-

kernel in order to represent an allocation whose payoffs do not differ from an

element in the kernel by more than ε. The current state of the art approach

to compute an ε-kernel payoff allocation for classic CF has been proposed by

Shehory and Kraus [39] (see Algorithm 4 in Section 5). Such an algorithm does

not specify how x should be initialised, and assumes that a payoff vector is

provided as an input. The first (and most expensive) phase is the computation

of the surplus matrix s, which iterates over the entire set of coalitions to assess

the maximum excess (Equation 1) for each pair of agents in each coalition. Once

the surplus matrix has been computed, a transfer between the pair of agents

with the highest surplus difference (i.e., sij − sji) is set up, while ensuring

that each payment is individually rational. This scheme is iteratively executed

until the ratio between the maximum surplus difference δ and the value of the

considered coalition structure is within a predefined parameter ε. This ensures
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that the computed payoff allocation is ε-kernel stable. On the one hand, the

computation of Equation 1 is a key bottleneck for classic CF, since it involves

enumerating an exponential number of coalitions, i.e., Θ (2n). On the other

hand, when the size of the coalitions is limited to k members, such an algorithm

has polynomial time complexity [39], since the coalitions are O
(
nk
)

[29].

Despite having polynomial time complexity under certain assumptions, such

an approach has some drawbacks that hinder its applicability in real-world sce-

narios, and especially in the SR scenario we consider. First, it is designed for

classic CF, failing to exploit the graph-constrained nature of this problem. Sec-

ond, this algorithm assumes that computation of the characteristic function has

a O (1) time complexity (e.g., coalitional values are stored in memory or pro-

vided by an oracle). This hypothesis, although appropriate in several settings,

does not apply to SR, in which the value of a coalition is the solution of a

routing problem, which cannot be assessed with a O (1) time complexity (see

Sections 3.1 and 3.2). Furthermore, coalitional values cannot be stored in mem-

ory, as it would require tens of GB even for medium-sized instances (e.g., 100

agents). These shortcomings lead to inefficiencies that prevent the application

of the method proposed by Shehory and Kraus in our case (see Section 5).

Having discussed the approaches to address the two main aspects of CF, in

the next section we elaborate on the existing literature on ridesharing.

2.3. Related work

We now elaborate on related work in the areas of ridesharing and temporal

constraint optimisation.

2.3.1. Ridesharing

Ridesharing poses several challenges that have been addressed by a number

of works in the Artificial Intelligence literature. In the context of optimisation,

most studies [5, 22, 46, 47] tackle only one or two particular objectives [1] among

the followings: minimise the overall distance travelled by the cars in the system,

minimise the overall travel time, or maximise the number of participants. This
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allows to achieve solutions of tractable computational complexity, but, on the

other hand, these approaches do not generalise to scenarios such as SR, in which

a more complex cost model is considered (see Section 3). Specifically, Baldacci

et al. [5] adopt a Lagrangian column generation method in order to compute

the optimal way of assigning commuters to cars while minimising unmatched

participants. A similar objective is pursued by Ghoseiri et al. [22], who also try

to fulfil individual preferences such as age, gender, smoke, and pet restrictions.

Several papers [46, 47] consider an agent-based system where autonomous rider

and driver agents locally establish ride-shares with the objective of maximising

the number of served riders. Winter and Nittel [46] consider a setting where

short-range wireless communication devices (e.g., Bluetooth or WiFi) are used,

showing that limiting the information dissemination between agents provides

a benefit in terms of computation requirements, while it does not significantly

impact the solution quality. Xing et al. [47] consider a highly dynamic ride-share

system where drivers and riders are matched en-route.

Recently, Kamar and Horvitz [26] addressed the computational aspects re-

lated to ridesharing, proposing an interesting model to evaluate ridesharing

plans, on which we base our model for SR. In particular, such work is mostly

focused on incentive design aspects for ridesharing. Similarly, Kleiner et al. [28]

and Zhao et al. [49] tackle the same challenge adopting a mechanism design

perspective. Now, we also focus on the computation of incentives (in the form of

payments), but, in contrast with the above works, we focus on the computation

of payoffs that are stable in a game-theoretic sense, which is fundamental in

contexts with selfish rational agents.

As a final remark, notice that none of the works in the literature consider

the role of the social network as we do, which, as mentioned in the introduction,

is crucial for real-world ridesharing services.

2.3.2. Temporal constraint optimisation

Problems involving time constraints arise in various areas of computer science,

especially in the context of scheduling [15] and vehicle routing [13, 42]. In par-
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ticular, Dechter [15] define the so-called Simple Temporal Problems (STP), a

particular type of Constraint Satisfaction Problem (CSP) in which a variable τi

corresponds to a continuous time point and a binary constraint (τi, τj) is associ-

ated to one time range that contains the valid values for τj−τi. In the context of

SR, if τ1 and τ2 are respectively the departure and the arrival time for a partic-

ular agent, the constraint (τ1, τ2) associated to the range [0′, 60′] means that its

arrival cannot happen more than 60 minutes after its departure. Khatib et al.

[27] later extended the concept of STP associating a function (i.e., a preference)

to each constraint, in order to differentiate among valid solutions and select the

one that best meets such preferences. The authors also characterise the complex-

ity of solving such problem (denoted as STPP) as NP-Complete in the general

case, while it is tractable if preferences are expressed by linear functions. Such

complexity results by virtue of the fact that STPPs with linear preferences can

be expressed as Linear Programming (LP) problems, which can be solved in

polynomial time [12]. However, even if our preferences are linear (Equations 12

and 13), our time domain is discrete, resulting in a problem of Integer LP, which

is NP-Hard in the general case [12]. Nonetheless, our formalisation allows us to

restrict such problem to a particular, tractable case. Specifically, our scenario

requires to compute only the optimal departure time for the first point in the

path, i.e., τ∗S , since we assume no delay between the arrival to a point and the

departure for the next point in the path (Equation 11).6

These challenges have also been studied in the Vehicle Routing Problem

(VRP) literature [13, 42], and, specifically, in the context of the Vehicle Routing

Problem with Time Windows (VRPTW) [25]. To the best of our knowledge,

these works adopt a different perspective with respect to our approach, as their

main focus is on logistics challenges (e.g., routing, scheduling). While these

6If we drop such an assumption (i.e., we allow a delay between the arrival to each point and
the departure for the next one), our model can be easily formalised as an STPP. Even if such
an STPP is still untractable in the general case due to the discretisation of the time domain,
it can be transformed to a tractable LP problem by means of LP relaxation techniques [12].
Further investigation is required to determine the effectiveness of such an approach, which
will be considered as future work.
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aspects also appear in our paper, here we are mainly interested in studying and

solving the SR problem from a CF perspective, i.e., solving the CSG and the

payment computation problems.

3. A GCCF approach for SR

The social ridesharing (SR) problem considers a set of riders A = {a1, . . . , an},

where n > 0 is the total number of riders, and a non-empty7 set of drivers

D ⊆ A, containing the riders owning a car. Notice that our SR approach cannot

increase the number of cars in the system, i.e., SR can only improve the traffic

or leave it unaffected. Every driver ai ∈ D can host up to seats (ai) riders in his

car, including himself, where the function seats : A→ N0 provides the number

of seats of each car. If ai /∈ D, then seats (ai) = 0.

The map of the geographic environment in which the SR problem takes

place is represented by a connected graph M = (P,Q), where P is the set of

geographic points of the map and Q ⊆ P × P is the set of edges among these

points. Each edge is associated to a length by means of the function λ : Q→ R+,

where R+ = {i ∈ R | i ≥ 0}. Similarly, we define R− = {i ∈ R | i ≤ 0}. N+ and

N− are defined in the corresponding ways.

Definition 3 (path). A path composed by m points, each belonging to P , is

represented as an m-tuple, denoting as L[k] the kth point of L. A path is allowed

to cross the same point multiple times.

Definition 4 (set of paths L). L is the set of all paths among the points in P .

Each rider ai ∈ A has to commute from a starting point pσi ∈ P , i.e., its pick-up

point, to a destination pωi ∈ P .

A key aspect of the SR scenario is the presence of a social network, modelled

as a graph G = (A,E) with E ⊆ A×A, which restricts the formation of groups.

To this end, we define a feasible coalition as follows.

7If D = ∅ the problem is trivial, as the only solution is represented by the singletons.
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Definition 5 (feasible coalition for SR). Given a graph G and a set of riders

S ⊆ A, S is a feasible coalition if it induces a connected subgraph on G, and if

it contains at least one rider whose car has enough seats for all the members.

Formally, we state such a requirement as follows.

Constraint 1. |S| > 1 =⇒ ∃ai ∈ S ∩ D : seats (ai) ≥ |S|, i.e., at least one

rider has a car with enough seats for all the riders.

Notice that such a constraint allows a rider ai /∈ D to be in a singleton. In fact,

if the total number of available seats is less than the total number of riders in

the system, such a rider might need to resort to public transport paying a cost

k ({ai}) for the ticket. Formally, the function k : Asingle−Dsingle → R− provides

such a cost, where Asingle = {{ai} | ai ∈ A}, and Dsingle = {{ai} | ai ∈ D}.8 If

ai ∈ D, then {ai} is not associated with any value by k (·), as we assume that

such riders always prefer to use their car with respect to public transport.9

Now, in several ridesharing online services (e.g., Lyft and Uber) a commuter

declares whether he is available as a driver or as a rider, hence the two sets are

disjoint and a feasible set of riders S contains at most one driver. Formally, the

following additional constraint must hold:

Constraint 2. |S ∩D| ≤ 1, i.e., the number of drivers per coalition can be 0

(i.e., S contains a single rider without a car) or 1.

Notice that Constraint 2 is optional, but it holds in several established real-

world services, arising from aspects of practical nature.10 Nonetheless, since our

approach supports a more general model, it can also be applied to scenarios

where such a constraint does not hold. Having defined our notion of a feasible

8Notice that the function k (·) receives a singleton formed by a rider as an argument.
9This assumption does not impact on the generality of our model, as we assume that

each commuter first evaluates its preferences and opportunity costs (i.e., whether it is more
convenient to take the car or the public transport) and then, based on this, declares its status of
driver or rider, before the execution of the algorithm. Given the short-lived nature of each run,
we assume that each agent does not change its status during the execution of the algorithm.
Notice that, before the next potential run, each agent is allowed to revise its decision.

10For instance, in the BlaBlaCar service each driver rides its own car.
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coalition, in the following section we detail how we associate a value to each

feasible coalition, i.e., we define the characteristic function properly.

3.1. Coalitional value definition

When a shared car is arranged, it drives through a path that contains all the

starting points and destinations of its passengers. Notice that not all the per-

mutation of these points are valid (e.g., it is not reasonable to go to a rider’s

destination and then to its starting point). More formally, a valid path must

fulfil two constraints to correctly accommodate the needs of all the passengers.

Definition 6 (valid path). Given a feasible set of riders S and a path L ∈ L

of m points, L is said to be valid if the following constraints hold:

Constraint 3. ∃ai ∈ S : seats (ai) ≥ |S| ∧ L[1] = pσi ∧ L[m] = pωi , i.e., L goes

from the driver’s starting point to its destination.

Constraint 4. ∀ai ∈ S ∃x, y : L[x] = pσi ∧ L[y] = pωi ∧ x < y, i.e., for each

rider, its starting point precedes its destination.

Notice that a valid path can cross the same point multiple times.11 We refer to

the set of all valid paths for a given feasible set of riders S with VL (S). VL (S)

is always non-empty, since we assume that M is a connected graph.12

Following Kamar and Horvitz [26], we define v (S) as

v (S) =

k (S) , if S ∩D = ∅,

t (L∗S) + c (L∗S) + f (L∗S) , otherwise,

(2)

where L∗S represents the optimal path for S (Equation 3). On the one hand, if

S ∩D = ∅, Constraint 1 imposes that S is formed by a single rider without a

11If a path goes through the starting point/destination of an agent more than once, we
assume that the car stops only the first time.

12A valid path that always exists starts from the driver’s starting point, then, for each
passenger, goes to its starting point and to its destination, and ends at the driver’s destination.
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car, hence its cost is provided by k (S). On the other hand, if S contains at least

one driver, its value is the sum of the following negative13 cost functions:

• t : L → R−, i.e., the time cost of driving through a given path,

• c : L → R−, i.e., the cognitive cost14 of driving through a given path,

• f : L → R−, i.e., the fuel cost of driving through a given path,

Finally, we define the function value : L → R− as the sum of the above three

functions, i.e., value (L) = t (L) + c (L) + f (L). We assume that such functions

are additive, as defined in what follows.

Definition 7 (additivity). A function z : L → R− is said to be additive if,

given two paths L1, L2 ∈ L such that the last point of L1 is the first of L2, then

z (L1 ⊕ L2) = z (L1) + z (L1), where ⊕ represents the concatenation of paths.

Additivity trivially applies to any cost function in real-world ridesharing sce-

nario. Notice that we do not assume that the above cost functions are monotonic

with respect to the length of the path, i.e., longer paths can results in lower costs.

Finally, L∗S represents the optimal path for S, defined as

L∗S = arg max
L∈VL(S)

value (L) . (3)

Considering this, a SR problem can be easily translated into a GCCF problem,

as each feasible set of riders is indeed a feasible coalition and v (·) provides its

coalitional value. Hence, CS∗ represents the optimal coalition structure which

maximises the social welfare (i.e., minimises the total cost) for the system.

However, the computation of the optimal path in Equation 3 is NP-hard [31],

which would not be solvable in realistic scenarios. Hence, in the next section we

show how a reasonable assumption allows us make such computation tractable,

by means of well-known optimisation techniques [20].

13Since we consider a maximisation problem, we represent costs as negative values.
14The fatigue incurred by the driver during the trip [26].
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pσ1
pσ2 pω2

pω1

Figure 2: Example starting points and destinations for 2 riders.

3.2. Optimal path computation

The computational complexity of Equation 3 is due to the size of its search

space, formed by all the valid paths for S, i.e., all the paths in the graph M

that contain the starting points and destinations of the members of S in an order

that satisfies Constraints 3 and 4. Notice that, given a particular sequence of

starting points and destinations that satisfies such constraints, the solution space

of Equation 3 contains multiple valid paths, as the following example shows.

Figure 2 shows an example map containing the starting points and desti-

nations of 2 agents, in which only one sequence of points is valid, i.e., L =

〈pσ1 , pσ2 , pω2 , pω1 〉. Nonetheless, the set of valid paths is much larger (i.e., 33 = 27

valid paths), since there exist 3 possible paths for each of the 3 pairs of consec-

utive points in L. However, it is reasonable to assume that the driver will go

through the shortest path for each of these 3 pairs of points.15

Assumption 1. When the driver has to go from one point in L to the next

one, it will choose the shortest path (considering λ (·)) connecting such points.

Assumption 1 allows us to collapse the search space of Equation 3 to VT (S).

Definition 8 (VT (S)). Given a feasible coalition S, VT (S) is the set of tuples

that contain all and only the starting points and destinations of the members of

S (without repetitions) and that satisfy Constraints 3 and 4.

In order to explain how to simplify the solution of Equation 3 given the above

assumption, we define the function concat (·).

15In the case of a coalition formed by a single driver, the path does not depend on Equa-
tion 2, since the driver will always go through the shortest path from its starting point to its
destination. In the case of multiple agents per car, the driver can choose among all the valid
sequences of points (see Equation 4), and the optimal total path may not be the shortest one.
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Definition 9 (concat (·)). Given L ∈ VT (S), the function concat : VT (S)→ L

provides the path obtained as the concatenation of all the shortest paths between

one point in L and the following one. Formally, concat (L) is a tuple defined as

concat (L) =
⊕|L|−1

k=1 sp (L[k], L[k + 1]) , where sp : P × P → R+ provides the

shortest path between two points, considering the length provided by λ (·).

The function concat (·) can be computed in O ((|L| − 1) · (|Q|+ |P | · log |P |)),

assuming that sp (·) is implemented using Dijkstra’s algorithm [18]. Moreover,

if M is a euclidean graph, concat (·) can be computed in O ((n− 1) · |Q|) with

the A* algorithm [24]. Against this background, Equation 3 can be rewritten as

L∗S = arg max
L∈VT (S)

value (concat (L)) , (4)

by exploiting the additivity property (Definition 7) of the value (·) function.

Notice that the search space of Equation 4 is VT (S), which is significantly

smaller than VL (S) in Equation 3, and although being still exponential with

respect to |S|, such computational complexity is manageable for reasonably sized

groups of riders. In fact, VT (S) contains only 2520 valid tuples for |S| = 5 (i.e.,

the number of seats of an average car). Such a result allows us to evaluate each

coalition S by means of Equation 2, and hence we can address SR as GCCF.

Furthermore, on the basis of Assumption 1 we later formulate Proposition 2,

the fundamental theoretical result that allows us to compute an upper bound

for the SR characteristic function. This, in turn, allows us to use the CFSS

algorithm [7] to solve the SR problem efficiently.

3.3. Solving the Social Ridesharing problem with CFSS

In order to solve the SR problem, the original version of CFSS [7] must be mod-

ified to assess the additional constraints introduced in Section 3. In particular,

to ensure that Constraint 1 and Constraint 2 hold, we must avoid the formation

of coalitions which are not feasible sets of riders. This is achieved by preventing

the contractions of the green edges that would result in the violation of such

constraints. Notice that such edges must be marked in red (see Section 2.1.1
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above), even if we are not visiting the corresponding subtrees. In fact, this is

equivalent to traversing such search spaces and discarding any solution they may

contain, because such solutions would violate the above mentioned constraints.

A crucial feature of CFSS is the use of a branch and bound search strategy to

prune significant parts of the search space, which can be used if the characteristic

function is the sum of a superadditive and a subadditive part, i.e., an m + a

function [7]. However, Equation 2 is not m+ a, since it depends on L∗S , and in

particular on the actual position of the starting points and destinations.

As an example, consider Figure 3, which shows the starting points and des-

tinations for 3 riders, i.e., A = {a1, a2, a3}, in which only a1 owns a car, i.e.,

D = {a1}. For simplicity, we assume that v (S) is equal to the length of L∗S ,

and k ({a2}) = k ({a3}) = −1. In this example, v ({a1}) = −3, v ({a2}) = −1,

v ({a3}) = −1. However, we notice that pσ2 and pω2 are actually part of the path

travelled by a1, hence it is reasonable for a2 to join a1 in the coalition {a1, a2}.

In fact, v ({a1, a2}) = v ({a1}) = −3 > v ({a1}) + v ({a2}) = −3− 1 = −4. The

optimal path for S = {a1, a3} is L∗S = 〈pσ1 , pσ3 , pω3 , pω1 〉. On the other hand, a3’s

starting point and destination are outside a1’s path, hence ridesharing is not

effective in this case: v ({a1, a3}) = −7 < v ({a1}) + v ({a3}) = −3 − 1 = −4.

Notice that this particular characteristic function cannot be seen as the sum of a

superadditive and a subadditive part, since it exhibits a superadditive behaviour

for some coalition structures, i.e., v ({a1, a2}) > v ({a1}) + v ({a2}), while it is

subadditive for some others, i.e., v ({a1, a3}) < v ({a1}) + v ({a3}).

Hence, in the next section we provide alternative bounding techniques that

can be used in our ridesharing scenario to use branch and bound within CFSS.

pσ1 pσ2 pω2 pω1 pσ3 pω3

1 km

Figure 3: Example starting points and destinations for 3 riders.
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3.3.1. Bound computation

Given a feasible coalition structure CS in our search tree, we now show how to

compute an upper bound M (CS) for the values assumed by the characteristic

function in ST (CS), i.e., M (CS) ≥ V (CSi) ∀CSi ∈ ST (CS), where ST (CS)

is the subtree (i.e., a portion of the entire search tree) rooted at the node corre-

sponding to CS. ST (CS) can be also seen as the set of all coalition structures

that cover CS (i.e., ST (CS) = {CS′ | ∀S ∈ CS ∃S′ ∈ CS′ such that S ⊆ S′}).

We use this value to avoid visiting ST (CS) if M (CS) is not greater than the

current best solution. This allows us to realise the same pruning technique dis-

cussed in [7] in the context of m+ a functions.

In what follows, we provide a method to compute M (CS) in scenarios where

Constraint 2 holds. In these environments it is not possible to merge two coali-

tions that each contain one driver, since only single riders not owning a car are

allowed to join existing groups. It is easy to see that the addition of a rider to

a feasible coalition S can only result in a greater cost. This principle allows us

to prove Proposition 1. First, we define Ad (CS).

Definition 10 (Ad (CS)). Given a coalition structure CS, Ad (CS) is the set of

coalitions in CS that contain at least one driver, i.e., the set of cars. Formally,

Ad (CS) = {S ∈ CS | S ∩D 6= ∅}.

Proposition 1. If Constraint 2 holds, for any feasible coalition structure CS

M1 (CS) =
∑

S∈Ad(CS)
v (S) (5)

is an upper bound for the value of any CS′ in ST (CS), i.e., the subtree rooted

in CS. Formally, M1 (CS) ≥ V (CS′) for all CS′ ∈ ST (CS) .

Proof. See Appendix A.

We now discuss how to compute an upper bound without assuming Constraint 2.

We first make the following definitions.

Definition 11 (Pab). Pab is the set of the starting points and destinations of

all the riders, i.e., Pab = {p ∈ P | ∃ai ∈ A : p = pσi or p = pωi } .
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Definition 12 (Ppairs). Ppairs is the set of all the pairs of different points in

Pab, i.e., Ppairs = {(p, q) ∈ Pab × Pab | p 6= q} .

Definition 13 (P1,a (ai) and P1,b (ai)). Given a rider ai ∈ A, P1,a (ai) is the

set of all the shortest paths from ai’s starting point to the starting points and

destinations of any other rider, i.e., P1,a = {L | L = sp (pσi , p) ∀p ∈ Pab : p 6=

pσi }. Similarly, we define P1,b (ai) considering ai’s destination.

Definition 14 (P2,a (ai) and P2,b (ai)). Given a rider ai ∈ A, P2,a (ai) is the

concatenation of all the pairs of shortest paths from ai’s starting point to the

starting points and destinations of any other rider, i.e., {L | L = sp (pσi , p) ⊕

sp (pσi , q) ∀ (p, q) ∈ Ppairs : p 6= pσi and q 6= pσi }. Similarly, we define P2,b (ai)

considering ai’s destination.

Definition 15 (m (·)). The function m : A→ R− is defined as

m (ai) =


max

L∈P1,a(ai)
value (L) + max

L∈P1,b(ai)
value (L) , if ai ∈ D

max
L∈P2,a(ai)

value (L) + max
L∈P2,b(ai)

value (L) , otherwise.

(6)

(7)

Intuitively, the purpose of m (ai) is to provide an upper bound on the value (·)

function corresponding to the edges incident on pσi and pωi , when such edges

are part of a path L driven by a car. If ai is a driver, such an upper bound is

calculated by considering the best edges (i.e., the ones that maximise value (·))

incident on each point (Equation 6). In contrast, if ai is not a driver, Equation 7

considers the best pairs of edges incident on each point. We now provide an

example to better explain how the m (·) function is calculated.

Figure 4 shows the starting points and destinations of 3 riders, in which the

edges represent the shortest paths between any pair of points (under Assump-

tion 1). Furthermore, assume that a coalition is formed among such agents, and

that a1 and a2 are drivers, while a3 is not. Notice that we do not know in advance

whether a1 or a2 will be the optimal driver of such a car. For the sake of brevity,

in the following discussion we only refer to the agents’ starting points, but the
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same concepts apply symmetrically to the destinations. Notice that, since a3

is not a driver, pσ3 will necessarily be an inner point in L (Constraint 3). It

follows that L contains exactly two undirected edges incident on pσ3 . Since we

are interested in computing an upper bound on value (·), we consider the pair

of edges incident on pσ3 that maximises such function (Equation 7).

On the other hand, since we do not know in advance if a1 (resp. a2) will be

the optimal driver of the car, we cannot predict whether pσ1 (resp. pσ2 ) will be

the first point or an inner point in L. In other words, we do not know exactly

whether one or two edges incident on pσ1 (resp. pσ2 ) will be part of L. Therefore,

in Equation 6 we assume that only one edge is present in L, as a conservative

measure. This is guaranteed to provide an upper bound on value (·), as such a

function is negative and, hence, the value of the best pair of edges is lower than

the value of the best single edge. We now define M2 (·) on the basis of m (·).

Definition 16 (M2 (·)). The function M2 : CS (G)→ R− is defined as

M2 (CS) =
1

2
·
∑

ai∈Ud(CS)
m (ai) , where Ud (CS) =

⋃
S∈Ad(CS)

S. (8)

Intuitively, Ud (CS) is the set of all agents (both riders and drivers) that are

passengers of a car in CS. The 1
2 term is necessary since, if we sum all the

values of the couples of edges incident to the points that form a given path, we

consider each edge twice.

We now prove the following lemma, that will support the proof of Proposition 2.

pσ1

pσ2 pω2

pω1 pσ3 pω3

Figure 4: Example starting points and destinations for 3 riders.
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Lemma 1. Given a feasible coalition structure CS and a coalition structure

CS′ ∈ ST (CS) such that V (CS′) > M2 (CS), then

∃S′ ∈ Ad (CS′) : v (S′) >
1

2
·
∑

ai∈S′
m (ai) . (9)

Proof. See Appendix A.

Building upon this lemma, we now prove Proposition 2. Notice that, as previ-

ously mentioned, Proposition 2 is based on the validity of Assumption 1, which

is also the key concept that allows us to compute the optimal path for a given

coalition using Equation 4 in a feasible amount of time.

Proposition 2. If Assumption 1 holds, for any feasible coalition structure CS

M2 (CS) is an upper bound for the value of any CS′ in ST (CS), i.e., the subtree

rooted in CS. Formally, M2 (CS) ≥ V (CS′) for all CS′ ∈ ST (CS) .

Proof. See Appendix A.

Propositions 1 and 2 allows us to compute an upper bound on V (·) for all the

coalition structures in ST (CS). As a consequence, we can solve the SR problem

by adopting a branch and bound approach based on CFSS [7], which we call SR-

CFSS (Algorithm 1). In addition to the different bounding technique, SR-CFSS

differs from CFSS as it enforces Constraint 1 and, optionally, Constraint 2, which

ensure the computation of a correct solution for the SR problem. Specifically,

this is achieved by including an additional check (i.e., line 4 in the SR-Children

routine) that discards the solutions that violate such constraints. Notice that

SR-CFSS derives all the anytime approximate properties of CFSS, since we can

apply the technique discussed in [7] using M1 (·) or M2 (·) respectively defined

in Equations 5 and 8. Intuitively, we can stop the execution of SR-CFSS after

a given time budget and provide the best coalition structure found during the

search. Furthermore, we employ our bounding techniques to compute an upper

bound on the value of the characteristic function in the remaining part of the

search space. In our experiments in Section 6.5, SR-CFSS provides solutions

that are guaranteed to be at least the 71% of the optimal.

24



Algorithm 1 SR-CFSS(G)

1: Gc ← G with all green edges
2: best← Gc {Initialise current best solution with singletons}
3: Front← ∅ {Initialise search frontier Front with an empty stack}
4: Front.push (Gc) {Push Gc as the first node to visit}
5: while Front 6= ∅ do {Branch and bound loop}
6: node← Front.pop () {Get current node}
7: if M2 (node) > V (best) then {Can also use M1 (node) with Constraint 2}
8: if V (node) > V (best) then {Check function value}
9: best← node {Update current best solution}

10: Front.push (SR-Children (node)) {Update Front}
11: return best {Return optimal solution}

The model defined in Section 3 takes into account only the spatial aspect of

the SR problem. In what follows, we show how to incorporate the time prefer-

ences of the commuters in our model and algorithms.

Algorithm 2 SR-Children(Gc)
1: G′c ← Gc = (A, E , colour) {Initialise graph G′ with Gc}
2: Ch← ∅ {Initialise the set of children}
3: for all e ∈ E : colour (e) = green do {For all green edges}
4: if GreenEdgeContr (G′c, e) meets Constr. 1 (and Constr. 2) then
5: Ch← Ch ∪ {GreenEdgeContr (G′c, e)}
6: Mark edge e with colour red in G′c
7: return Ch {Return the set of children}

4. Time constraints for Social Ridesharing

We now assume that each rider ai ∈ A specifies its desired departure time τσi

within the time window θσi = [τσi −ασi , τσi +βσi ] ⊆ N+.16 Similarly, ai expresses

its preferences on the arriving time τωi by means of the time window θωi =

[τωi − αωi , τωi + βωi ] ⊆ N+. Figure 5 shows an example of such time constraints.

Without loss of generality, we assume that each agent ai expresses reasonable

time preferences on the arriving time (e.g., if ai is a driver, the arriving time

16We consider a discrete time domain, e.g., seconds or minutes.
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timeline

τσi − ασi τσi + βσi

τσi

τωi − αωi τωi + βωi

τωi

ai’s trip
θσi θωi

Figure 5: Example of departure and arriving time constraints.

under the hypothesis that she drives alone should not be outside θωi ). Notice

that, for the sake of generality, our model includes both the upper bound for

start time and lower bound for arrival time, even if they may appear not very

common. Such bounds can be easily “removed” by setting them to +∞ and

−∞, respectively. We include these time preferences in Equation 2 as follows:

v (S) =

k (S) , if S ∩D = ∅,

t (L∗S) + c (L∗S) + f (L∗S) + θS (L∗S , τ
∗
S) , otherwise,

(10)

where L∗S and τ∗S represent the optimal path and the optimal departure time

for S (Equation 15), respectively. We define value (L∗S , τ
∗
S) = t (L∗S) + c (L∗S) +

f (L∗S) + θS (L∗S , τ
∗
S). We introduce the term θS : VL (S) × N+ → R− as a

measure of the extent to which the time preferences of the members of S have

been fulfilled by a trip starting at a given time and going through a given

valid path. We quantify such an extent with a cost for each starting point and

destination that is proportional to the time difference between the actual pick-

up/arriving time and the desired one. In order to formally define such a cost,

denoted as θS (L, τ) (where τ is the departure time), we first define the arrival

time at each point p of L given τ as timeL : L× N+ → N+, i.e.,

timeL (p, τ) = τ +
∑j−1

k=1
δ (L[k], L[k + 1]) , where L[j] = p, (11)

where δ : Q→N+ measures the travel time trough a given edge. We assume that

δ (·) does not change during the execution of the algorithm, given its short-lived

nature. We define ∆σ
S : S×VL (S)×N+ → R− and ∆ω

S : S×VL (S)×N+ → R−
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(for starting points and destinations respectively) for each ai ∈ S, i.e.,

∆σ
S (ai, L, τ) =

 γ1 · |timeL (pσi , τ)− τσi |, if timeL (pσi , τ) ∈ θσi ,

−∞, otherwise,

(12)

∆ω
S (ai, L, τ) =

 γ2 · |timeL (pωi , τ)− τωi |, if timeL (pωi , τ) ∈ θωi ,

−∞, otherwise,

(13)

Finally, we define θS (L, τ) as

θS (L, τ) =
∑

ai∈S
∆σ
S (ai, L, τ) + ∆ω

S (ai, L, τ) , (14)

where τ is the departure time and γ1, γ2 ∈ R+ are the costs associated to one

time unit of delay/anticipation for starting points and destinations respectively.

Notice that, even if other formulations for θS are possible, the crucial feature is

the enforcement of the hard constraint (i.e., θS = −∞) outside θi.

Equations 12 and 13 induce hard constraints on the departure/arriving time

for each ai ∈ S, as each ai is not willing to leave/arrive earlier that τi − αi nor

later than τi+βi. Thus, we define θS = −∞ if any of the constraints is violated.

Definition 17 (temporally infeasible coalition). S is said to be temporally

infeasible if θS (L, τ) = −∞ for all L ∈ VT (S) and all τ ∈ θσj ∀aj ∈ S ∩D.

We define the optimal path L∗S and the optimal departure time τ∗S as follows:

(L∗S , τ
∗
S) = arg max

L∈VL(S)
τ∈θσj ∀aj∈S∩D

value (L, τ) . (15)

We reduce the search space for L∗S in Equation 15 by applying the same tech-

niques discussed in Section 3.2 (i.e., by considering Assumption 1) and obtaining

(L∗S , τ
∗
S) = arg max

L∈VT (S)
τ∈θσj ∀aj∈S∩D

value (concat (L) , τ) . (16)
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In Equation 16, the computation of τ∗S is still carried out in a näıve way, going

through every possible timestep in the time windows specified by the drivers in

S. In the following section, we explain a better approach to compute τ∗S .

4.1. Optimal departure time computation

In this section we address the problem of computing the optimal departure

time τ∗S for a given coalition S. Specifically, we now propose an algorithm to

compute the best departure time for a car S (given a tuple L ∈ VT (S) and a

driver aj ∈ S ∩D), so to avoid trying every possible departure time for the trip

of S. Algorithm 3 achieves this by considering the ideal departure time of the

driver, i.e., τσj , and by applying a sequence of shifts so to obtain the optimal τ .

First (lines 1–7), we initialise τ with the ideal departure time of the driver,

and we initialise p, n and z, which will respectively count the number of points

in which we register an arriving time that is late, early or on time, with respect

to the desire expressed by the agents for those points. The variables post and

antic function as guards to check to what extent it is possible to delay/anticipate

departure without violating any time constraint. Finally, we also define diffs

which contains the difference between the actual and the ideal time, for every

point in L. Lines 8–11 set these variables. After this, at line 12 we check whether

it is possible to satisfy all the time constraints. If the conditional statement is

true, then at least two points are outside of their time window, one is late and

one is ahead of time, or it may be necessary to anticipate τ of a given amount,

but such action would result in the violation of another constraint. In such

cases we return a null solution. If no constraints are violated, we improve τ in

the cycle at lines lines 13–26 so that
∑|L|
i=1 |diffs[i]| is minimised and does not

invalidate any constraint. Notice that, to achieve this result, it is enough to

check the direction of the points of the path. On the one hand, if the majority

of the points are positive (the car is late) we anticipate τ . On the other hand,

if the majority of the points are negative (the car is early) we delay τ .

Once we have a method to compute the optimal τ given a tuple L ∈ VT (S)

and a driver aj ∈ S ∩D, we can finally compute the optimal path L∗S and the
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Algorithm 3 OptimalDepTime(L, aj)

1: τ ← τσj {Initialise current best solution with driver’s ideal departure time}
2: p← 0 {Positive points counter (i.e., points where L is late)}
3: n← 0 {Negative points counter (i.e., points where L is early)}
4: z ← 0 {Zero points counter (i.e., points where L is on time)}
5: post← +∞ {Maximum delay without constraint violation}
6: antic← −∞ {Maximum anticipation without constraint violation}
7: diffs ← 〈{Differences among ideal times and actual times}
8: for all i ∈ {1, . . . , |L|} do {For all tuple points}
9: diffs[i]← difference between timeL (i, τ) and ideal arriving time at L[i]

10: Increment p or n or z based on the sign of diffs[i]
11: Update post and antic

12: if post < antic then return ∅ {Conflict between two constraints}
13: repeat
14: shift← 0
15: if post < 0 then shift← post
16: else if antic > 0 then shift← antic
17: else if p > n+ z and antic < 0 then {Majority of points are late}
18: lwp← lowest positive in diffs
19: shift← −min{lwp,−antic}
20: else if n > p+ z and post > 0 then {Majority of points are early}
21: grn← greatest negative in diffs
22: shift← min{−grn, post}
23: if shift 6= 0 then
24: τ ← τ + shift
25: Update diffs, recompute p, n, and z, and update antic and post

26: until shift = 0
27: return τ

optimal driver a∗S by modifying Equation 16 in the following way:

(L∗S , a
∗
S) = arg max

L∈VT (S)
aj∈S∩D

value (concat (L) ,OptimalDepTime (L, aj)) . (17)

L∗S and a∗S are computed by selecting the best combination over the possible

valid tuples in VT (S) and drivers in S. For each of these combinations, we

consider the corresponding optimal departure time provided by Algorithm 3. If

such algorithm returns a null solution, the corresponding value (·) is −∞, and

hence, that particular combination is discarded. Equation 17 implicitly provides

τ∗S , which is the optimal departure time for the maximising L∗S and a∗S . Notice
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that, following the same discussion at the end of Section 3.2, the search space of

Equation 17 is at most 2520 ·5 = 12600 combinations of valid tuples and drivers

for |S| = 5, and thus, it can be exhausted with a manageable effort.

For some coalitions it is impossible to satisfy all time constraints. Such coali-

tions are given a value of −∞ by Equations 12 and 13, and hence, they can never

be part of the optimal solution. However, the techniques discussed so far detect

such infeasibility only after the execution of Algorithm 3. By contrast, we would

identify such coalitions in advance and avoid their formation within SR-CFSS.

By doing so, we could reduce the search space, hence improving the performance

of our approach. We now show how we achieve this objective.

4.2. Detecting temporally infeasible coalitions

In this section we propose a method that allows us to prune parts of the search

space that are guaranteed to always contain temporally infeasible coalitions (i.e.,

coalitions characterised by a set of time constraints that is not satisfiable), which

cannot therefore appear in any feasible solution.

One simple approach would be to check, for each solution CS computed

during the traversal of the search tree, if CS contains a temporally infeasible

coalition, and in such case, discard CS and the corresponding subtree ST (CS).

Unfortunately, such a technique can lead to the exclusion of valid solutions.

Specifically, given a coalition structure CS that contains a temporally infeasible

coalition, ST (CS) (i.e., the portion of the search space rooted at CS) can indeed

contain valid solutions, and, hence, ST (CS) cannot be entirely pruned. We

provide the following example to better explain this concept. Let S = {a1, a2}

with a1 ∈ D (i.e., a1 is the driver), and let θσ1 = [09:00 − 15′, 09:00 + 15′] and

θσ2 = [09:45 − 15′, 09:45 + 15′]. Assuming that the path that links pσ1 and pσ2

(i.e., the starting points of a1 and a2 respectively) corresponds to a travel time

of 10 minutes, it is not possible to find a departure time τ such that a1 does

not arrive too early at pσ2 . Thus, θσ2 will always be violated, and hence, S is

temporally infeasible. Now, assume that, as the result of an edge contraction,

S′ = S ∪ {a3} is formed, with θσ3 = [09:20− 15′, 09:20 + 15′]. If the paths from
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pσ1 to pσ3 and from pσ3 to pσ2 both require 10 minutes, it is possible to satisfy the

time constraints of all the members of S′. Hence, S′ is not temporally infeasible.

Nevertheless, under certain conditions it is possible to identify a particular

type of temporally infeasible coalitions that will always result in other tempo-

rally infeasible coalitions as a result of an edge contraction. Such coalitions can

be safely discarded from FC (G), pruning a significant portion of the search

space. Intuitively, if there exists a passenger ai whose temporal preferences in-

duce a time window outside the driver’s time window (e.g., ai latest departure

time is earlier that the driver’s earliest departure time), any coalition involving

these two agents will always be temporally infeasible.

Proposition 3. Let ai, aj ∈ A with ai ∈ D and aj 6∈ D. If we consider Con-

straint 2 (i.e., one driver per car) and [τσj + βσj , τ
ω
j − αωj ] 6⊆ [τσi − ασi , τωi + βωi ],

then ai and aj can never be in a time feasible coalition together, i.e., ∀S ∈

FC (G) : {ai, aj} ⊆ S, S is a temporally infeasible coalition.

Proof. See Appendix A.

If we consider a scenario that enforces Constraint 2, then Proposition 3 can

be used to identify couples of agents (ai, aj) that can never be part of the

same coalition, effectively introducing some additional hard constraints on the

formation of coalitions. Such constraints can be easily expressed by marking

each edge (ai, aj) (if existent) as red in the initial graph G, so to avoid the

formation of a coalition in which ai and aj are together. On the other hand, if

ai and aj are not connected by an edge in G, we introduce a new red edge, since

if we do not do so, then ai and aj will be part of the same coalition for at least

one coalition structure in the search tree. As an example, consider Figure 6.

a1

a2 a3

Figure 6: Example of a social network with 3 agents.
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Assume that a2 and a3’s time constraints satisfy Proposition 3. If we do not

introduce a new red edge between a2 and a3, the grand coalition will be evaluated

during the traversal of the search tree, even if such coalition is guaranteed to

be temporally infeasible. On the other hand, the introduction of such red edge

avoids such inefficiency in our approach. Against this background, we can exploit

time constraints to restrict the formation of coalitions. We can also employ the

upper bound computation techniques discussed in Section 3.3.1, as we motivate

hereafter.

4.3. Bound computation

The upper bound methods proposed in Section 3.3.1 can also be applied when

we introduce time constraint, as shown by the following proposition.

Proposition 4. Propositions 1 and 2 are valid even if we substitute the defini-

tion of v (S) in Equation 2 with the definition in Equation 10.

Proof. See Appendix A.

The techniques discussed so far (i.e., Sections 3 and 4) constitute our approach

to compute the optimal arrangement of cars among a set of agents with given

spatial, temporal, and social preferences. Formally, we discussed how we solve

the CSG problem associated to SR. In the next section, we tackle the problem

of dividing the cost associated to each car among its passengers in a fair and

stable way, i.e., we solve the payment computation aspect of the CF problem.

We now propose the PK algorithm, which exploits the structural properties of

the SR scenario to improve upon the approach by Shehory and Kraus [39].

5. Payments for SR

Payment computation represents a key challenge in the CF process and it is of

utmost importance when offering ridesharing services, especially when consider-

ing commuters with rational behaviours. One key aspect of payment distribution

in CF is the game-theoretic concept of stability, which measures how agents are
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Algorithm 4 ShehoryKrausKernel(x,CS, ε)

1: repeat
2: for all S ∈ CS do
3: for all ai ∈ S do
4: for all aj ∈ S − {ai} do
5: sij ← max{S′∈2A | ai∈S′,aj 6∈S′} e (S′, x)

6: {ai∗ and aj∗ have the maximum surplus difference δ}
7: δ ← max(ai,aj)∈A2 (sij − sji)
8: (ai∗ , aj∗)← arg max(ai,aj)∈A2 (sij − sji)
9: if x[j∗]− v ({aj∗}) < δ/2 then {Payments are individually rational}

10: d← x[j∗]− v ({aj∗})
11: else
12: d← δ/2

13: x[j∗]← x[j∗]− d {Transfer payment from aj∗ ...}
14: x[i∗]← x[i∗] + d {... to ai∗}
15: until δ/V (CS) ≤ ε

keen to maintain the provided payments instead of deviating to a configura-

tion deemed to be more rewarding from their individual point of view. Here,

we induce stable payments in the context of the SR problem, employing the

kernel [14] stability concept. Shehory and Kraus [39] adopt a transfer scheme

(Algorithm 4) that represents the state of the art approach to compute kernel-

stable payments. Such an algorithm has been designed to compute payments

for CF scenarios in which the set of coalitions is not restricted by a graph. Such

an approach can be readily applied also when the size of coalitions is limited to

k members, as it happens in a SR scenario in which all cars have k seats [48].

Definition 18 (k-CF). A CF problem is said to be a k-CF problem if the size

of coalitions is limited to k members.

In k-CF, the maximisation at line 5 has to be assessed among the coalitions of

size up to k which include ai but exclude aj . This set, denoted as R, can be

easily obtained as R = {{ai} ∪ S | S is a h-combination of A − {ai, aj},∀h ∈

{1, . . . , k − 1}}. Unfortunately, in GCCF scenarios such as SR this simple ap-

proach would iterate over several infeasible coalitions (i.e., which do not in-

duce a connected subgraph of the social network), leading to inefficiency and
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reducing the scalability of the entire algorithm. In contrast, a better way to

tackle this problem is to exploit the structure of the graph in order to consider

only the coalitions that are indeed feasible. In addition, Algorithm 4 consid-

ers many coalitions more than once at the maximisation in the loop at lines

2–5. We provide the following example to clarify why this redundancy exists.

Consider the set of agent A = D = {a1, a2, a3, a4} and the graphG shown in Fig-

ure 7. Such a graph induces the set of feasible coalitions FC (G) = {{a1}, {a2},

{a3}, {a4}, {a1, a2}, {a1, a3}, {a1, a4}, {a1, a2, a3}, {a1, a2, a4}, {a1, a3, a4},

{a1, a2, a3, a4}}, and assumes a coalition structure CS = {{a1, a2, a3, a4}}.

a1 a2

a3 a4

Figure 7: Example of a social network with 4 agents.

The loop requires 12 iterations, each looking at the coalitions reported in Ta-

ble 1. Note that 23 (marked in bold) out of 33 coalitions (i.e., 70%) are evaluated

more than once. This process substantially reduces the efficiency and the scal-

ability of the algorithm in SR scenarios, where the computation cost required

to assess coalitional values is not negligible and caching is not an option. In

fact, storing all these values in memory is not affordable even for systems with

hundreds of agents: since FC (G) can contain up to O
(
nk
)

coalitions, for k = 5

and n = 100, storing all coalitional values requires tens of GB of memory. Thus,

each coalitional value must be computed only when needed, since computing

them more than once reduces efficiency and scalability, as shown in Section 7.2.

To overcome these issues, in the next section we present the PK algorithm,

our payment scheme that scales up to systems with thousands of agents.

5.1. The PK algorithm

We now present the PK (Payments in the Kernel) algorithm, our method to

compute an ε-kernel payoff allocation given a coalition structure, and we ap-

ply it to the SR scenario. Our contribution improves on the k-CF version of
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ai aj Coalitions
a1 a2 {a1} {a1, a3} {a1, a4} {a1, a3, a4}
a1 a3 {a1} {a1, a2} {a1, a4} {a1, a2, a4}
a1 a4 {a1} {a1, a2} {a1, a3} {a1, a2, a3}
a2 a1 {a2}
a2 a3 {a2} {a1, a2} {a1, a2, a4}
a2 a4 {a2} {a1, a2} {a1, a2, a3}
a3 a1 {a3}
a3 a2 {a3} {a1, a3} {a1, a3, a4}
a3 a4 {a3} {a1, a3} {a1, a2, a3}
a4 a1 {a4}
a4 a2 {a4} {a1, a4} {a1, a3, a4}
a4 a3 {a4} {a1, a4} {a1, a2, a4}

Table 1: Coalitions computed by the loop at lines 2–5 of Algorithm 4.

Algorithm 4 by adopting a novel approach to calculate the surplus matrix s.

Instead of computing each value sij using the maximisation at line 5 for each

pair of agents in each S ∈ CS, we iterate over the set of feasible coalitions (as

specified in Definition 5) induced by G, and we update the appropriate values

of the surplus matrix for each of such coalitions. Specifically, this is achieved by

iterating over the set of k̂-subgraphs of G, i.e., the set of connected subgraphs

of G with at most k nodes, and then executing the update by means of the

UpdateMax routine only for those k̂-subgraphs that actually correspond to

feasible coalitions. This additional check is mandatory since not all k̂-subgraphs

necessarily satisfy Constraint 1, and hence, represent feasible coalitions. By so

doing, we ensure the exact coverage of FC (G), as proved by Proposition 6.

PK is detailed in Algorithm 5. After having initialised the payoff vector x by

equally splitting each coalitional value among the members of the coalition,

ComputeMatrix computes the surplus matrix in each iteration of the main

loop. In such a routine, UpdateMax is executed for each coalition that induces

a k̂-subgraph of G. These coalitions are computed with the EnumerateCsg

algorithm proposed by Moerkotte and Neumann [35], which can list all the sub-

graphs of a given graph without redundancy (i.e., each subgraph is computed

only once). Then, UpdateMax only considers the coalitions that satisfy Con-

straint 1 of the SR problem (line 1). For every S of such coalitions, lines 3–8
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Algorithm 5 PK(CS, ε)

1: for all S ∈ CS do
2: for all ai ∈ S do
3: xi ← v(S)/|S| {Equally split coalitional value}
4: repeat
5: {Compute surplus matrix}
6: s← ComputeMatrix (CS, x)
7: {ai∗ and aj∗ have the maximum surplus difference δ}
8: δ ← max(ai,aj)∈A2 (sij − sji)
9: (ai∗ , aj∗)← arg max(ai,aj)∈A2 (sij − sji)

10: {Ensure that payments are individually rational}
11: if x[j∗]− v ({aj∗}) < δ/2 then
12: d← x[j∗]− v ({aj∗})
13: else
14: d← δ/2

15: x[j∗]← x[j∗]− d {Transfer payment from aj∗ ...}
16: x[i∗]← x[i∗] + d {... to ai∗}
17: until δ/v(CS) ≤ ε

update all the values sij for which ai is a member of S and aj is part of S′ (i.e.,

the coalition in CS that contains ai) but is not part of S. The correctness of

our approach is ensured by Proposition 5.

Proposition 5. Algorithm 6 computes each sij correctly.

Proof. See Appendix A.

Our surplus matrix-calculating method has polynomial time complexity, while

computing all feasible coalitions only once, as shown by Proposition 6.

Proposition 6. Algorithm 6 lists all feasible coalitions only once and it has a

worst-case time complexity of O
(
nk
)
.

Proof. See Appendix A.

Algorithm 6 ComputeMatrix(CS, x)

1: s← −∞ {Initialise the entire matrix with −∞}
2: for all S that induce a k̂-subgraph of G do
3: s← UpdateMax (S,CS, s, x)

4: return s
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Algorithm 7 UpdateMax(S,CS, s, x)

1: if S satisfies Constraint 1 then
2: eS ← e (S, x) {Compute the excess of coalition S}
3: for all ai ∈ S do {For each agent ai in coalition S}
4: S′ ← the coalition in CS that contains ai
5: for all aj ∈ S′ − S do {For each aj ∈ S′ but 6∈ S}
6: {sij is updated with the maximum between}
7: {its old value and the excess of coalition S}
8: sij ← max (sij , eS)

9: return s

In the next proposition, we prove that PK has a polynomial time complexity.

Proposition 7. Algorithm 5 has a polynomial worst-case time complexity with

respect to n, i.e., O
(
− log2 (ε) · nk+1

)
.

Proof. See Appendix A.

PK provides a polynomial method to compute kernel-stable payments. Nonethe-

less, the O
(
nk
)

operations required for surplus matrix calculation may not be

affordable in real-world scenarios with thousands of agents and k = 5 (i.e., the

number of seats of an average sized car). Hence, we next propose a parallel

version of PK, which allows us to distribute the computational burden among

different threads, taking advantage of modern multi-core hardware.

5.2. P-PK

We now detail P-PK, the parallel version of our approach, in which the most

computation-intensive task, i.e., the computation of the matrix s, is distributed

among T available threads. In particular, Algorithm 8 details our parallel version

of the ComputeMatrix routine, obtained by having each thread t to compute

a separate matrix st. Such a matrix is constructed considering the coalitions in

DIV (G, t, k), i.e., the tth fraction of the set of all k̂-subgraphs of G, computed

using the D-SlyCE algorithm [45].17 Specifically, this fraction is obtained by

17Notice that nor EnumerateCsg neither D-SlyCE solve the payment computation prob-
lem, as they address the enumeration of the k̂-subgraphs of G.
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splitting the first generation of children nodes in the search tree generated by

the EnumerateCsg algorithm among the available threads, allowing a fair

division of the set of the k̂-subgraphs while ensuring that all feasible coalitions

are computed exactly once. Thus, it also distributes the computation of the

coalitional values.

Algorithm 8 P-ComputeMatrix(CS, x, T )

1: s← −∞ {Initialise all matrix elements with −∞}
2: for all t ∈ {1, . . . , T} do in parallel
3: for all S ∈ DIV (G, t, k) do
4: st ← UpdateMax (S,CS, st, x)

5: for all i ∈ {1, . . . , n} do in parallel
6: for all j ∈ {1, . . . , n} do in parallel
7: sij ← maxt∈{1,...,T} s

t
ij

8: return s

We provide the following example to clarify how this division is realised. Con-

sider the same FC (G) of the example in Section 5, and assume T = 4. Then,

the necessary coalitions are distributed by doing the following partitioning:

1. DIV (G, 1, k) = {{a1}, {a2}, {a3}}

2. DIV (G, 2, k) = {{a4}, {a1, a2}, {a1, a3}}

3. DIV (G, 3, k) = {{a1, a4}, {a1, a2, a3}}

4. DIV (G, 4, k) = {{a1, a2, a4}, {a1, a3, a4}}

Note that, since each matrix st is modified only by thread t, Algorithm 8 con-

tains only one synchronisation point (i.e., before line 5), hence providing a full

parallelisation. After that, the final surplus matrix s is computed with a max-

imisation on all the above matrices (lines 5–7), ensuring that the output of

P-ComputeMatrix is equal to the one of ComputeMatrix, since each fea-

sible coalition in FC (G) has been computed by a thread. Notice that P-PK

requires storing t separate surplus matrices, one per thread. Hence, its memory

requirements are O
(
t · n2

)
, i.e., still polynomial in the number of agents.

Having discussed our CF approach for the SR scenario, we now present our

experimental evaluation. In particular, in the next section we benchmark SR-
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CFSS, our algorithm that solves the GCCF aspect of SR. Then, in Section 7 we

empirically evaluate PK, our payment allocation algorithm.

6. Evaluating the SR-CFSS algorithm

The main goals of the empirical analysis are i) to estimate the social welfare

improvement when our SR model is used, ii) to evaluate the performance of the

optimal version of SR-CFSS in terms of runtime and scalability, iii) to evaluate

the approximate performance and guarantees that SR-CFSS can provide on a

large number of agents, i.e., up to 2000 agents, and iv) to investigate the impact

of time constraints on the above properties.

Since there are no publicly available datasets which include both spatial

and social data for the same users, in our empirical evaluation we consider

two separate real-world datasets and we superimpose the first on the second

one. In particular, our map M = (P,Q) is a realistic representation of the

city of Beijing (Figure 8), with |P | = 8330 points and |Q| = 13290 edges,

equivalent to an average resolution of a point every ∼10 meters. This map has

been derived from the GeoLife dataset [34, 50] provided by Microsoft Research,

which comprises 17621 trajectories with a total distance of about 1.2 million

km, recorded by different GPS loggers with a variety of sampling rates. These

trajectories are adopted to sample random paths used to provide starting points

and destinations. Moreover, such a dataset also includes the timestamp of each

trajectory, allowing us to create a distribution of the departure and arrival times

(Figure 9), which is used to sample such parameters for each agent in all our

experiments, unless otherwise stated (i.e., in all experiments considering time

constraints except Section 6.2). As expected, this distribution exhibit two peaks,

one in the morning from 7:00 to 9:00 and one in the evening from 17:00 to 19:00.
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Figure 8: The map of Beijing derived from the GeoLife dataset.
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Figure 9: Default distribution of departure/arrival times (obtained from GeoLife).

In each experiment, the graph G is a subgraph of a large crawl of the Twitter

social graph. Specifically, such dataset is a graph with 41.6 million nodes and

1.4 billion edges published as part of the work by Kwak et al. [30]. In particular,

G is obtained by means of a standard algorithm [37] to extract a subgraph

from a larger graph, i.e., a breadth-first traversal starting from a random node

of the whole graph, adding each node and the corresponding arcs to G, until

the desired number of nodes is reached. In our empirical evaluation there is no

mapping between the trajectory data and the social graph, since they belong to

independent projects. In all our experiments, the default number of agents n is
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50. We adopt a cost model that considers fuel expenses, i.e., v (C) = Kfuel ·L∗C ,

where L∗C represents the length of L∗C in km, Kfuel = −0.06 e/km (considering

a fuel cost of −1 e per litre and an average consumption of 1 litre of fuel every

15 km) and k ({ai}) = −3 e ∀ai ∈ A, which represents the average public

transportation cost, i.e., a bus or a train ticket. Moreover, we assume that each

car has a capacity of 5 seats, i.e., seats (ai) = 5∀ai ∈ D. When time constraints

are considered, we define γ = −2 e/h and a time window (i.e., the duration

of θi) of 30’, unless otherwise stated. All our tests account for Constraint 2

(drivers always drive their cars). Hence, since both bounding techniques detailed

in Section 3.3.1 are valid and, in general, one does not dominate on the other,

we take the minimum one at each step of the algorithm, providing a more

effective pruning. Each test is repeated on 20 random instances, and we report

the average and the standard error of the mean. SR-CFSS is implemented in

C18 and executed on a machine with a 3.40GHz CPU and 16 GB of memory.

6.1. Social welfare improvement without time constraints

In our first experiment we consider the improvement of the social welfare (i.e.,

the cost reduction for the overall system) when using our SR model without

time constraints, compared to the scenario in which every rider adopts its own

conveyance (i.e., no ridesharing). This gives an indication of what gain can

be achieved by the overall community when using our system for ridesharing.

Formally, we define the social welfare improvement as 100 ·
∣∣∣V (CS∗)−V (Asingle)

V (Asingle)

∣∣∣ .
Such an improvement is influenced by the percentage of drivers in the system

(Figure 10), which determines the number of available seats and the number

of riders that can share a ride without having to resort to public transport.

Moreover, with more drivers it is more probable that a rider can join a car whose

path is closer to him/her. On the other hand, if the majority of the riders own a

car (i.e., > 80%), ridesharing is not very effective since too few riders without a

car can benefit from sharing their commutes with a driver. In particular, when

18Our implementation is available at https://github.com/filippobistaffa/SR-CFSS.
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only the 10% of the total riders own a car, the average cost reduction is −23.49%,

reaching −36.22% when half of the riders owns a car. To show the importance

of an optimal approach, we benchmark our algorithm against a greedy one, in

which every driver chooses its next stop as the closest among the destinations

points of his current passengers and the starting points of the remaining riders.

This choice is made considering the constraints imposed by the social network,

avoiding the formation of infeasible coalitions. As Figure 10 shows, our method

allows superior cost reductions with respect to such a greedy approach, which

can provide a maximum improvement of −19.55% for |D| = 20%. Notice that,

when the majority of the riders owns a car, the greedy approach cannot improve

upon the value of the baseline (i.e., no ridesharing).
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Figure 10: Social welfare improvement.

6.2. Social welfare improvement with time constraints

We now investigate how the social welfare improvement varies when we intro-

duce time constraints. Specifically, we now study the influence of the duration

of θi (i.e., the width of the time window) and the distribution of the agents’ de-

parture times on the social welfare. To this end, we vary these two parameters

as follows. On the one hand, we sample the departure times of the agents within

a time window of 6 hours according to 3 probability distributions (Figure 11).

Specifically, we consider a uniform distribution (i.e., the departure times are
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distributed uniformly in the time window) and two Gaussian distributions, in

which the agents who desire to leave in the two central hours of the time window

are the 30% (soft peak) and the 40% (hard peak) of the total respectively. On

the other hand, we vary the width of the time window θi for each agent. For sim-

plicity, we assume that ασi = βσi = αωi = βωi are all equal for all agents, and we

vary such value, namely θi’s radius, within [5′, 60′]. Following the result of the

experiments in the previous section, we only consider D = 50%, i.e., the scenario

that results in the highest social welfare improvement. Figure 12 shows that,

in general, the social welfare improvement increases when we increase the θi’s

radius. In fact, with larger time windows it is easier to satisfy time constraints

and, hence, to form coalitions to reduce the overall travel cost. Notice that such

an improvement saturates when the radius exceeds 30 minutes, since larger θi’s

radii are associated to larger costs by the θC component, which contributes

to reduce the social welfare improvement. In addition, Figure 12 also shows

that the hard peak distribution provides the highest social welfare improvement

(8.79%) with respect to the soft peak (6.62%) and the uniform (3.62%) ones. In

fact, if the departure times of more agents are concentrated in a shorter time

period, the cost provided by the θC component is lower. Moreover, SR-CFSS

can evaluate a larger number of feasible solutions, since less temporally infea-

sible coalition structures have to be discarded. Finally, notice that, since time

constraints result in additional costs and, more important, a reduced solution

space, they cause a reduction of the social welfare improvement, as confirmed

by the results in Section 6.4.

We further investigate the behaviour of the social welfare improvement by in-

creasing the θi’s radius only of a particular class of commuters, in order to

identify which classes are more sensitive to the variation of such parameter in

terms of overall cost reduction. Specifically, we observe 3 interesting classes of

agents, i.e., drivers, riders, and hubs (i.e., agents whose connectivity in the so-

cial graph is significantly above the average), and we vary the θi’s radius within

[15′, 60′] only for the considered class, while setting such parameter equal to 15′

for the other classes.
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Figure 11: Probability distributions in a time window of 6 hours.
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Figure 12: Social welfare improvement with respect to θi’s radius.

Figure 13 shows that the social welfare improvement has the biggest increase

for the drivers (+6.28%), reaching a final maximum of 14.24%. Such increase is

slightly lower for hubs (+5.1%), while it is only +1.27% for riders. These results

prove the impact of a larger θi’s radius for drivers and hubs, which results

in a larger number of potential coalitions, and, hence, a larger social welfare

improvement.
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Figure 13: Social welfare improvement with respect to θi’s radius.

6.3. Runtime performance without time constraints

In this section we discuss the performance of our approach in terms of run-

time needed to compute the optimal solution of a SR problem without time

constraints. Figure 14 shows the runtime with respect to the number of agents

adopting our SR model without time constraints. Our approach is tested in 3

scenarios, i.e., with low (10%), medium (50%) and high (80%) percentage of

drivers, showing that this parameter has a significant influence on the perfor-

mance of our algorithm. In fact, the size of the search space is determined by

the number of available seats (reduced when such a percentage is low) and the

number of riders without a car who can benefit from sharing their commutes

(reduced when the majority of the agents owns a car), consistently with the

behaviour of the social welfare improvement detailed in the previous section.

Notice that, in any case, our approach can solve systems with 100 agents in

a reasonable amount of time, i.e., about 2 hours at most for |D| = 50%. This

runtime is suitable for services with day-ahead or week-ahead requests (e.g.,

Lyft). Such a performance is possible thanks to our bounding techniques (see

Section 3.3.1) that allow to prune a significant part of the search space. In more

detail, such techniques allow an average pruning of the 97.5% of the search space

(resulting in an average runtime improvement of about 4 hours) on 20 random
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Figure 14: Runtime without time constraints.

instances with n = 60 and |D| = 50%.
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Figure 15: Runtime with time constraints.

6.4. Runtime performance with time constraints

When we consider time constraints (Figure 15), we notice a significant perfor-

mance improvement of SR-CFSS, which can compute the optimal solution for

100 agents in 30 seconds, i.e., over two orders of magnitude faster than the above

case. This improved performance also results in an increased scalability, as SR-

CFSS can solve systems with 150 agents, i.e., 50 additional agents with respect

46



5 10 15 30 45 60
100

101

102

103

θi’s radius (minutes)

E
x
ec

u
ti

on
ti

m
e

(s
)

|D| = 50%

Figure 16: Runtime with respect to θi’s radius.

to 100 agents in the previous experiment, in the same amount of time, and 200

in less than a day. We further investigate the impact of time constraints on the

performance of SR-CFSS by varying the θi’s radius, as discussed in Section 6.2.

Figure 16 shows that larger radii correspond to harder SR problems. As an ex-

ample, instances with a θi’s radius equal to 15 minutes are solved by SR-CFSS

more than two orders of magnitude faster with respect to when we consider 45

minutes. As discussed in Section 6.2, larger radii correspond to a larger number

of feasible solutions, since fewer temporally infeasible coalition structures have

to be discarded. These results confirm the impact of time constraints on the

dimension of the solution space, which results in two main outcomes. On the

one hand, scenarios with time constraints are easier to solve, since the number

of solutions is lower. On the other hand, the reduced number of solutions allows

a lower social welfare improvement in such scenarios (see Section 6.2).

6.5. Approximate performance

In this section we evaluate the quality of the solutions computed by the approx-

imate version of SR-CFSS on a very large set of agents (i.e., 2000). A standard

measure to evaluate the quality of the solutions of approximate algorithms is

the Performance Ratio (PR) [3].
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Definition 19 (PR). Given an instance I of an optimisation problem, its op-

timal solution Optim (I) and an approximate solution Approx (I), the perfor-

mance ratio PR (I) = max
(
Approx(I)
Optim(I) ,

Optim(I)
Approx(I)

)
.

Both in the case of minimisation and maximisation problems, the PR is equal to

1 in the case of an optimal solution, and can assume arbitrarily large values in the

case of poor approximate solutions. In our case, computing the optimal solution

Optim (I) for large-scale GCCF problems is not possible, hence the PR is not

an applicable measure of quality. Thus, we define the Maximum Performance

Ratio (MPR) following the above definition, and considering the upper bound

on the optimal solution provided by Propositions 1 and 2.

Definition 20 (MPR). Given a GCCF instance I, we denote the approximate

solution computed by CFSS as Approx (I) and the upper bound on the opti-

mal solution as Bound (I). Then, we define the Maximum Performance Ratio

MPR (I) = max
(
Approx(I)
Bound(I) ,

Bound(I)
Approx(I)

)
.

Since |Bound (I) | ≤ |V (CS∗I ) |, where CS∗I is the optimal solution of I,MPR (I)

represents an upper bound for PR (I). The MPR provides an important qual-

ity guarantee for the approximate solution Approx (I), since Approx (I) always

lies within a factor of MPR (I) with respect to the optimal solution.19 We

run SR-CFSS on instances adopting the model without time constraints with

n ∈ {500, 1000, 2000} and we stop the execution after a time budget of 100 sec-

onds. Then, we compute Bound (I) as defined in Propositions 1 and 2. Specifi-

cally, since both propositions are applicable, we compute the upper bound using

both techniques and then we consider the lowest one. Figure 17 shows that,

on average, Bound (I) is only 6.65% higher than Approx (I) (i.e., the solution

found within the time limit) for n = 500 and |D| = 80%, reaching a maximum of

+29.92% when n = 2000 and |D| = 50%. In the worst case, SR-CFSS provides

a maximum performance ratio of 1.41 and thus solutions whose values are at

19PR and MPR provide a per-instance quality guarantee, in contrast with the approximation
ratio [12] that provide a quality guarantee valid for all possible instances.
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Figure 17: Maximum performance ratio of approximate solutions.

least 71% of the optimal. We obtained very similar results also when we consider

time constraints, and hence, we do not report them here. Such a behaviour is

reasonable since the maximum performance ratio is heavily influenced by the

value of Bound (I) and, as detailed in Section 4.3, we apply the same technique

whether or not we consider time constraints.

6.6. SR-CFSS vs. C-Link: solution quality comparison

In our final experiment we further evaluate the approximate performance of

SR-CFSS by comparing it against C-Link [21], one of the most recent CSG

heuristic approaches. Specifically, we generate random SR instances with n ∈

{1000, 1200, . . . , 2000}, considering 20 repetitions for each n. Then, we solve

each instance with C-Link (adopting the best heuristic proposed by Farinelli

et al. [21], i.e., Gain-Link) and then we run SR-CFSS on the same instance with

a time budget equal to C-Link’s runtime.

Figure 18 shows the average and the standard error of the mean of the ratio

between the value of the solution computed by C-Link and the one computed

by SR-CFSS. Since we consider solutions with negative values, when such ratio

is > 1 the solution computed by C-Link is better (i.e., corresponds to a lower

cost) than the one computed by SR-CFSS. Our results show that, for n < 1600,

the quality of C-Link’s solutions is better than SR-CFSS. Then, for n ≥ 1600
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Figure 18: Ratio between C-Link and SR-CFSS approximate solutions.

SR-CFSS outperforms C-Link in terms of solution quality. In particular, for

n = 2000 the solutions provided by our approach correspond to costs that are,

on average, 2.28 times lower than the counterpart ones.

6.7. Summary of results

Our empirical evaluation demonstrates that our approach results in a significant

cost reduction when applied to SR scenarios, reaching −36.22% when half of

the agents in the system owns a car. Such a scenario, resulting in the best cost

improvement, is characterised by the largest search space, i.e., it is the most

computationally intensive to solve with respect to other percentages of drivers.

As expected, the introduction of time constraints reduces the cost improvement

for the system, since it limits the number of possible solutions, reducing the

size of the search space. As a consequence, computing SR solutions with time

constraints is less computationally demanding. Crucially, results show that SR-

CFSS is a viable method for the computation of SR solutions, especially in

large-scale scenarios (i.e., with 2000 agents), where our approach provides good

approximate solutions whose quality is at least 71% of the optimal.

After the empirical evaluation of SR-CFSS, we now benchmark PK.
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7. Evaluating the PK algorithm

In this section, we focus on the evaluation of our approach to the computation of

kernel-stable payments for SR. The main goals of the empirical analysis are i) to

test the performance of PK when computing payments for systems of thousands

of agents, ii) to perform an analysis of the features that influence the distribution

of payments among the agents, iii) to investigate the impact of time constraints

on the above properties, iii) to compare the efficiency of PK with respect to the

state of the art approach proposed by Shehory and Kraus, and iv) to estimate

the speed-up obtainable by using P-PK with respect to PK.

In all our tests, we adopt the same methodology and datasets discussed in

Section 6 (i.e., we adopt the GeoLife and Twitter datasets), unless otherwise

stated. In the experiments looking at the performance of PK (i.e., Sections 7.1,

7.2 and 7.3) we only consider the SR model without time constraints, since the

performance of PK is negligibly affected by them.20 PK is implemented in C21

and executed on a machine with a 3.40GHz CPU and 16 GB of memory.

7.1. Runtime performance

In our first experiment, we evaluate the performance of our approach when com-

puting payments in large-scale instances. Figure 19 shows the runtime needed

to execute P-PK on systems with n ∈ {100, 500, 1000, 1500, 2000}. In each test,

the coalition structure has been computed using the approximate version of

SR-CFSS using our SR model without time constraints.

Our results show that P-PK is able to compute payments for 2000 agents

with a runtime ranging from 13 to 50 minutes, hence it can successfully scale to

large systems. In particular, for each value of n, we consider |D| ∈ {10%, 50%, 80%}.

Our results also show the influence of the percentage of drivers on the complexity

of the problem. On average, computing payments on an instance with |D| = 80%

is easier with respect to |D| = 10% and |D| = 50%. Our findings are consistent

20The complexity of computing each coalitional value is comparable whether or not we
consider time constraints.

21Our implementation is available at https://github.com/filippobistaffa/PK.
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with the results in Section 6.1, showing that the scenario with |D| = 50% is

more difficult to solve since more drivers are available, hence it is possible to

form more cars, resulting in a larger search space. In fact, the number of feasible

coalitions is determined by the number of available seats (reduced when such a

percentage is low) and the number of riders without a car who can benefit from

sharing their commutes (reduced when the majority of the agents owns a car).

100 500 1000 1500 2000
10−2

10−1

100

101

102

103

104

Number of agents

E
x
ec

u
ti

o
n

ti
m

e
(s

)

|D| = 10%

|D| = 50%

|D| = 80%

Figure 19: Runtime needed to compute payments.

7.2. Benchmarking PK

Figure 20 shows the runtime needed by our approach to compute a kernel-stable

payoff vector, comparing it with the state of the art approach by Shehory and

Kraus [39], i.e., Algorithm 4. In particular, we consider the runtime needed to

solve SR instances with n ∈ {30, 40, 50, 60, 70, 80, 90, 100} and |D| = 50%. We

employ the sequential version of PK, since Algorithm 4 is also sequential.

Our results show that PK is at least one order of magnitude faster than the

counterpart approach, outperforming the state of the art by 27 times in the worst

case, with an average improvement of 53 times, and a best case improvement of

84 times. Thus, our comparison has been run only up to n = 100, since the coun-

terpart approach becomes impractical for instances with thousands of agents.

In fact, with 1000 agents it requires over one day of computation, compared

to a runtime of 2 hours required by PK, and 14 minutes required by P-PK. In
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particular, the approach in [39] is slower due to several redundant computations

of many coalitional values, with a significant impact on the runtime.
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Figure 20: Runtime needed to compute payments.
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7.3. Parallel performance

Here we analyse the speed-up that can be achieved by using P-PK with respect

to PK, i.e., its sequential version. We ran the algorithms on instances with 500

agents and |D| = 50%, using a machine with 2 Intel R© Xeon R© E5-2420.

The speed-up measured during these tests has been compared with the maxi-

mum theoretical one provided by the Amdahl’s Law [2], considering an estimated
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non-parallelisable part of 1%, due to memory allocation and thread initialisa-

tion. Figure 21 shows that the actual speed-up follows the theoretical one for

up to 12 threads (i.e., the number of physical cores for this machine), reaching

a final speed-up of 14.85× with all 24 threads active.

7.4. Costs and network centrality

PK computes a cost allocation that is guaranteed to be kernel-stable. A priori,

such an allocation does not have any particular property linked with structure

of the problem. The purpose of this section is to analyse the relationship be-

tween the cost incurred by a commuter and the properties that determine its

importance in the environment, i.e., being a node with a high degree in the so-

cial network, or being driver or rider. To this end, we first compute the optimal

solution of a SR problem without time constraints on random instances with

n ∈ {30, 40, 50, 60, 70, 80, 90, 100} and |D| ∈ {10%, 50%, 80%}, and we use our

algorithm to compute a kernel-stable payoff vector. Then, to assess this correla-

tion in a quantified manner, we define the normalised cost ci and the normalised

degree di for each agent ai as follows:

• For any ai in a coalition S with |S| > 1, we define its normalised cost ci

as

ci =
−x[i]−minSx
maxSx −minSx

,

where minSx and maxSx are the minimum and the maximum values of the

negative values of x among the members of S, i.e., minSx = minai∈S −x[i]

and maxSx = maxai∈S −x[i]. Note that we consider negative values since

in our model, costs are represented by negative values for x[i].

• For any ai in a coalition S with |S| > 1, we define its normalised degree

di as

di =
deg (ai)−minSd
maxSd −minSd

,

where deg (ai) is the degree of ai in the social network, and minSd and

maxSd are the minimum and the maximum degrees of the members of S.
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When the denominator of ci is 0, i.e, when maxSx = minSx , it means that all the

agents in C have the same payoff. In these cases, ci is defined to be 0.5 as a

middle point between 0 and 1 (the same discussion applies to di).

Notice that, a direct comparison of two agents that are not part of the

same coalition would not be appropriate for determining their overall power or

benefits derived from participation in the SR setting, since payments computed

according to the kernel do not consider agents belonging to different coalitions.

Nonetheless, it would definitely be interesting to have a way to measure and

compare the power of the agents, regardless of the coalition to which each one

belongs. To allow this comparison, both ci and di are normalised between 0 (for

the agents having the minimum costs/degrees in their coalitions) and 1 (similarly

for the agents with maximum costs/degrees). The normalisation is done with

respect to the coalition the agent belongs to, because to reach kernel-stability,

payment transfers only take place among agents within the same coalition. As

an example, if an agent’s normalised cost is 0.4, it means that its incurred

cost is a value placed at the 40% of the range between the minimum and the

maximum costs incurred by the agents in its coalition. Finally, note that agents

in singletons have been excluded, as they do not have to split their value.

In Figure 22 we report the average and the standard error of the mean for

the normalised cost with respect to the normalised degree. Our results clearly

show that costs are strongly influenced by the degree of the agents, and whether

they are drivers or riders. Specifically, in our tests drivers had to pay costs that

were on average 16% lower than riders. Moreover, agents with the minimum

number of social connections in their coalition (i.e., with a normalised degree of

0) paid a cost 171% higher than the ones with the highest degree.
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Figure 22: Normalised cost w.r.t. normalised degree without time constraints.
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Figure 23: Normalised cost with respect to normalised degree with time constraints.

We now investigate how the features of the cost distributions studied above are

affected by the introduction of time constraints. Figure 23 shows a behaviour

similar to the one discussed in the above section. Moreover, we notice that the

introduction of time constraints results in significantly lower costs for the drivers

(i.e., drivers pay costs that are on average 35% lower than the previous exper-

iment), while riders’ costs are comparable in both scenarios. These results can

be explained by recalling that time constraints significantly reduce the solution

space (see Sections 6.2 and 6.4), and hence, the influence of drivers (who are
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crucial to determine whether or not a coalition can be formed) is stronger if the

pool of possible alternative coalitions is smaller.

We further investigate the role of time constraints in the payment distribu-

tion process by studying to what extent more tolerant agents are rewarded with

lower costs. To this end, we assign a random θi’s radius within {5′, 10′, 15′, 20′,

25′, 30′} to each agent and we look at the corresponding normalised cost. Fig-

ure 24 shows that the agents that are willing to tolerate more with respect to

their ideal departure/leaving time are rewarded by the system with lower costs,

as a consequence of the fact that, by having a larger θi’s radius, they can choose

among a larger pool of alternatives and hence, they achieve a higher bargaining

power in the payment distribution process.
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Figure 24: Normalised cost with respect to θi’s radius

7.5. Summary of results

In general, our experimental results suggest that the kernel can be a valid sta-

bility concept in the context of SR. In fact, it induces a reasonable behaviour

in the formation of groups, which can be directly correlated with some simple

properties of the agents in the system (i.e., network centrality and being a driver

or a rider). Moreover, the computation of kernel-stable payments has a tractable

complexity and hence, it is a viable approach for large-scale environments.
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8. Conclusions

In this work, we showed how the social ridesharing (SR) problem can be mod-

elled as a GCCF problem extending the state of the art algorithm for GCCF,

i.e., CFSS, to solve it. Our empirical evaluation shows that our approach can

lead to a cost reduction for the entire system that reaches the −36.22% and

that our approximate technique can compute solutions for very large systems

(i.e., up to 2000 agents) with good quality guarantees (i.e., with a MPR of 1.41

in the worst case). Furthermore, we tackled the payment computation aspect

associated to SR, by proposing PK, the first approach able to compute kernel-

stable payments for systems with thousands of agents. PK is able to compute

payments for 2000 agents in less than an hour and it is 84 times faster than the

state of the art in the best case. Finally, we identify a relationship between the

ability of an agent to obtain a high payment and its degree in the social graph.

Future work will look at extending our approach by focusing on the devel-

opment of an online SR system, motivated by the inherent dynamic nature of

realistic ridesharing systems. In this perspective, we aim at the design of a SR

model in which agents can join and leave the system over an extended amount of

time. Such a scenario suggests a solution scheme that employs an offline method

(e.g., SR-CFSS) at each time step, which possibly adopts heuristics to restrict

solutions only to local areas. Myopic, short-sighted solutions are then avoided

by estimating future mobility patterns for the agents, which could be inferred

by the history of previous requests. A further research direction could consider

multi-hop ridesharing [19] (not currently used by most existing ridesharing ser-

vices) for journeys outside the urban scenario. Finally, in the context of payment

computation, we aim at investigating whether recent tractability results on par-

ticular network structures [23] could also be applied to the SR scenario.
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Ramchurn. “Anytime Coalition Structure Generation on Synergy Graphs”.

In: International Conference on Autonomous Agents and Multi-Agent Sys-

tems. 2014, pp. 13–20.

[8] F. Bistaffa, A. Farinelli, G. Chalkiadakis, and S. D. Ramchurn. “Rec-

ommending Fair Payments for Large-Scale Social Ridesharing”. In: ACM

Conference on Recommender Systems. 2015, pp. 139–146.

59



[9] F. Bistaffa, A. Farinelli, and S. D. Ramchurn. “Sharing Rides with Friends:

a Coalition Formation Algorithm for Ridesharing”. In: AAAI Conference

on Artificial Intelligence. 2015, pp. 608–614.

[10] G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational Aspects

of Cooperative Game Theory. Synthesis Lectures on Artificial Intelligence

and Machine Learning. 2011.

[11] G. Chalkiadakis, G. Greco, and E. Markakis. “Characteristic function

games with restricted agent interactions: Core-stability and coalition struc-

tures”. In: Artificial Intelligence 232 (2016), pp. 76–113.

[12] T. H. Cormen. Introduction to algorithms. MIT press, 2009.

[13] G. B. Dantzig and J. H. Ramser. “The truck dispatching problem”. In:

Management science 6.1 (1959), pp. 80–91.

[14] M. Davis and M. Maschler. “The kernel of a cooperative game”. In: Naval

Research Logistics Quarterly 12.3 (1965), pp. 223–259.

[15] R. Dechter. Constraint processing. Morgan Kaufmann, 2003.

[16] G. Demange. “On Group Stability in Hierarchies and Networks”. In: Po-

litical Economy 112.4 (2004), pp. 754–778.

[17] X. Deng and C. Papadimitriou. “On the complexity of cooperative solution

concepts”. In: Mathematics of Operations Research 19.2 (1994), pp. 257–

266.

[18] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In:

Numerische mathematik 1.1 (1959), pp. 269–271.

[19] F. Drews and D. Luxen. “Multi-hop ride sharing”. In: Sixth Annual Sym-

posium on Combinatorial Search. 2013.

[20] A. Fanelli and G. Gianluigi. “Ride Sharing with a Vehicle of Unlimited

Capacity”. In: International Symposium on Mathematical Foundations of

Computer Science. Vol. 58. Leibniz International Proceedings in Informat-

ics. 2016, 36:1–36:14.

60



[21] A. Farinelli, M. Bicego, S. Ramchurn, and M. Zucchelli. “C-link: A Hierar-

chical Clustering Approach to Large-scale Near-optimal Coalition Forma-

tion”. In: International Joint Conference on Artificial Intelligence. 2013,

pp. 106–112.

[22] K. Ghoseiri, A. E. Haghani, and M. Hamedi. Real-time rideshare matching

problem. Mid-Atlantic Universities Transportation Center, 2011.

[23] G. Greco, E. Malizia, L. Palopoli, and F. Scarcello. “On the complexity of

core, kernel, and bargaining set”. In: Artificial Intelligence 175.12 (2011),

pp. 1877–1910.

[24] P. Hart, N. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic

Determination of Minimum Cost Paths”. In: Systems Science and Cyber-

netics, IEEE Transactions on 4.2 (1968), pp. 100–107.

[25] B. Kallehauge, J. Larsen, O. B. Madsen, and M. M. Solomon. Vehicle

routing problem with time windows. Springer, 2005.

[26] E. Kamar and E. Horvitz. “Collaboration and Shared Plans in the Open

World: Studies of Ridesharing”. In: International Joint Conferences on

Artificial Intelligence. 2009, pp. 187–194.

[27] L. Khatib, P. Morris, R. Morris, and F. Rossi. “Temporal Constraint Rea-

soning with Preferences”. In: International Joint Conference on Artificial

Intelligence. 2001, pp. 322–327.

[28] A. Kleiner, B Nebel, and V Ziparo. “A Mechanism for Dynamic Ride

Sharing based on Parallel Auctions”. In: International Joint Conference

on Artificial Intelligence. 2011, pp. 266–272.

[29] M. Klusch and O. Shehory. “A Polynomial Kernel-Oriented Coalition Al-

gorithm for Rational Information Agents”. In: International Conference

on Multi-Agent Systems. 1996, pp. 157–164.

[30] H. Kwak, C. Lee, H. Park, and S. Moon. “What is Twitter, a Social

Network or a News Media?” In: International Conference on World Wide

Web. 2010, pp. 591–600.

61



[31] J. K. Lenstra and A. Kan. “Complexity of vehicle routing and scheduling

problems”. In: Networks 11.2 (1981), pp. 221–227.

[32] D. Liben-Nowell, A. Sharp, T. Wexler, and K. Woods. “Computing shap-

ley value in supermodular coalitional games”. In: International Computing

and Combinatorics Conference. 2012, pp. 568–579.

[33] Y. Matsui and T. Matsui. “NP-completeness for calculating power in-

dices of weighted majority games”. In: Theoretical Computer Science 263.1

(2001), pp. 305–310.

[34] Microsoft Research. GeoLife Dataset. 2009. url: http : / / research .

microsoft.com/en-us/projects/geolife.

[35] G. Moerkotte and T. Neumann. “Analysis of two existing and one new

dynamic programming algorithm for the generation of optimal bushy join

trees without cross products”. In: International Conference on Very Large

Databases. 2006, pp. 930–941.

[36] R. B. Myerson. “Graphs and Cooperation in Games”. In: Mathematics of

Operations Research 2.3 (1977), pp. 225–229.

[37] M. A. Russell. Mining the Social Web. O’Reilly Media, 2013.

[38] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé. “Coali-
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Appendix A. Proofs of propositions

Proposition 1. If Constraint 2 holds, for any feasible coalition structure CS

M1 (CS) =
∑

S∈Ad(CS)
v (S)

is an upper bound for the value of any CS′ in ST (CS), i.e., the subtree rooted

in CS. Formally, M1 (CS) ≥ V (CS′) for all CS′ ∈ ST (CS) .

Proof. By contradiction. Suppose there exists a coalition structure CS′ ∈ ST (CS)

such that V (CS′) > M1 (CS), i.e., CS′ results in a cost lower13 than M1 (CS).

Now, since CS′ ∈ ST (CS) and Constraint 2 holds, CS′ must have been formed

by adding single riders to already formed cars in CS. All such cars correspond

to coalitions whose values are lower than the original ones, since the addition of

a single rider cannot reduce the cost. This contradicts V (CS′) > M1 (CS).

Lemma 1. Given a feasible coalition structure CS and a coalition structure

CS′ ∈ ST (CS) such that V (CS′) > M2 (CS), then

∃S′ ∈ Ad (CS′) : v (S′) >
1

2
·
∑

ai∈S′
m (ai) . (A.1)

Proof. By contradiction. First notice that

V (CS′) = V (Ad (CS′)) + V (CS′ \Ad (CS′)) ,

i.e., V (CS′) is the sum of the values of all the cars in CS′ plus the values of the

singletons of riders that are not drivers. From V (CS′) > M2 (CS), it follows

that

V (Ad (CS′)) + V (CS′ \Ad (CS′)) >
1

2
·
∑

ai∈Ud(CS)
m (ai) .

Since V (CS′ \Ad (CS′)) =
∑
S∈Ad(CS′) k (S) ≤ 0 (Equation 2), it follows that

V (Ad (CS′)) >
1

2
·
∑

ai∈Ud(CS)
m (ai) .
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Since we only merge coalitions in the formation of new coalition structures in

ST (CS), it is impossible that a rider exits a car, i.e., Ud (CS) ⊆ Ud (CS′).

Moreover, since the function m (·) is negative (see Definition 15), it is also true

that

V (Ad (CS′)) >
1

2
·
∑

ai∈Ud(CS′)
m (ai) . (A.2)

Now, suppose that (A.1) is not true, i.e., v (S′) ≤ 1
2 ·
∑
ai∈S′ m (ai) , ∀S′ ∈

Ad (CS′) . If we apply such property to all the coalitions S′ considered in the

summation
∑
S′∈Ad(CS′) v (S′) = V (CS′) , we obtain

V (Ad (CS′)) ≤ 1

2
·
∑

ai∈Ud(CS′)
m (ai) ,

which contradicts (A.2).

Proposition 2. If Assumption 1 holds, for any feasible coalition structure CS

M2 (CS) is an upper bound for the value of any CS′ in ST (CS), i.e., the subtree

rooted in CS. Formally, M2 (CS) ≥ V (CS′) for all CS′ ∈ ST (CS) .

Proof. By contradiction. Suppose there exists a coalition structure CS′ ∈ ST (CS)

such that V (CS′) > M2 (CS). By applying Lemma 1, there exists S′∈Ad (CS′)

such that v (S′) > 1
2 ·
∑
ai∈S′ m (ai) . Since Assumption 1 holds, it follows that

value (concat (L∗S′)) >
1

2
·
∑

ai∈S′
m (ai) , (A.3)

for some L∗S′ ∈ VT (S′) . Now, value (·) is additive (Definition 7), thus it can be

seen as the sum of the costs of all the subpaths that form concat (L∗S′) . Formally,

value (concat (L∗S′)) =
∑|L∗

S′ |−1

k=1
value (sp (L∗S′ [k], L∗S′ [k + 1])) . (A.4)

By combining (A.3) and (A.4) we obtain

∑|L∗S′ |−1

k=1
value (sp (L∗S′ [k], L∗S′ [k + 1])) >

1

2
·
∑

ai∈S′
m (ai) . (A.5)

Now, it is easy to see that the cost provided by
∑
ai∈S′ m (ai) cannot be higher
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than twice22 the cost of any valid path that goes through the starting points

and destinations of the members of S′. It follows that 1
2 ·
∑
ai∈S′ m (ai) cannot

be lower than the corresponding value (·) for any of such valid paths, since we

consider negative cost functions. This contradicts (A.5).

Proposition 3. Let ai, aj ∈ A with ai ∈ D and aj 6∈ D. If we consider Con-

straint 2 (i.e., one driver per car) and [τσj + βσj , τ
ω
j − αωj ] 6⊆ [τσi − ασi , τωi + βωi ],

then ai and aj can never be in a time feasible coalition together, i.e., ∀S ∈

FC (G) : {ai, aj} ⊆ S, S is a time infeasible coalition.

Proof. If [τσj +βσi , τ
ω
j −αωj ] 6⊆ [τσi −ασi , τωi +βωi ], then τσj +βσi <τ

σ
i −ασi or τωj −αωj

>τωi +βωi . Intuitively, aj ’s latest departure time is earlier than ai’s earliest de-

parture time or aj ’s earliest arriving time is later than ai’s latest arriving time.

Since we consider Constraint 2, ai can be the only driver of any coalition con-

taining both ai and aj . Thus, it is trivial to verify that the above time constraint

will always be violated, since travelling back in time is not (yet) possible.

Proposition 4. Propositions 1 and 2 are valid even if we substitute the defini-

tion of v (S) in Equation 2 with the definition in Equation 10.

Proof. Given a coalition S ∈ FC (G), the value provided by v (S) in Equation 2

is necessarily greater than the one provided by Equation 10, since the latter

is equal to the former with the addition of θS (L∗S , τ
∗
S), which is negative by

definition. Notice that the t (L∗S) + c (L∗S) + f (L∗S) is exactly the same, since

we make Assumption 1 in both cases, and we assess L∗S in the same way. As

a consequence, given a feasible coalition structure CS, V (CS) is greater if we

consider Equation 2 with respect to Equation 10. Therefore, since Propositions 1

and 2 provide upper bounds and are valid considering Equation 2, they are also

valid with Equation 10.

Proposition 5. Algorithm 6 computes each sij correctly.

22If we sum all the values of the couples of edges incident to the points that form a given
path, we consider each edge twice.
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Proof. Once the loop has ended, each sij stores the maximum excess among all

feasible coalitions with ai but without aj , with both ai and aj part of the same

coalition in CS. This matches line 5 of Algorithm 4.

Proposition 6. Algorithm 6 lists all feasible coalitions only once and it has a

worst-case time complexity of O
(
nk
)
.

Proof. Algorithm 6 lists all k̂-subgraph of G exactly once [45]. Note that the

number of k̂-subgraphs is O
(
nk
)
, since we only consider coalitions with up

to k members [39]. Hence, Algorithm 6 makes at most O
(
nk
)

calls to Up-

dateMax. Finally, note that the time complexity of UpdateMax is constant

with respect to n, since computing e (S, x) requires the computation of v (S)

(which has constant time complexity), and the loop at lines 3–8 requires O
(
k2
)

iterations. Moreover, UpdateMax only considers coalitions that satisfy Con-

straint 1 (whose check is constant with respect to n) and it computes each

coalitional value only once at line 2. Thus, Algorithm 6 computes all feasible

coalitions only once and its worst-case time complexity is O
(
nk
)
.

Proposition 7. Algorithm 5 has a polynomial worst-case time complexity with

respect to n, i.e., O
(
− log2 (ε) · nk+1

)
.

Proof. Here we refer to equations and lemmas provided by Stearns [41]. Each

iteration of Algorithm 5 identifies the agents ai and aj with the maximum sur-

plus difference δ = sij − sij , performing a transfer of size d from aj to ai. Thus,

by Lemma 1 [41], in the following iteration these surpluses will be s′ij = sij − d

and s′ji = sji + d. Notice that s′ij − s′ji = sij − sji − 2 · d = δ − 2 · d. Now, by

definition of d (lines 11–14 of Algorithm 5), d ≤ δ/2, hence s′ij − s′ji ≥ 0. There-

fore, we can affirm that the transfer from aj to ai is indeed a K-transfer, since

it satisfies Equation 4, 5, 6 and 7 [41]. Lemma 2 [41] ensures the convergence

of Algorithm 2, by affirming that a K-transfer cannot increase the larger sur-

pluses in the system. Specifically, in the next iteration the difference between

the surpluses between aj to ai will be half of what was in the previous one.

After λ iterations, its value will be 1
2λ

of the original one. Thus, it will take
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λ = log2([δ0/v(CS)]/ε) iterations to ensure that [δ0/v(CS)]/2λ ≤ ε, with δ0 being the

original maximum sij surplus. Since we have n agents into the setting, it will

take λ·n = O (− log2 (ε) · n) iterations to convergence. Then, we know by Propo-

sition 2 that ComputeMatrix, which dominates the time complexity of each

iteration, has a worst-case time complexity of O
(
nk
)
. Given this, Algorithm 2

has a worst-case time complexity of O
(
− log2 (ε) · nk+1

)
.

Appendix B. Existence of the core in the SR scenario

As introduced in Section 2.2, the core [10] is a very strong stability concept,

whose computation has an exponential time complexity with respect to the

number of agents. An in-depth discussion of the complexity aspects of core-

related problems is provided by Chalkiadakis et al. [11].

Due to its strength, the core is not guaranteed to be always non-empty, i.e.,

it is not always possible to compute a core-stable payment allocation. Consider

the following SR instance, which, for simplicity, does not take into account time

constraints. Such instance has been generated from the datasets discussed in

Section 6. Let G be the graph in Figure B.25. The only driver is agent a5.

Consider the following coalitional values (only feasible coalitions are reported):

v ({a0}) = 3.00e, v ({a1}) = 3.00e, v ({a2}) = 3.00e, v ({a3}) = 3.00e,

v ({a4}) = 3.00e, v ({a5}) = 2.02e, v ({a5, a2}) = 3.13e,

v ({a5, a2, a4}) = 3.19e, v ({a5, a0, a2}) = 3.84e, v ({a5, a0, a2, a3}) = 3.99e,

v ({a5, a0, a2, a4}) = 4.11e, v ({a5, a0, a2, a3, a4}) = 4.41e,

v ({a5, a1}) = 3.76e, v ({a5, a1, a4}) = 3.85e, v ({a5, a0, a1}) = 5.01e,

v ({a5, a1, a3}) = 4.68e, v ({a5, a1, a3, a4}) = 4.81e,

v ({a5, a0, a1, a4}) = 5.13e, v ({a5, a0, a1, a3}) = 5.18e,

v ({a5, a0, a1, a3, a4}) = 5.30e, v ({a5, a1, a2}) = 4.85e,

v ({a5, a1, a2, a4}) = 4.94e, v ({a5, a0, a1, a2}) = 5.61e,

v ({a5, a1, a2, a3}) = 5.46e, v ({a5, a1, a2, a3, a4}) = 5.59e,

v ({a5, a0, a1, a2, a4}) = 5.73e, v ({a5, a0, a1, a2, a3}) = 5.78e.
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a1 a4

a5 a2

a0 a3

Figure B.25: Example of a social network with 6 agents.

The optimal coalition structure in the above instance is CS∗ = {{a5, a0, a2,

a3, a4}, {a1}}. We implemented a Linear Programming (LP) algorithm23 that

computes a core-stable payment allocation, if it exists. Using such an algorithm,

we determined that the core is empty in the above instance.

We ran further experiments to evaluate the percentage of instances that

have an empty core in the SR scenario. Figure B.26 shows such a percentage,

considering 60 SR instances generated from our datasets for each n. Our results

show that, most of the times, the core is empty in the SR scenario, in contrast

with the kernel, which always exists. Specifically, the core is empty in the 75%

of the instances with 13 agents or more. More important, our results confirm

that, as expected, the number of instances with an empty core increases when

we increase the number of agents. Henceforth, the core is not a viable stability

concept for large-scale SR problems we are interested to tackle.

Appendix C. Pseudo-code of the CFSS algorithm

In this appendix we report the pseudo-code of the CFSS algorithm [7], which

solves the GCCF problem corresponding to a given graph G. Notice that, being a

branch and bound algorithm, CFSS requires a technique to compute an upper-

bound M (·) for the characteristic function. A complete discussion about the

techniques used to compute M (·) and, in general, about the CFSS algorithm,

23The implementation is available at https://github.com/filippobistaffa/PK/tree/core.
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Figure B.26: Percentage of SR instances with a non-empty core.

is provided by Bistaffa et al. [7].

Algorithm 9 CFSS(G)

1: Gc ← G with all green edges

2: best← Gc {Initialise current best solution with singletons}

3: F ← ∅ {Initialise search frontier F with empty stack}

4: F.push (Gc) {Push Gc as the first node to visit}

5: while F 6= ∅ do {Branch and bound loop}

6: node← F.pop () {Get current node}

7: if M (node) > V (best) then {Check bound value}

8: if V (node) > V (best) then

9: best← node {Update current best solution}

10: F.push (Children (node)) {Update frontier F}

11: return best {Return optimal solution}
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Algorithm 10 Children(G)

1: G′c ← Gc = (A, E , colour) {Initialise graph G′ with Gc}

2: Ch← ∅ {Initialise the set of children}

3: for all e ∈ E : colour (e) = green do {For all green edges}

4: Ch← Ch ∪ {GreenEdgeContr (G′c, e)}

5: Mark edge e with colour red in G′c

6: return Ch {Return the set of children}
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