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Abstract. We present a novel evolutionary computation approach to
optimize agent based models using a variable-length genome represen-
tation. This evolutionary optimization technique is applied to Compu-
tational Red Teaming (CRT). CRT is a vulnerability assessment tool
which was originally proposed by the military operations research com-
munity to automatically uncover critical weaknesses of operational plans.
Using this agent-based simulation approach, defence analysts may sub-
sequently examine and resolve the identi�ed loopholes. In CRT experi-
ments, agent-based models of simpli�ed military scenarios are repeatedly
and automatically generated, varied and executed. To date, CRT studies
have used �xed-length genome representation where only a �xed set of
agent behavioural parameters was evolved. This may prevent the gen-
eration of potentially more optimized/interesting solutions. To address
this issue, we introduce the hybrid variable-length crossover to evolve
the structure of agent-based models. A maritime anchorage protection
scenario is examined in which the number of waypoints composing the
vessel's route is subjected to evolution. The experimental results demon-
strate the e�ectiveness of our proposed method and suggest promising
research avenues in complex agent-based model optimization.

Keywords: Agent-based simulation, multi-objective optimization, variable-
length genome

1 Introduction

Computational Red Teaming is an agent-based simulation method which aims at
identifying the critical weaknesses of military operational plans [16, 4]. A bottom-
up/agent-based approach is thus adopted to analyse the complex dynamics that
may emerge in combat systems. In CRT experiments, many agent-based model
variants are executed/evaluated where two teams (a defensive \Blue" and bel-
ligerent \Red") are opposed using di�erent tactical plans (as de�ned in the
agent-based model speci�cations). The modelling and analysis of these tactical
plans are automated and are conducted using evolutionary algorithms. The ob-
jectives of the evolutionary algorithms are, for instance, to generate Red tactical
plans to best defeat Blue.



Through the analysis of optimized agent-based simulation models, one may
identify Red tactical plans which may pose serious threats. Following on from
this, defence analysts may attempt to resolve the operational weaknesses exposed
through CRT. To our knowledge most CRT studies (see Section 2.2 for a brief
survey) have focused on the examination of the agents' behaviour (e.g., aggres-
siveness, cohesiveness, determination, etc.). Such properties were subjected to
evolutionary optimization. In these studies, the set of \evolvable model param-
eters" was �xed and commonly included less than 20 behavioural parameters.

We argue that such studies are limited when considering the optimization
of particular military operations. Indeed, one may be interested in examin-
ing/generating complex courses of actions which cannot be encoded/evolved
using a �xed set of behavioural parameter values. For instance, we may desire
to optimize the agents' operational route where the number of waypoints may
vary. Another example is the optimization of squad composition where both the
number of agents and associated pro�le (e.g. engineer, infantry, sniper, etc) could
be varied.

When considering the traditional �xed-length genome approach, one has to
pre-determine and �x the number of, e.g., waypoints or agents. If this parameter
is set too low, then this would prevent the emergence of optimal operational plans
as the evaluated solutions are not \complex" enough. On the contrary, if such
parameters are set too high, then this unnecessarily increases the complexity
(through augmenting the search space dimensionality) of the search process and
may prevent, as well, the �nding of optimal solutions. Our proposed method
attempts to deal with the optimization of such operational plans where a �xed-
length genome approach may lead to optimality issues.

Novel techniques are required where additional simulation model proper-
ties, including the simulation model structure, are to be dynamically varied (i.e.
added/removed) and evaluated. To extend and potentially enhance the CRT
methodology, we investigate the evolution of agent-based model structures using
variable-length genomes (through introducing a novel evolutionary computation
technique coined the hybrid variable length crossover), in which additional sim-
ulation model properties (e.g., the model or distinct agent's structure) can be
subjected to evolution.

To assist this research, we utilize a modular evolutionary framework coined
CASE (complex adaptive systems evolver). Multi-objective evolutionary compu-
tation techniques are utilized to optimize the agent-based models.

Background material on agent-based models for military applications and
CRT are �rst presented. A survey on variable length genome techniques for evo-
lutionary algorithms follows. The CASE framework is then detailed. Experiments,
using CASE and the agent-based platform MANA, are then conducted to evalu-
ate the application of variable length genomes for the evolution/optimization of
agent-based model structures. The experiments consider a simpli�ed CRT mar-
itime anchorage protection scenario. Finally, we conclude the paper and outline
future research directions which may merit investigations to develop this work.
This paper is a direct follow-up of the preliminary study reported in [8] where



agent-based model structures were evolved using a �xed -length genome repre-
sentation.

2 Background

We �rst briey describe some agent-based simulations that have been applied to
military operations research. Then the Computational Red Teaming concept is
presented.

2.1 Military Agent-Based Simulations

Agent Based Simulations have recently attracted signi�cant attention to model
the intricate and non-linear dynamics of warfare. Combat is thus here con-
ceptually regarded as a complex adaptive system which components (i.e. the
battle�eld, soldiers, vehicles, etc.) are modelled using a bottom-up agent-based
approach. The agents' computational methods may include stochastic processes
resulting in a stochastic behaviour at the system level. Examples of ABS applied
to Military Decision Making include: ISAAC/EINSTein [16], CROCADILE [12],
WISDOM [26], MANA [18] and Pythagoras [1]. A review of ABS applied to
various military applications is provided by Cioppa et al [6].

These systems have been speci�cally devised to simulate defence related sce-
narios in which the properties of the environment and the Red/Blue teams may
be speci�ed [20]. The level of representation/abstraction (e.g., number of spatial
dimensions, range of agents' properties, type of vehicles, etc.) varies among these
ABS systems. Although the level of accuracy in representing real world environ-
ments/individuals may not faithfully reect reality, it is argued that such ABS
models account for the key features (e.g., local interactions between agents) nec-
essary to exhibit complex emerging phenomena/behaviour at the system level
which are typical of real battle�elds [16]. Thus, these \distillation" models can
expose the emerging phenomena of interest without the burden of modelling and
simulating unnecessary complex features (e.g., gravity, wind, detailed physics of
distinct simulated agents/weapons/vehicles, etc.). Agent-based modelling is one
of the key technologies supporting Computational Red Teaming which is de-
scribed in the next section.

2.2 Computational Red Teaming

Computational Red Teaming (CRT) combines agent-based simulations and evo-
lutionary computation (EC) techniques as follows. CRT exploits EC techniques
to evolve simulation models to exhibit pre-speci�ed/desirable output behaviors
(i.e., when Red defeats Blue). To date, most CRT studies have only addressed
the evolution of a �xed set of agent parameters (e.g., troop clustering/cohesion,
response to injured teammates, aggressiveness, stealthiness, etc.), de�ning the
behaviour or personality of the Red team. These parameters are evolved to
optimize the Red agents collective e�ciency (e.g., maximize damage to target



facilities) against the Blue team. Example studies include: [16, 26, 4, 19]. These
studies demonstrated the promising potential of CRT systems to automatically
identify the Blue team's weaknesses.

Further CRT investigations adopted a co-evolutionary approach where the
set of behavioural parameter values of both teams are coevolved. This arms race
approach complements the previous one by automating the analysis required
to improve the Blue team's defence operational plan against the adaptive Red
team. Examples of co-evolutionary CRT studies can be found in [17, 22, 5]. This
approach enables one to generate operational tactics that are more e�cient and
robust against a larger range of scenarios. Nevertheless a trade-o� exists in terms
of robustness over e�ciency according to the range of confronted Red tactics
(i.e., the evolved tactics only yield average performances against multiple Red
tactics).

The extension of one-sided to co-evolutionary CRT signi�cantly increases
the search spaces allowing for the exploration of more diverse simulation mod-
els. As the diversity of evaluated simulation models is increased, a wider range of
potentially critical scenarios may be identi�ed. Exploring more diverse scenar-
ios enables one to devise more robust and e�ective defensive strategies against
potential threats and adaptive adversaries. Nevertheless, the expansion of this
search space is associated with a dramatic increase in computational cost. Also,
due to this high e�ect on computational complexity, no Pareto-based multi-
objective co-evolutionary approaches to CRT have been proposed to date. In
this paper, we focus on the multi-objective structural evolution of agent-based
models where only Red is evolved against Blue.

Finally, none of the above studies has attempted to evolve agent-based model
structures. We here propose a novel method to dynamically vary the range of
evolvable parameters through varying the candidate solutions' genome string
length. In the next section, we survey some related evolutionary computation
approaches which focused on variable-length genome techniques.

3 Survey of Variable Length Genome Techniques

Several studies have investigated variable-length genomes in the context of ge-
netic algorithms. None of these schemes has been applied, to the authors' knowl-
edge, to vary the structure of genomes which encode for agent-based model spec-
i�cations.

3.1 Messy Genetic Algorithm

An early attempt addressing variable-length genomes was proposed by the Messy
Genetic Algorithm (m-GA) [13]. In m-GA, the classical one-point crossover op-
erator is replaced by the \cut" and \splice" operators. The cut operator is �rst
applied upon each parent genome string where a locus point is selected at ran-
dom on each genome, cutting each string into two strings. The splice operator
is employed to rejoin the resulting four strings in a random order. The cut and



splice operators were applied upon bit strings and is thus not directly applicable
to the real-valued genomes used in Computational Red Teaming experiments.

This seminal work inspired the crossover techniques for variable-length genomes
presented in the next sections.

3.2 The Speciation Adaptation Genetic Algorithm

The Speciation Adaptation Genetic Algorithm (SAGA) was introduced by Har-
vey [14]. In m-GA, strings were recombined regardless of the strings' contents. In
contrast, SAGA was proposed to maximize the similarity between strings that
are recombined to diminish undesirable disruptive e�ects that may occur when
using a \blind" cut and splice method.

The similarity of the two parent genome strings is computed using the Longest
Common Subsequence (LCSS) metric. The LCSS is the longest uninterrupted
matching substring of gene values (alleles) found between two strings of arbitrary
length. In SAGA, a random crossover point is chosen on the �rst parent string,
then the algorithm tests every possible crossover point on the second string. For
each potential crossover point, the algorithm calculates the LCSS sum on both
the left and right regions of the genomes. The second parent string is cut at
the crossover point with the highest LCSS score. If multiple crossover points are
eligible, then one is selected at random.

3.3 Virtual Virus

Similarly to SAGA, the Virtual Virus (VIV) crossover [2] is based on the simi-
larity between parent genome strings. In contrast with SAGA, VIV can only be
applied upon similar sequences.

In VIV, the probability of crossover is governed by the level of similarity
between the parent genome strings. This level of similarity is determined by the
number of matched alleles between parent strings within a pre-speci�ed �xed
size window. As in SAGA, a random crossover locus point is selected on one of
the parent strings. VIV then compares the sequence of alleles (limited by the
window size) from this selected point with all possible substrings of the same
size on the other parent string. The substring position that includes the greatest
number of matched alleles is then recorded. The strings are then cut within the
matched substring given a similarity-based probability.

3.4 Synapsing Variable-Length Crossover

In both SAGA and VIV crossover operators, the crossover locus point was �rst
selected in one of the parent strings, then a relatively similar substring was
searched for in the second parent string. Thus the �rst selected string was utilized
as a template. In contrast, the Synapsing Variable-Length Crossover (SVLC) [15]
employs both parent strings as a template. The motivation is to preserve any
common sequences between the parent strings, where only di�erences are to be
exchanged during recombination.



In SVLC, the level of similarity between parent strings is computed using
a variant version of the LCSS (used in SAGA). A major di�erence with the
previous crossover techniques is that SVLC also includes mutation operators
(which are individually applied on children genome strings) which may a�ect
the genome length. These length varying mutation operators were implemented
in addition to the traditional point mutation operators. Four length varying mu-
tation operators are distinguished as follows: 1) A random sequence of alleles
is inserted at a random locus point on the genome string, 2) a genome sub-
string is selected/removed at random, 3) a substring is selected at random and
duplicated at a random locus point and 4) a substring is selected at random
and duplicated at the beginning or end of the genome string. Various proba-
bilities were pre-de�ned for each mutation operator (most disruptive operators,
such as the substring insertion, were assigned a signi�cantly lower probability of
occurring).

3.5 NeuroEvolution of Augmenting Topologies

In NeuroEvolution of Augmenting Topologies (NEAT) [23], the structural evo-
lution of arti�cial neural networks was investigated. NEAT included an evolu-
tionary scheme which accounted for a variable-length genome representation.
The key idea of NEAT is evolutionary complexi�cation where (initially simple)
structures/genome strings would incrementally complexify (as determined by
the number of network nodes/interactions) through evolution.

A bene�t of NEAT is to minimize the dimensionality (number of genes)
through complexi�cation. Indeed, the evolutionary process would evaluate genome
strings of higher dimensionality only if these structures yield higher �tness values.
This enables NEAT to search through a minimal number of genes, signi�cantly
reducing the number of generations necessary to �nd competitive solutions, and
ensuring that genome strings are not more complex than necessary.

A historical marking technique was implemented to identify the similarities
between genome strings. This marking was also used to perform the recombi-
nations. The mutation operators included a gene duplication method (a similar
length varying mutation operator was implemented in SAGA). In contrast with
the bitstring representation of genomes in the previous approaches, NEAT re-
lies on a real-valued genome representation. Alterations of the gene values were
conducted using the mutation operators and not through recombinations.

3.6 Summary

This section summarises the above techniques and attempts to identify the most
promising computational techniques. The latter will be then considered and
evaluated in our study on the evolution of agent-based models using variables
length genomes.

m-GA uses a simple cut and splice implementation which ignored any similar-
ities between parent genome strings. SAGA and VIV accounted for similarities
between the parent genome strings, however, recombinations were heavily based



on the �rst selected parent genome string (i.e. the template) where no appropri-
ate crossover points could be found in the second parent string. This may result
in disruptive outcomes (i.e. loss of information). SVLC resolved these issues
through considering both parent genome strings as templates. Moreover, SVLC
introduced length-varying mutation operators. NEAT is, to some extent, simi-
lar to SVLC but took an evolutionary complexi�cation approach where genome
strings progressively increase in complexity/length through evolution.

When evolving agent-based models, the model speci�cations are encoded as
real-valued genome strings (where each value encodes for a speci�c agent be-
havioural parameter). This conicts with the bitstring encoding representation
of m-GA/VIV/SAGA and SVLC. NEAT used a real-valued genome representa-
tion but the crossover operator does not directly modify the gene values through
recombinations. In real-valued �xed-length genome evolutionary algorithms, the
Simulated Binary Crossover [7] has long been established as an e�cient method
to recombine such genome strings encoded in continuous space. SBX will be
considered into the novel hybrid method proposed in Section 5.

Moreover, the varying length mutation operators proposed in SVLC and
NEAT presented promising outcomes to dynamically evolve the structure of
genome strings. Such operators will be examined in our hybrid crossover method.
Finally the evolutionary complexi�cation approach of NEAT may yield potential
bene�ts as it would avoid the exploration/evaluation of unnecessarily complex
genome strings (i.e. reducing computational e�orts). Nevertheless evolutionary
complexi�cation is not explored here but will be investigated in future work.

4 The Evolutionary Framework

A detailed description of the evolutionary framework, coined CASE (complex
adaptive systems evolver), is provided in this section. This framework was also
described and evaluated (against additional system features such as optimization
under constraint, multi-objective optimization and cloud computing) in [11, 10,
9].

The CASE framework was inspired by the Automated Red Teaming frame-
work [4] which was developed by the DSO National Laboratories of Singapore.
In contrast with DSO's system (which was dedicated to examining military sim-
ulation models), we aim at providing a relatively more exible and platform-
independent system capable of evolving simulation models for a wider variety of
application domains.

CASE is composed of three main components which are distinguished as
follows:

1. The model generator : This component takes as inputs a base simulation
model speci�ed in the eXtended Markup Language and a set of model spec-
i�cation text �les. According to these inputs, new XML simulation models
are generated and sent to the simulation engine for evaluation. Thus, as
currently devised, only simulation models speci�ed in XML are supported.
Moreover, the model generator may consider constraints over the evolvable



parameters (this feature is optional). These constraints are speci�ed in a text
�le by the user. These constraints (due for instance to interactions between
evolvable simulation parameters) aim at increasing the plausibility of gener-
ated simulation models (e.g., through introducing cost trade-o� for speci�c
parameter values).

2. The simulation engine: The set of XML simulation models is received and
executed by the stochastic simulation engine. Each simulation model is repli-
cated a number of times to account for statistical uctuations. A set of result
�les detailing the outcomes of the simulations (in the form of numerical val-
ues for instance) are generated. These measurements are used to evaluate
the generated models, i.e., these �gures are the �tness (or \cost") values
utilized by the evolutionary algorithm (EA) to direct the search.

3. The evolutionary algorithm: The set of simulation results and associated
model speci�cation �les are received by the evolutionary algorithm, which
in turns, processes the results and produce a new \generation" of model
speci�cation �les. The generation of these new model speci�cations is driven
by the user-speci�ed (multi)objectives (e.g., maximize/minimize some quan-
titative values capturing the target system behaviour). The algorithm itera-
tively generates models which would incrementally, through the evolutionary
search, best exhibit the desired outcome behaviour. The model speci�cation
�les are sent back to the model generator; this completes the search iteration.
This component is the key module responsible for the automated analysis
and modelling of simulations.

The above components are depicted in Figure 1 which presents the owchart
of an example experiment. Further details about the input �les settings can
be found in [9]. Finally, a demonstration video of CASE can be visualized at
http://www.youtube.com/watch?v=d2Day_MEruc.

5 Hybrid Variable Length Crossover

As discussed earlier (Section 3.6), we incorporate a number of existing evolution-
ary computation techniques to implement our crossover technique for variable-
length genomes. We propose the hybrid variable length crossover (HVLC), which
is a combination of both SBX and one point crossover (where similarities between
parent genome strings are considered).

In HVLC, two distinct regions within a genome string (Fig. 2) are distin-
guished: A static sequence of genes (which is located at the beginning of the
genome string) and dynamic sequence of genes which may vary in length.

The SBX crossover [7] was designed to recombine �xed-length genomes, thus
it cannot be directly used for variable-length genomes. SBX is here utilized to
recombine common substrings (which includes the static genome string region
and any other sequences, with equal sizes, of \matched" genes encoding for
identical model properties).

During the crossover operation, a crossover point is randomly selected (at a
valid locus point, so that no structures are broken, see Fig. 3) upon the common



Fig. 1. Flowchart of an example experiment. The dashed documents distinguish the
user inputs. Using the base XML model, a population of randomly generated model
variants is �rst created. The initial parameter values are randomly generated using a
uniform distribution and are bounded by the evolvable parameters setting �le provided
by the user. Both the simulation engine and evolutionary computation module call ex-
ternal libraries and/or binaries. The XML model generator employs the Libxml library
(http://libxml.rubyforge.org) to parse and generate XML models. The constraint
setting �le is utilized by the XML model generator to apply user-de�ned constraints
over the evolvable parameters.



Fig. 2. Variable Genome String Representation. This genome string illustrates the en-
coding of simulation models utilized in the experiments reported in Section 6. In this
example the waypoint structures (composed of a pair of genes encoding for spatial co-
ordinates) are dynamically varied (removed/added) during the evolutionary search, re-
ducing/expanding the length of the genome string. Double-linked genes indicate struc-
tures that cannot be broken through recombination.

genetic sequences of both parent genome strings. The genome strings are then
cut and spliced as in m-GA. Then the SBX operator is applied over the common
sequences of genes.

Fig. 3. Example HVLC crossover operation. Valid crossover points are distinguished
to disable the recombination of genetic sequences encoding structures. In this example,
waypoints are such \unbreakable" structures composed of two distinct genes encoding
for x; y spatial coordinates.

To vary the genome length, we propose a length varying mutation operator
in which two types of mutation can be distinguished (Fig. 4):

1. Deletion: A gene (or structure composed of multiple genes) is removed from
the end of the genome string (reducing the genome string length).



2. Duplication: A gene (or structure composed of multiple genes) is selected
and duplicated at the end of the genome string (increasing the genome string
length).

Fig. 4. Example HVLC mutation operations. In this example, the duplication and
deletion mutations are applied upon waypoint structures. As a result, the entire genetic
sequence representing these structures are dynamically duplicated/deleted within the
genome string.

The probability of each of these operators being applied to any children
genome string is 0.01. Finally, the polynomial mutation operator is also applied
to each gene, introducing further variations upon the gene values.

6 Experiments

We report a series of experiments using the CASE framework and the agent-
based simulation platform MANA [18]. A single case study is here examined in
which the agents' structure or more speci�cally the number of waypoints and
associated coordinates determining the agents' routes are subjected to the evo-
lutionary process. Although examining a unique case study considerably limits
the signi�cance of the experimental results (the authors acknowledge that fur-
ther case studies must be examined for a better appreciation of the results), we
limit the current investigation to a single case study as this particular scenario
was previously studied in multiple publications [24, 19, 25, 8]. This paper extends
the work that has been conducted in this well-studied model scenario. Future
work will include other case studies to complement our investigation and under-
standing on variable-length genomes for the structural evolution of simulation
models.



6.1 The model

The maritime anchorage protection scenario was originally proposed by a team
of defence analysts and academic researchers [24] and further developed in [19,
25, 8]. In this scenario, a Blue team (composed of 7 vessels) conducts patrols
to protect an anchorage (in which 20 Green commercial vessels are anchored)
against threats. Single Red vessel attempts to break Blues defence tactics and
inict damages to anchored vessels. The aim of the study is to discover Reds
strategies that are able to breach through Blues defensive tactic. Fig. 5 depicts
the scenario which was modelled using the ABS platform MANA.

In [8], a preliminary study on \evolvable simulation" (i.e. where the structure
of the model is evolved) was examined. In this work, a �xed-length genome was
employed, additional genes were introduced to control the number of waypoints
to be \switched on". Thus, the maximum number of waypoints that compose
the Red vessel route had to be pre-speci�ed (this determines the genome string
length). The current study extends this preliminary work through removing such
\control" genes and e�ectively vary dynamically the genome string length.

6.2 Experimental Setting

In CASE, each candidate solution (a distinct simulation model) is represented by
a vector of real values de�ning the di�erent evolvable Red behavioural param-
eters (Table 1). As the number of decision variables increases, the search space
becomes dramatically larger.

The selection scheme (based on the crowding distance and Pareto sorting)
of the Non-dominated Sorting Algorithm II (NSGAII) is employed to assist the
evolutionary search. This algorithm is executed using the following parameters:
population size = 100, number of search iterations = 200, mutation probability
= 0.1, mutation index = 20, crossover rate = 0.9 and crossover index = 20.
Such parameter values for NSGAII are commonly used in the literature to solve
two-objective optimization problems. The population size and number of search
iterations indicate that 20,000 distinct MANA simulation models are generated
and evaluated for each experimental run. Each individual simulation model is
executed/replicated 30 times to account for statistical uctuations (30 replica-
tions would approximately take 10 wallclock seconds to execute using an Intel
Dual Core CPU @ 2.66GHZ).

The e�ciency of the search is measured by the number of Green casual-
ties with respect to the number of Red casualties. In other words, the search
objectives are:

{ To minimize the number of Green (commercial) vessels \alive".
{ To minimize the number of Red casualties.

Considering the current scenario, these objectives are thus conicting. More-
over, the true Pareto front is here unknown. In the next section we report the
experimental results using the above model.



Fig. 5. Schematic overview of the case study . The map covers an area of 100 by 50
nautical miles (1 nm = 1.852km). 7 Blue vessels conduct patrols to protect an anchorage
of 20 Green commercial vessels against a single Red vessel. The Red vessel intends to
break the Blues defence, inict damages to the anchored Green vessels and �nally, to
escape to the Red vessel safety area. Left: The dashed lines depict the patrolling paths
of the di�erent Blue vessels. The Blue patrolling strategy is composed of two layers: an
outer (with respect to the anchorage area, 30 by 10 nm) and inner patrol. The outer
patrol consists of four smaller but faster boats. They provide the �rst layer of defence
whereas the larger and heavily armoured ships inside the anchorage are the second
defensive layer. The Red craft was set up to initiate its attack from the north. The initial
positions of Blue vessels are �xed. In contrast, the Green commercial vessels' initial
positions are randomly generated within the anchorage area at each MANA execution.
Right: Example Red route. Home waypoint (Home WP) is constrained to the distinct
agent's initial area. Similarly, the �nal waypoint is to be located in the opposite area.
Intermediate waypoints occur in the remaining middle area. Note that in the below
experiments, we dynamically evolve the number of intermediate waypoints. Whereas
the coordinates of all waypoints, including the home and �nal ones, are subjected to
evolution.

7 Results

To evaluate the quality of the (multi-objective) solutions through the evolution-
ary search, the hypervolume indicator [27] is utilized. This method is currently
considered as the state of the art technique to evaluate Pareto fronts. This indi-
cator measures the size of the objective space subset dominated by the Pareto
front approximation.

In Fig. 6, the HVLC is compared with the �xed-length genome approach
studied in [8] using NSGAII. Whereas the numerical values resulting from the
evolutionary experiments are shown in Table 2.

In Fig. 6 and Table 2, it can be observed that HVLC consistently outper-
formed its �xed-length genome counterpart. When comparing the best Pareto
set approximations (Fig. 7) resulting from both sets of evolutionary runs, compa-
rable results were achieved. HVLC was nevertheless more consistent throughout
the 10 distinct evolutionary runs (when considering the mean hypervolume in-
dicator value and standard deviation) in achieving competitive results.



(a) Fixed Blue parameters

Parameter Value

Detection range (nm) 24
# hits to be killed 2
Weapon hit prob. 0.8
# patrolling agents 7
Speed (unit) 100
Weapon range (nm) 8
Determination 50_0
Aggressiveness 0_100
Cohesiveness 0

(b) Fixed Red parameters

Parameter Value

Detection range (nm) 8
# hits to be killed 1
Weapon hit prob. 0.8
# agents 5
Speed (unit) 100
Weapon range (nm) 5

(c) Evolvable Red paramaters

Parameter Min Max

Vessel home position(x,y) (0,0) (399,39)
Intermediate waypoint position (x,y) (0,40) (399,159)
Vessel �nal position (x,y) (0,160) (399,199)
Determination 20 100
Aggressiveness -100 100
Cohesiveness -100 100

Table 1. (a): Fixed Blue parameters. Value pairs are speci�ed for the determination
and aggressiveness properties. In this model, Blue changes its behaviour upon detecting
Red, i.e., Blue \targets" Red, with aggressiveness being increased, when the latter is
within Blue's detection range. (b): Fixed Red parameters. The behavioural parameters
are not speci�ed as these parameters are subjected to evolution. (c): Evolvable Red
parameters: As mentioned earlier, the intermediate waypoint structures are dynami-
cally inserted/removed within the agent-based model during the evolutionary search.
The �nal positions of the Red craft is constrained to the opposite region (with respect
to initial area) to simulate escapes from the anchorage following successful attacks.
Behavioural or \psychological" elements are included in the evolvable decision vari-
ables. The aggressiveness determines the reaction of individual vessels upon detecting
an adversary. Cohesiveness inuences the propensity of vessels to maneuver as a group
or not, whereas determination stands for the agent's willingness to follow the de�ned
routes (go to next waypoint). The Red vessels' aggressiveness against the Blue pa-
trolling force are varied from unaggressive (-100) to very aggressive (100). Likewise,
the cohesiveness of the Red crafts are varied from independent (-100) to very cohesive
(100). Finally, a minimum value of 20 is set for determination to prevent inaction from
occurring.

Although the above preliminary results suggest a somewhat promising poten-
tial for the variable-length genome approach, only a single case study was here
considered. As mentioned in the introduction, we do expect that this method
may only bene�t scenarios in which the structural evolution of simulation mod-
els is relevant (i.e. where the evolutionary experiment is not constrained to a set
of evolvable parameters). Our future work will include a broader set of scenario
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Fig. 6. Hypervolume volume dynamics. The lines identify the hypervolume indicator
value averaged over 10 individual evolutionary runs using unique seeds. The error
bars stands for the con�dence interval (with � = 0:05). The negative value of the
hypervolume indicator is utilized for consistency with the cost minimization approach
used in the experiments.

Table 2. Pareto optimality performance

Algo. Best Mean

NSGAII -8.9249 -7.8211 � 0.36
HVLC -8.9995 -8.2854 � 0.25

The bold values identify the best overall Pareto optimal approximation sets (when
considering both the mean and a 95% con�dence interval).

to better evaluate HVLC against existing evolutionary computation techniques
such as the NSGAII.

In the remainder of this section, we discuss a potential explanation for the
dynamics observed in the experiments using the �xed-length genome approach:
A potential drawback of the �xed-length genome representation is the epista-

sis phenomenon. In biology, epistasis refers to non-linear interactions occurring
between genes. It is currently hypothesized that epistasis may emphasize the
\ruggedness" of the �tness landscape [3], leading to an increased level of di�-
culty for the evolutionary search. Note that epistasis may already occur implicitly

between genes (here simulation model parameters) according to their speci�c val-
ues. The speci�cation of control genes explicitly introduce epistatic interactions,
which may harden the search di�culty level.

Indeed, a slight mutation in the value of \control" or epistatic genes, us-
ing the �xed-length genome approach, would result in large phenotype changes,
where many waypoints may be turned o� or on simultaneously. This clearly in-
troduces non-linearities in the evolutionary search process. The level of epistatic



 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

G
re

e
n
 A

liv
e
 (

m
in

im
iz

e
)

Red Killed (minimize)

hHVLC=-8.9995

hNSGAII=-8.9249

hexample=-7.931

HVLC
NSGAII

Example

Fig. 7. Best Pareto set approximations resulting from the 10 distinct evolutionary
runs conducted using NSGAII and HVLC. A third example Pareto front is shown to
illustrate how a di�erence of 1 in the hypervolume indicator value may a�ect the Pareto
front approximation quality.

interactions would moreover increase according to the pre-speci�ed maximum
number of waypoints. This ultimately limits the utilization of the �xed-length
genome representation for such agent-based model optimization applications.

The results suggest that the variable-length genome representation may po-
tentially alleviate this epistatic issue, leading to better Pareto optimality per-
formances. Although these results are promising, further experiments remain
required to investigate the potential bene�t of the variable-length genome rep-
resentation approach. Future work include the evolution of simulation models in
which a large number of model structures is evolved. We hypothesize that the
�xed-length genome approach would rapidly and signi�cantly be outperformed
by HVLC when tackling larger search problems including a relatively high level
of explicit epistatic interaction. Methods which may quantify epistasis (as used
in molecular biology research [21]) would also assist this future research.

Also the evolutionary complexi�cation concept proposed by Stanley and Mi-
ikkulainen [23] will be investigated as it may reduce the number of search gen-
erations (i.e. optimizing the search convergence speed) through avoiding the
evaluation of unnecessary complex simulation models.

8 Conclusions

The Computational Red Teaming methodology and related supporting tech-
nologies were �rst introduced. A survey on variable-genome length techniques
for evolutionary computation was then presented. The evolutionary framework
CASE was briey described and utilized using a novel variable-length compu-



tational technique coined the hybrid variable length crossover. A series of ex-
periments was conducted in which the structure of a simpli�ed military agent-
based model was evolved. HVLC was compared against a �xed-length genome
approach. The experimental results suggested that our variable-length genome
approach is a promising technique which, in overall, achieved better Pareto op-
timality performances than using �xed-length genomes. Nevertheless, this po-
tential bene�t must be further examined in future work where supplementary
evolutionary experiments of di�ering complexity will be conducted.
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