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Abstract. Recently, Stackelberg games have garnered significant atten-
tion given their deployment for real world security. However, a fundamen-
tal challenge of applying game-theoretic techniques to real-world secu-
rity problem is the standard assumption that the adversary is perfectly
rational in responding to security force’s strategy, which can be unreal-
istic for human adversaries. Previous work has presented COBRA as a
leading contender for accounting for the bounded rationality of human
adversaries in security games. This paper presents an advance over this
previous work by providing new algorithms based on two human behav-
ior theories: Prospect Theory (PT) and Quantal Response Equilibrium
(QRE). The paper’s key contributions include: (i) efficient algorithms for
computing optimal strategic solutions using PT and QRE; (ii) most com-
prehensive experiment to date on effectiveness of different models against
human subjects; (iii) new techniques for generating representative payoff
structures for behavioral experiments in generic classes of games. Our
results with human subjects show that our new strategies significantly
outperform COBRA.
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1 Introduction

Game-theoretic models have recently become important tools for analyzing real-
world security resource allocation problems. These models provide a sophisti-
cated approach for generating randomized strategies that mitigate attackers’
ability to find weaknesses using surveillance. The ARMOR system at LAX air-
port [9] and IRIS at the Federal Air Marshals Service [13] are notable real-world
deployments of this approach. One of the key sets of assumptions these systems
make is about how attackers choose attack strategies based on their knowl-
edge of the security policy. Typically, such systems have applied the standard
game-theoretic assumption that attackers are perfectly rational and will strictly
maximize their expected utility. This is a reasonable proxy for the worst case of
a highly intelligent attacker, but it leaves open the possibility that the defender’s
strategy is not robust against attackers using different decision procedures, and
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it fails to exploit known weaknesses in the decision-making of human attack-
ers. Indeed, it is widely accepted that standard game-theoretic assumptions of
perfect rationality are not ideal for predicting the behavior of humans in multi-
agent decision problems [1]. In the multi-agent systems community there is a
growing interest in adopting these models to improve decisions in agents that
interact with humans or to provide better decision support in systems that use
multi-agent systems techniques to provide advice to human decision-makers [2,3].
Our work in this paper focuses on integrating more realistic models of human
behavior into the computational analysis of security problems.

There are several challenges in moving beyond perfect rationality assump-
tions to integrate more realistic models of human decision-making. First, the
literature has introduced a multitude of candidate models, but there is an im-
portant empirical question of which model best represents the salient features of
human behavior in applied security games. Second, integrating any of the pro-
posed models into a decision-support system (even for the purpose of empirically
evaluating the model) requires developing new methods for computing solutions
to security games, since the existing algorithms are based on mathematically
optimal attackers [6,8]. In this context, COBRA (Combined Observability and
Rationality Assumption), developed in most recent work [10] is the leading
contender that accounts for human behavior in security games. Thus, the open
question is whether there are other approaches that allow for fast solution and
yet outperform COBRA in addressing human behaviors.

This paper addresses the challenges and answers the open questions: it de-
velops two new methods for generating defender strategies in security games
based on using two well-known models of human behavior to model the at-
tacker’s decisions. The first is Prospect Theory (PT), which provides a descrip-
tive framework for decision-making under uncertainty that accounts for both
risk preferences and variations in how humans interpret probabilities through
a weighting function [5]. The second model is Quantal Response Equilibrium
(QRE). QRE adapts ideas from the literature on discrete choice problems to a
game-theoretic framework with the basic premise that humans will choose better
actions more frequently, but with some noise in the decision-making process that
leads to stochastic choice probabilities following a logit distribution. We develop
new techniques to compute optimal defender strategies in Stackelberg security
games under the assumption that the attacker will make choices according to
either the PT or QRE model.

To test these new methods we performed experiments with human subjects
using an online game called ‘The Guard and the Treasure’ designed to simulate
a security scenario similar to the ARMOR program for the Los Angeles Inter-
national (LAX) airport. Furthermore, we designed classification techniques to
select payoff structures for experiments such that the models are well separated
from each other and the payoff structures are representative of the game space.
We compare these models against both a perfect rationality baseline (DOBSS)
and COBRA. Our data shows that the new approaches yield statistically sig-
nificantly better strategies against human attackers than previous methods in-
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cluding COBRA in most of the payoff structures, and comparable results in
others.

2 Stackelberg Security Game

We consider a Stackelberg game with a single leader and at least one follower.
The leader commits to a strategy first, taking into account the follower’s re-
sponse to her strategy. The followers decide their actions knowing the leader
strategy. Security games refer to a special class of attacker-defender Stackelberg
games, used in deployed applications mentioned earlier [9,13], where the defender
plays the role of leader and an adversary plays the role of follower. In these non
zero-sum games the attacker’s utility of attacking a target decreases as the de-
fender allocates more resources to protect it (and vice versa for the defender).
The defender (leader) first commits to a mixed strategy, assuming the attacker
(follower) decides on a pure strategy after observing the defender’s strategy.
This models the situation where an attacker conducts surveillance to learn the
defender’s mixed strategy and then launches an attack on a single target. In
this work, we constrain the adversary to select a pure strategy. Given that the
defender has limited resources (e.g., she may need to protect 8 targets with 3
guards), she must design her mixed strategy to optimize against the adversary’s
response to maximize effectiveness.

3 Related Work

Motivated by various applications, there have been many algorithms developed
to compute optimal defender strategies in Stackelberg games[6,8]. One leading
family of algorithms to compute such mixed strategies are DOBSS (Decomposed
Optimal Bayesian Stackelberg Solver) [8] and its successors [6,9], which are used
in the deployed ARMOR and IRIS applications. These algorithms formulate the
problem as a Mixed Integer Linear Program (MILP), and compute an optimal
mixed strategy for the defender assuming that the attacker responds optimally.
However, in many real world domains, agents face human adversaries whose
behavior may not be optimal under perfect rationality. Recent work [10] devel-
oped a new algorithm COBRA, which provided a solution for designing better
defender strategies against human adversaries by accounting for their bounded
rationality on computing the optimal strategy; and anchoring biases caused by
limited observation conditions of the defender’s strategy. COBRA outperforms
DOBSS with statistical significance in experiments using human subjects, and
represents the best available benchmark for how to determine defender strategies
in security games against human adversaries.

This paper introduces alternative methods for computing strategies to play
against human adversaries, based on two well-known theories from the behavioral
literature, Prospect Theory (PT) and Quantal Response Equilibrium (QRE).

Prospect Theory is the subject of a Nobel Prize winning work. It provides
a descriptive model of how humans make decisions among alternatives with risk.
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Fig. 1. PT functions from Hastie et al.

The theory describes such a decision-making process as a process of maximizing
the so-called ‘prospect’. Prospect is defined as

∑
i π(pi) · V (Ci), where pi is the

probability of receiving Ci as the outcome. The weighting function π(·) describes
how probability pi is perceived by individuals.The key concepts of a weighting
function are that individuals overestimate low probability and underestimate
high probability [4,5], shown in Fig. 1(a). Also, π(·) is not consistent with the
definition of probability in the sense that π(p) + π(1 − p) ≤ 1 in general. The
value function V (Ci) reflects the value of the outcome Ci. PT indicates that
individuals are risk averse regarding gain but risk seeking regarding loss, imply-
ing an S-shaped value function [4,5], as shown in Fig. 1(b). A key component of
Prospect Theory is the reference point. Outcomes lower than the reference point
are considered as loss and higher as gain.

Quantal Response Equilibrium is an important model in behavior theory
[7] and is the baseline model of many studies [12,15]. It suggests that instead
of strictly maximizing utility, individuals respond stochastically in games: the
chance of selecting a non-optimal strategy increases as the cost of such an error
decreases. Recent work [15] shows Quantal Level-k3 [12] to be best suited for
predicting human behavior in simultaneous move games. However, the applica-
bility of QRE and PT to security games and their comparison with COBRA
remain open questions.

4 Defender Mixed-Strategy Computation

We now describe efficient computation of the optimal defender mixed strategy
assuming a human adversary’s response is based on either PT or QRE.

4.1 Methods for Computing PT

Best Response to Prospect Theory (BRPT) is a mixed integer programming
formulation for the optimal leader strategy against players whose response fol-

3 We applied QRE instead of Quantal Level-k because in Stackelberg security games
the attacker observes the defender’s strategy, so level-k reasoning is not applicable.
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lows a PT model. Only the adversary is modeled using PT in this case, since the
defender’s actions are recommended by the decision aid. BRPT maximizes d,
the defender’s expected utility. The defender has a limited number of resources,
Υ , to protect the set of targets, ti ∈ T for i=1..n. The defender selects a mixed
strategy x that describes the probability that each target will be protected by
a resource; we denote these individual probabilities by xi. The attacker chooses
a target to attack after observing x. We denote the attacker’s choice using the
vector of binary variables qi, where qi=1 if ti is attacked and 0 otherwise.

max
x,q,a,d,z

d

s.t.

n∑
i=1

5∑
k=1

xik ≤ Υ (1)

5∑
k=1

(xik + x̄ik) = 1,∀i (2)

0 ≤ xik, x̄ik ≤ ck − ck−1,∀i, k = 1..5 (3)

zik · (ck − ck−1) ≤ xik,∀i, k = 1..4 (4)

z̄ik · (ck − ck−1) ≤ x̄ik,∀i, k = 1..4 (5)

xi(k+1) ≤ zik,∀i, k = 1..4 (6)

x̄i(k+1) ≤ z̄ik,∀i, k = 1..4 (7)

zik, z̄ik ∈ {0, 1},∀i, k = 1..4 (8)

x′i =

5∑
k=1

bkxik, x̄
′
i =

5∑
k=1

bkx̄ik,∀i (9)

n∑
i=1

qi = 1, qi ∈ {0, 1},∀i (10)

0 ≤ a− (x′i(P
a
i )′ + x̄′i(R

a
i )′) ≤M(1− qi),∀i (11)

M(1− qi) +

5∑
k=1

(xikR
d
i + x̄ikP

d
i ) ≥ d,∀i (12)

The defender optimization problem is given in Equations (1)-(12). In security
games, the payoffs depend only on whether or not the attack was successful, so
given a target ti, the defender (resp., adversary) receives reward Rdi (penalty P ai )
if the adversary attacks the target and it is covered by the defender; otherwise,
the defender (adversary) receives penalty P di (reward Rai ).

PT comes into the algorithm by adjusting the weighting and value func-
tions as described above. The benefit (prospect) perceived by the adversary
for attacking target ti if the defender plays the mixed strategy x is given by
π(xi)V (P ai ) + π(1 − xi)V (Rai ). Let (P ai )′ = V (P ai ) and (Rai )′ = V (Rai ) denote
the adversary’s value of penalty P ai and reward Rai . We use a piecewise linear
function π̃(·) to approximate the non-linear weighting function π(·) and empiri-
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cally set 5 segments4 for π̃(·). This function is defined by {ck|c0 = 0, c5 = 1, ck <
ck+1, k = 0, ..., 5} that represent the endpoints of the linear segments and {bk|k =
1, . . . , 5} that represent the slope of each linear segment. Thus, each of the de-

fender’s xi=
∑5
k=1 xik; the follower will perceive this xi as x′i=π(xi)=

∑5
k=1 bk·xik

as discussed below.

In order to represent the piecewise linear function, we break xi (and 1− xi)
into five segments, denoted by variable xik (and x̄ik). We can enforce that such
breakup of xi (and 1 − xi) is correct if segment xik (and x̄ik) is positive only
if the previous segment is used completely, for which we need the auxiliary
integer variable zik (and z̄ik). This is enforced by Equations (3)∼(8). Equation
(9) defines x′i and x̄′i as the value of the piecewise linear approximation of xi and
1− xi: x′i=π̃(xi) and x̄′i=π̃(1− xi). Equations (10) and (11) define the optimal
adversary’s pure strategy. In particular, Equation (11) enforces that qi=1 for the
action that achieves maximal prospect for the adversary. Equation (12) enforces
that d is the defender’s expected utility on the target that is attacked by the
adversary (qi=1).

Robust-PT (RPT) modifies the base BRPT method to account for some
uncertainty about the adversaries choice, caused (for example) by imprecise com-
putations [11]. Similar to COBRA, RPT assumes that the adversary may choose
any strategy within ε of the best choice, defined here by the prospect of each
action. It optimizes the worst-case outcome for the defender among the set of
strategies that have prospect for the attacker within ε of the optimal prospect.
We modify the BRPT optimization problem as follows: the first 11 Equations are
equivalent to those in BRPT; in Equation (13), the binary variable hi indicates
all the ε−optimal strategies for the adversary; Equation (16) enforces that d is
the minimum expected utility of the defender against the ε−optimal strategies
of the adversary.

max
x,h,q,a,d,z

d

s.t. Equations (1)∼(11)
n∑
i=1

hi ≥ 1 (13)

hi ∈ {0, 1}, qi ≤ hi,∀i (14)

ε(1− hi) ≤ a− (x′i(P
a
i )′ + x̄′i(R

a
i )′) ≤M(1− hi),∀i (15)

M(1− hi) +

5∑
k=1

(xikR
d
i + x̄ikP

d
i ) ≥ d, ∀i (16)

Runtime: We choose AMPL (http://www.ampl.com/) to solve the MILP
with CPLEX as the solver. Both BRPT and RPT take less than 1 second for up
to 10 targets.

4 This piecewise linear representation of π(·) can achieve a small approximation error:
supz∈[0,1] ‖π(z)− π̃(z)‖ ≤ 0.03.
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4.2 Methods for Computing QRE

In applying the QRE model to our domain, we only add noise to the response
function for the adversary, so the defender computes an optimal strategy assum-
ing the attacker response with a noisy best-response. The parameter λ repre-
sents the amount of noise in the attacker’s response. Given λ and the defender’s
mixed-strategy x, the adversaries’ quantal response qi (i.e. probability of i) can
be written as

qi =
eλU

a
i (x)∑n

j=1 e
λUa

j (x)
(17)

where, Uai (x) = xiP
a
i +(1−xi)Rai is the adversary’s expected utility for attacking

ti and x is the defender’s strategy.

qi =
eλR

a
i e−λ(R

a
i−Pa

i )xi∑n
j=1 e

λRa
j e−λ(R

a
j−Pa

j )xj
(18)

The goal is to maximize the defender’s expected utility given qi, i.e.
∑n
i=1 qi(xiR

d
i+

(1− xi)P di ). Combined with Equation (18), the problem of finding the optimal
mixed strategy for the defender can be formulated as

max
x

∑n
i=1 e

λRa
i e−λ(R

a
i−Pa

i )xi((Rdi − P di )xi + P di )∑n
j=1 e

λRa
j e−λ(R

a
j−Pa

j )xj
(19)

s.t.

n∑
i=1

xi ≤ Υ

0 ≤ xi ≤ 1, ∀i, j

Given that the objective function in Equation (19) is non-linear and non-
convex in its most general form, finding the global optimum is extremely dif-
ficult. Therefore, we focus on methods to find local optima. To compute an
approximately optimal QRE strategy efficiently, we develop the Best Response
to Quantal Response (BRQR) heuristic described in Algorithm 1. We first take
the negative of Equation (19), converting the maximization problem to a mini-
mization problem. In each iteration, we find the local minimum5 using a gradient
descent technique from the given starting point. If there are multiple local min-
ima, by randomly setting the starting point in each iteration, the algorithm will
reach different local minima with a non-zero probability. By increasing the iter-
ation number, IterN , the probability of reaching the global minimum increases.

Parameter Estimation: The parameter λ in the QRE model represents
the amount of noise in the best-response function. One extreme case is λ=0,
when play becomes uniformly random. The other extreme case is λ=∞, when
the quantal response is identical to the best response. λ is sensitive to game
payoff structure, so tuning λ is a crucial step in applying the QRE model. We
employed Maximum Likelihood Estimation (MLE) to fit λ using data from [10].

5 We use fmincon function in Matlab to find the local minimum.
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Algorithm 1 BRQR

1: optg ← −∞; . Initialize the global optimum
2: for i← 1, ..., IterN do
3: x0 ← randomly generate a feasible starting point
4: (optl, x

∗)← FindLocalMinimum(x0)
5: if optg > optl then
6: optg ← optl, xopt ← x∗

7: end if
8: end for
9: return optg, xopt

Given the defender’s mixed strategy x and N samples of the players’ choices,
the logit likelihood of λ is

logL(λ | x) =

N∑
j=1

log qτ(j)(λ)

where τ(j) denotes the target attacked by the player in sample j. Let Ni be the
number of subjects attacking target i. Then, we have logL(λ | x)=

∑n
i=1Ni log qi(λ).

Combining with Equation (17),

logL(λ | x) = λ

n∑
i=1

NiU
a
i (x)−N · log(

n∑
i=1

eλU
a
i (x))

logL(λ | x) is a concave function6. Therefore, logL(λ | x) only has one local
maximum. The MLE of λ is 0.76 for the data used from [10].

Runtime: We implement BRQR in Matlab. With 10 targets and IterN=300,
the runtime of BRQR is less than 1 minute. In comparison, with only 4 tar-
gets, LINGO12 (http://www.lindo.com/) cannot compute the global optimum
of Equation (19) within one hour.

5 Payoff Structure Classification

One important property of payoff structures we want to examine is their influ-
ence on model performance. We certainly cannot test over all possible payoff
structures, so the challenges are: (i) the payoff structures we select should be
representative of the payoff structure space; (ii) the strategies generated from
different algorithms should be sufficiently separated. As we will discuss later, the
payoff structures used in [10] do not address these challenges.

6 The second order derivative of logL(λ | x) is

d2 logL

dλ2
=

∑
i<j −(Uai (x)− Uaj (x))2eλ(U

a
i (x)+Ua

j (x))

(
∑
i e
λUa

i (x))2
< 0
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We address the first criterion by randomly sampling 1000 payoff structures,
each with 8 targets. Rai and Rdi are integers drawn from Z+[1, 10]; P ai and P di are
integers drawn from Z−[−10,−1]. This scale is similar to the payoff structures
used in [10]. We then clustered the 1000 payoff structures into four clusters
using k-means clustering based on eight features, which are defined in Table 1.
Intuitively, features 1 and 2 describe how ‘good’ the game is for the adversary,

Table 1. A-priori defined features

Feature 1 Feature 2 Feature 3 Feature 4

mean(|R
a
i

Pa
i
|) std(|R

a
i

Pa
i
|) mean(|R

d
i

Pd
i

|) std(|R
d
i

Pd
i

|)
Feature 5 Feature 6 Feature 7 Feature 8

mean(|R
a
i

Pd
i

|) std(|R
a
i

Pd
i

|) mean(|R
d
i

Pa
i
|) std(|R

d
i

Pa
i
|)

features 3 and 4 describe how ‘good’ the game is for the defender, and features
5∼8 reflect the level of ‘conflict’ between the two players in the sense that they
measure the ratio of one player’s gain over the other player’s loss. In Fig. 2,
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Fig. 2. Payoff Structure Clusters (color)

all 1000 payoff structures are projected onto the first two Principal Component
Analysis (PCA) dimensions for visualization. We select one payoff structure from
each cluster, following the criteria below to obtain sufficiently different strategies
for the different candidate algorithms:

– We define the distance between two mixed strategies, xk and xl, using the
Kullback-Leibler divergence:

D(xk, xl) = DKL(xk|xl) +DKL(xl|xk)
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where, DKL(xk|xl) =
∑n
i=1 x

k
i log(xki /x

l
i).

– For each payoff structure, D(xk, xl) is measured for every pair of strategies.
With five strategies (discussed later), we have 10 such measurements.

– We remove payoff structures that have a mean or minimum of these 10
quantities below a given threshold. This gives us a subset of about 250 payoff
structures in each cluster. We then select one payoff structure closest to the
cluster center from the subset of each cluster .

The four payoff structures (payoffs 1-4) we selected from each cluster are marked
in Fig. 2, as are the three (payoffs 5-7) used in [10]. Fig. 2 shows that payoffs
5-7 all belong to cluster 3. Furthermore, Table 2 reports the strategy distances

Table 2. Strategy Distance

Payoff Structure 1 2 3 4 5 6 7

mean DKL 0.83 1.19 0.64 0.88 0.32 0.15 0.12

min DKL 0.26 0.25 0.21 0.25 0.07 0.02 0.04

in all seven payoff structures. The strategies are not as well separated in payoffs
5-7 as they are in payoffs 1-4. As we discuss in Section. 6.2, the performance of
different strategies is quite similar in payoffs 5-7.

6 Experiments

We conducted empirical tests with human subjects playing an online game to
evaluate the performances of leader strategies generated by five candidate algo-
rithms. We based our model on the LAX airport, which has eight terminals that
can be targeted in an attack [9]. Subjects play the role of followers and are able
to observe the leader’s mixed strategy (i.e., randomized allocation of security
resources).

6.1 Experimental Setup

Fig. 3 shows the interface of the web-based game we developed to present subject
with choice problems. Players were introduced to the game through a series of
explanatory screens describing how the game is played. In each game instance
a subject was asked to choose one of the eight gates to open (attack). They
knew that guards were protecting three of the eight gates, but not which ones.
Subjects were rewarded based on the reward/penalty shown for each gate and the
probability that a guard was behind the gate (i.e., the exact randomized strategy
of the defender). To motivate the subjects they would earn or lose money based
on whether or not they succeed in attacking a gate; if the subject opened a gate
not protected by the guards, they won; otherwise, they lost. Subjects start with
an endowment of $8 and each point won or lost in a game instance was worth
$0.1. On average, subjects earned about $14.1 in cash.
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Fig. 3. Game Interface

We tested the seven different payoff structures from Fig. 2 (four new, three
from [10]). The seven payoff structures are displayed in Table 4. For each payoff
structure we tested the mixed strategies generated by five algorithms: BRPT,
RPT, BRQR, COBRA and DOBSS, which are reported in Table 5 and Table 6.
There were a total of 35 payoff structure/strategy combinations and each subject
played all 35 combinations. In order to mitigate the order effect on subject
responses, a total of 35 different orderings of the 35 combinations were generated
using Latin Square design. Every ordering contained each of the 35 combinations
exactly once, and each combination appeared exactly once in each of the 35
positions across all 35 orderings. The order played by each subject was drawn
uniformly randomly from the 35 possible orderings. To further mitigate learning,
no feedback on success or failure was given to the subjects until the end of the
experiment. A total of 40 human subjects played the game.

We could explore only a limited number of parameters for each algorithm,
which were selected following the best available information in the literature.
The parameter settings for each algorithm are reported in Table 3. DOBSS has

Table 3. Model Parameter

Payoff Structure 1 2 3 4 5 6 7

RPT-ε 2.4 3.0 2.1 2.75 1.9 1.5 1.5

COBRA-α 0.15 0.15 0.15 0.15 0.37 0 0.25

COBRA-ε 2.5 2.9 2.0 2.75 2.5 2.5 2.5

no parameters. The values of PT parameters are typical values reported in the
literature [4]. We set ε in RPT following two rules: (i) No more than half of
targets are in the ε−optimal set; (ii) ε ≤ 0.3Ramax, where Ramax is the maximum
potential reward for the adversary. The size of the ε−optimal set increases as
the value of ε increases. When ε is sufficiently large, the defender’s strategy
becomes maximin, since she believes that the adversary may attack any target.
The second rule limits the imprecision in the attacker’s choice. We empirically
set the limit to 0.3Ramax. For BRQR, we set λ using MLE with data reported
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in [10] (see Section 4.2). For payoffs 1∼4, we set the parameters for COBRA
following the advices given by [10] as close as possible. In particular, the values
we set for α meet the entropy heuristic discussed in that work. For payoffs 5∼7,
we use the same parameter settings as in their work.

6.2 Experiment Result

Quality Comparison: We used the average expected defender’s utility to eval-
uate the performances of the strategies. Let Udi (x) = xiR

d
i + (1− xi)P di be the

defender’s expected utility for target ti if she plays mixed strategy x and the
subject selects target ti; Ni be the number of subjects that chose target ti. Then,
the average expected defender’s utility can is calculated as

Ūdexp(x) =
1

N

n∑
i=1

NiU
d
i (x)

Fig. 4 displays Ūdexp(x) for the different strategies in each payoff structure. The
performance of the strategies is closer in payoffs 5∼7 than in payoffs 1∼4. The
main reason is that strategies are not very different in payoffs 5∼7 (see Ta-
ble 2). We evaluate the statistical significance of our results using the bootstrap-t
method [14]. The comparison is summarized below:

– BRQR outperforms COBRA in all seven payoff structures. The result is
statistically significant in three cases (p<0.005) and borderline (p=0.05)
in payoff 3 (p<0.06). BRQR also outperforms DOBSS in all cases, with
statistical significance in five of them (p<0.02).

– RPT outperforms COBRA except in payoff 3. The difference is statistically
significant in payoff 4 (p<0.005). In payoff 3, COBRA outperforms RPT
(p>0.07). Meanwhile, RPT outperforms DOBSS in five payoff structures,
with statistical significance in four of them (p<0.05). In the other two cases,
DOBSS has better performance (p>0.08).

– BRQR outperforms RPT in three payoff structures with statistical signifi-
cance (p<0.005). They have very similar performance in the other four cases.

– BRPT is outperformed by BRQR in all cases with statistical significance
(p<0.03). It is also outperformed by RPT in all cases, with statistical signif-
icance in five of them (p<0.02) and one borderline (p<0.06). BRPT’s failure
to perform better (and even worse than COBRA) is a surprising outcome.

Overall, BRQR performs best, RPT outperforms COBRA in six of the seven
cases, and BRPT and DOBSS perform the worst.

Key Observations: BRPT and DOBSS are not robust against an adversary
that deviates from the optimal strategy. BRQR, RPT and COBRA all try to
be robust against such deviations. BRQR considers some (possibly very small)
probability of adversary attacking any target. In contrast, COBRA and RPT
separate the targets into two groups, the ε-optimal set and the non-ε-optimal
set, using a hard threshold. They then try to maximize the worst case for the
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(b) Payoffs from Pita et al.

Fig. 4. Average Expected Utility of Defender

defender assuming the response will be in the ε-optimal set, but assign less
resources to other targets. When the non-ε-optimal targets have high defender
penalties, COBRA and RPT become vulnerable, especially in the following two
cases:

– ‘Unattractive’ targets are those with small reward but large penalty for the
adversary. COBRA and RPT consider such targets as non-ε-optimal and
assign significantly less resources than BRQR on them. However, some sub-
jects would still select such targets and caused severe damage to COBRA and
RPT (e.g. about 30% subjects selected door 5 in payoff 4 against COBRA
strategy, as shown in Fig. 5(d)).

– ‘High-risk’ targets are those with large reward and large penalty for the
adversary. RPT considers such targets as non-ε-optimal and assigns far less
resources than other algorithms. This is caused by the assumptions made by
PT that people care more about loss than gain and that they overestimate
small probabilities. However, experiments show RPT gets hurt significantly
on such targets (e.g. more than 15% subjects select door 1 in payoff 2, as
shown in Fig. 5(b)).
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7 Conclusions

There is a significant interest in game-theoretic techniques to solve security prob-
lems. However, current algorithms make perfect rationality assumption of the ad-
versaries, which is problematic in many real security domains when agents face
human adversaries. New methods need to be developed to compute defender
strategy against real human adversaries. This paper successfully integrates two
important human behavior theories, PT and QRE, into building more realistic
decision-support tool. To that end, the main contributions of this paper are,
(i) Developing efficient new algorithms based on PT and QRE models of human
behavior; (ii) Conducting the most comprehensive experiments to date with hu-
man subjects for security games (40 subjects, 5 strategies, 7 game structures);
(iii) Designing techniques for generating representative payoff structures for be-
havioral experiments in generic classes of games. By providing new algorithms
that outperform the leading competitor, this paper has advanced the state-of-
the-art.
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A Payoff Structure Information

The four payoff structures selected from the four clustering groups are displayed
in Table 4.

Table 4. Payoff Structure

(a) Payoff Structure 1

Target 1 2 3 4 5 6 7 8

defender reward 2 6 7 7 8 8 6 9

defender penalty -8 -10 -3 -1 -10 -5 -2 -5

subject reward 10 8 3 7 6 7 8 2

subject penlaty -7 -4 -6 -8 -4 -2 -9 -3

(b) Payoff Structure 2

Target 1 2 3 4 5 6 7 8

defender reward 3 8 9 9 7 7 4 1

defender penalty -10 -2 -5 -1 -7 -6 -2 -1

subject reward 9 8 2 9 10 1 10 1

subject penlaty -10 -1 -10 -8 -4 -10 -5 -3

(c) Payoff Structure 3

Target 1 2 3 4 5 6 7 8

defender reward 5 3 8 3 3 4 3 6

defender penalty -2 -5 -4 -6 -3 -10 -7 -2

subject reward 8 6 1 3 1 7 3 5

subject penlaty -6 -9 -3 -7 -7 -2 -5 -2

(d) Payoff Structure 4

Target 1 2 3 4 5 6 7 8

defender reward 5 9 10 2 10 4 8 8

defender penalty -10 -4 -9 -3 -10 -10 -2 -5

subject reward 3 7 3 9 2 9 7 8

subject penlaty -4 -8 -5 -8 -9 -4 -1 -6

(e) Payoff Structure 5

Target 1 2 3 4 5 6 7 8

defender reward 1 4 2 3 4 1 5 2

defender penalty -5 -8 -1 -6 -5 -1 -7 -7

subject reward 1 9 5 6 7 1 10 3

subject penlaty -2 -4 -3 -3 -3 -2 -4 -3

(f) Payoff Structure 6

Target 1 2 3 4 5 6 7 8

defender reward 4 3 1 5 1 2 5 2

defender penalty -8 -10 -1 -8 -1 -3 -11 -5

subject reward 8 5 3 10 1 3 9 4

subject penlaty -3 -2 -3 -2 -3 -3 -2 -3

(g) Payoff Structure 7

Target 1 2 3 4 5 6 7 8

defender reward 4 3 1 5 1 2 5 2

defender penalty -8 -5 -1 -10 -5 -3 -9 -6

subject reward 8 5 2 10 1 3 9 4

subject penlaty -3 -3 -3 -3 -3 -3 -3 -3
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B Defender Mixed-Strategy

The defender’s mixed-strategy from each algorithm in each payoff structures are
displayed in Table 5 and Table 6.

Table 5. Defender’s Mixed-strategy

(a) Payoff Structure 1

Target 1 2 3 4 5 6 7 8

BRPT 0.39 0.51 0.17 0.26 0.43 0.70 0.26 0.28

RPT 0.43 0.57 0.24 0.17 0.51 0.41 0.29 0.38

BRQR 0.57 0.58 0.18 0.21 0.51 0.47 0.30 0.18

COBRA 0.57 0.62 0.18 0.22 0.51 0.44 0.34 0.11

DOBSS 0.49 0.53 0.15 0.36 0.44 0.59 0.37 0.07

(b) Payoff Structure 2

Target 1 2 3 4 5 6 7 8

BRPT 0.28 0.93 0.07 0.34 0.59 0.05 0.52 0.23

RPT 0.32 0.54 0.10 0.39 0.65 0.07 0.57 0.37

BRQR 0.54 0.52 0.21 0.36 0.64 0.16 0.58 0.00

COBRA 0.48 0.53 0.09 0.43 0.74 0.00 0.70 0.02

DOBSS 0.42 0.78 0.08 0.47 0.64 0.00 0.60 0.00

(c) Payoff Structure 3

Target 1 2 3 4 5 6 7 8

BRPT 0.42 0.24 0.29 0.19 0.09 0.78 0.28 0.72

RPT 0.46 0.27 0.38 0.23 0.12 0.80 0.34 0.40

BRQR 0.36 0.43 0.20 0.36 0.13 0.72 0.43 0.37

COBRA 0.48 0.42 0.16 0.29 0.07 0.81 0.36 0.42

DOBSS 0.53 0.37 0.12 0.25 0.06 0.72 0.31 0.64

(d) Payoff Structure 4

Target 1 2 3 4 5 6 7 8

BRPT 0.28 0.27 0.22 0.33 0.08 0.54 0.90 0.38

RPT 0.37 0.32 0.30 0.37 0.10 0.61 0.49 0.44

BRQR 0.35 0.33 0.30 0.44 0.20 0.62 0.36 0.42

COBRA 0.24 0.42 0.21 0.50 0.04 0.66 0.39 0.53

DOBSS 0.22 0.37 0.19 0.44 0.05 0.58 0.69 0.47

C Histogram of Subjects’ Choices

The histograms of subjects’ choice in each game instance are displayed in Fig. 5
and Fig. 6.
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Table 6. Defender’s Mixed-strategy

(a) Payoff Structure 5

Target 1 2 3 4 5 6 7 8

BRPT 0.16 0.49 0.41 0.46 0.51 0.16 0.52 0.28

RPT 0.23 0.52 0.17 0.50 0.50 0.23 0.54 0.32

BRQR 0.12 0.61 0.16 0.55 0.52 0.00 0.57 0.46

COBRA 0.00 0.64 0.23 0.63 0.52 0.00 0.55 0.40

DOBSS 0.00 0.59 0.45 0.51 0.56 0.00 0.62 0.27

(b) Payoff Structure 6

Target 1 2 3 4 5 6 7 8

BRPT 0.49 0.46 0.21 0.67 0.05 0.21 0.64 0.29

RPT 0.54 0.53 0.07 0.55 0.07 0.27 0.63 0.35

BRQR 0.58 0.59 0.00 0.60 0.00 0.19 0.66 0.38

COBRA 0.58 0.55 0.00 0.53 0.00 0.31 0.62 0.41

DOBSS 0.56 0.45 0.19 0.68 0.00 0.19 0.65 0.30

(c) Payoff Structure 7

Target 1 2 3 4 5 6 7 8

BRPT 0.54 0.41 0.19 0.60 0.09 0.27 0.57 0.35

RPT 0.56 0.43 0.03 0.60 0.12 0.31 0.58 0.38

BRQR 0.59 0.44 0.00 0.63 0.08 0.22 0.60 0.45

COBRA 0.57 0.48 0.00 0.59 0.00 0.33 0.56 0.47

DOBSS 0.59 0.44 0.10 0.65 0.00 0.25 0.62 0.36
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(a) Payoff Structure 1
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(b) Payoff Structure 2
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(c) Payoff Structure 3
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(d) Payoff Structure 4

Fig. 5. Histogram of Subjects’ Choices
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(a) Payoff Structure 5
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(b) Payoff Structure 6
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(c) Payoff Structure 7

Fig. 6. Histogram of Subjects’ Choices
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