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Abstract. Distributed Constraint Optimization Problems (DCOPs) are NP-hard
and therefore most recent studies consider incomplete (local) search algorithms
for solving them. Specifically, the Max-sum algorithm has drawn attention in
recent years and has been applied to a number of realistic applications. Unfortu-
nately, in many cases Max-sum does not converge. When problems include cycles
of various sizes in the factor graph upon which Max-sum performs, the algorithm
does not converge and the states that it visits are of low quality.
In this paper we advance the research on incomplete search for DCOPs by: (1)
Proposing a version of the Max-sum algorithm that operates on an alternating di-
rected acyclic graph (Max-sum AD), which guarantees convergence. (2) Propos-
ing exploration methods that allow the algorithm to escape the high quality state
to which it converges. Our empirical study reveals the improvement in perfor-
mance of the proposed exploitive algorithm when combined with exploration
methods, compared with the performance of the standard Max-sum algorithm.

1 Introduction

The Distributed Constraint Optimization Problem (DCOP) is a general model for dis-
tributed problem solving that has a wide range of applications in Multi-Agent Systems
and has generated significant interest from researchers [7, 8, 13, 10].

A number of studies on DCOPs presented complete algorithms [7, 8, 4]. However,
since DCOPs are NP-hard, there is a growing interest in the last few years in local
(incomplete) DCOP algorithms [6, 13, 14, 11, 12]. Although local search does not guar-
antee that the obtained solution is optimal, it is applicable for large problems and com-
patible with real time applications.

The general design of the state of the art local search algorithms for DCOPs is
synchronous. In each step of the algorithm an agent sends her assignment to all her
neighbors in the constraint network and receives the assignment of all her neighbors.
They differ in the method agents use to decide whether to replace their current value
assignments to their variables, e.g., in the max gain messages algorithm (MGM) [6],
the agent that can improve her state the most in her neighborhood replaces her assign-
ment. A stochastic decision whether to replace an assignment is made by agents in the
distributed stochastic algorithm (DSA) [13].



An incomplete algorithm that does not follow the standard structure of distributed
local search algorithms and has drawn much attention recently is the Max-sum algo-
rithm [3]. In contrast to standard local search algorithms, agents in Max-sum do not
propagate assignments but rather calculated utilities (or costs) for each possible value
assignment to their neighboring agents’ variables. The general structure of the algorithm
is exploitive, i.e., the agents attempt to compute the best costs/utilities for possible value
assignments according to their own problem data and recent information they received
via messages from their neighbors.

The growing interest in the Max-sum algorithm in recent years included its use for
solving DCOPs representing various multi-agent applications, e.g., sensor systems [11]
and task allocation for rescue teams in disaster areas [9]. In addition, a method for ap-
proximating the distance of the solution found by Max-sum from the optimal solution
for a given problem was proposed [2]. This version required the elimination of some
of the problem’s constraints in order to reduce the DCOP to a tree structured problem
which can be solved in polynomial time. Then, the sum of the worst costs for all elimi-
nated constraints serves as the bound on the approximation of the optimal solution.

Previous studies have revealed that Max-sum does not always converge to a solu-
tion [3]. In fact, in some of the cases where it does not converge, it traverses states with
low quality solutions and thus, at the end of the run the solution reported is of poor
quality. This pathology occurs when the constraint graph of the problem includes cy-
cles of various sizes. Unfortunately, many DCOPs which were investigated in previous
studies are dense and indeed include such cycles (e.g., [7, 4]). Our experimental study
revealed that for random problems, for a variety of density parameters from as low as
10%, Max-sum does not converge.

An attempt to cope with the in-convergence of Max-sum was proposed in [3]. It
included the union of groups of agents to clusters of adjacent agents represented by
a single agent in the cluster. The constraints between the agents in the cluster were
aggregated and held by the agent representing the cluster. Thus, it required that some
constraints would be revealed in a preprocessing phase to agents which are not included
in the constraints (the constraint between agents A1 and A2 is revealed to agent A3).
The amount of information that is aggregated is not limited and in dense problems
can result in a single agent holding a large part of the problem’s constraints (partial
centralization). In this work we avoid such an aggregation of the problem’s data in a
pre-processing phase and propose algorithms and methods that solve the original DCOP
(as the standard Max-sum algorithm does).

In this paper we contribute to the understanding of incomplete search for DCOPs
by:

1. Proposing a new version of the Max-sum algorithm which uses an alternating di-
rected acyclic graph (DAG). The proposed algorithm (Max-sum AD) avoids cycles
by performing iterations of the algorithm in which messages are sent according to a
predefined order. In order not to ignore constraints of the DCOP, after a number of
iterations which guarantees the convergence of the algorithm, the order from which
the direction of the DAG is derived is reversed. Then, the algorithm is performed
on the reversed DAG until it converges again. We prove that the maximal number
of iterations in a single direction required for the algorithm to converge is equal



to the longest path in the DAG, l (linear in the worst case). Thus, by performing
l iterations in each direction we converge to a solution after considering all the
constraints in the DCOP.

2. Proposing exploration heuristic methods for Max-sum AD. The proposed meth-
ods allow the algorithm to converge to different solutions of high quality. By using
the algorithm within the anytime framework, proposed for local search on DCOPs
in [14], we can select the best among these solutions to be reported by the algorithm
at the end of its run. To best of our knowledge, no exploration methods were pro-
posed for Max-sum to date. Thus, we are the first to balance between exploration
and exploitation of the Max-sum algorithm. Our empirical study demonstrates the
success of this balanced performance in comparison with the standard Max-sum
algorithm.

The rest of this paper is organized as follows: DCOPs are presented in Section 2.
Section 3 presents the standard Max-sum algorithm. The Max-sum AD algorithm is
presented in Section 4. Section 5 presents exploration methods for the Max-sum AD
algorithm. Section 6 includes an evaluation of the proposed algorithm and exploration
methods. Our conclusions are presented in Section 7.

2 Distributed Constraint Optimization

A DCOP is a tuple 〈A,X ,D,R〉. A is a finite set of agents A1, A2, ..., An. X is a
finite set of variables X1,X2,...,Xm. Each variable is held by a single agent (an agent
may hold more than one variable). D is a set of domains D1, D2,...,Dm. Each domain
Di contains the finite set of values which can be assigned to variable Xi. We denote an
assignment of value d ∈ Di to Xi by an ordered pair 〈Xi, d〉. R is a set of relations
(constraints). Each constraint C ∈ R defines a non-negative cost for every possible
value combination of a set of variables, and is of the form C : Di1 × Di2 × . . . ×
Dik → R+∪{0}. A binary constraint refers to exactly two variables and is of the form
Cij : Di ×Dj → R+ ∪ {0}. A binary DCOP is a DCOP in which all constraints are
binary. A partial assignment (PA) is a set of value assignments to variables, in which
each variable appears at most once. vars(PA) is the set of all variables that appear in
PA, vars(PA) = {Xi | ∃d ∈ Di ∧ 〈Xi, d〉 ∈ PA}. A constraint C ∈ R of the form
C : Di1 ×Di2 × . . . ×Dik → R+ ∪ {0} is applicable to PA if Xi1 , Xi2 , . . . , Xik ∈
vars(PA). The cost of a partial assignment PA is the sum of all applicable constraints
to PA over the assignments in PA. A full assignment is a partial assignment that includes
all the variables (vars(PA) = X ). A solution is a full assignment of minimal cost.

3 Standard Max-sum

The Max-Sum algorithm [3] operates on a factor graph which is a bipartite graph in
which the nodes represent variables and constraints 1. Each node representing a vari-
able of the original DCOP is connected to all function-nodes that represent constraints

1 We preserve the terminology of [3] and call constraint representing nodes in the factor graph
“function nodes”.



Fig. 1. Transformation of a DCOP to a factor graph

which it is involved in. Similarly, a function-node is connected to all variable-nodes
that represent variables in the original DCOP which are included in the constraint it
represents. Agents in Max-sum perform the roles of different nodes in the factor graph.
We will assume that each agent takes the role of the variable-nodes which represent her
own variables and for each function-node, one of the agents who’s variable is involved
in the constraint it represents, performs its role. Variable-nodes and function-nodes are
considered as “agents” in Max-sum, i.e., they can send messages, read messages and
perform computation.

Figure 1 demonstrates the transformation of a DCOP to a factor graph. On the top
we have a DCOP with three agents, each holding a single variable. All variables are
connected by binary constraints. On the bottom we have a factor graph. Each agent
takes the role of the node representing her own variable and the role of one of the
function-nodes representing a constraint it is involved in.

Figure 2 presents a sketch of the Max-sum algorithm. The code for variable-nodes
and function-nodes is similar apart from the computation of the content of messages to
be sent. For variable-nodes only data received from neighbors is considered. In mes-
sages sent by function-nodes the content is produced considering data received from
neighbors and the original constraint represented by the function-node.

It remains to describe the process of the production of messages by the factor graph
nodes. A message sent from a variable-node representing variable x to a function-node
f at iteration i includes for each of the values d ∈ Dx, the sum of costs/utilities for this
value she received from all function neighbors apart from f in iteration i− 1. Formally,



Max-sum (node n)
1. Nn ← all of n’s neighboring nodes
2. while (no termination condition is met)
3. collect messages from Nn

4. for each n′ ∈ Nn

5. if (n is a variable-node)
6. produce message mn′

using messages from Nn \ {n′}
7. if (n is a function-node)
8. produce message mn′

using constraint and messages from Nn \ {n′}
9. send mn′ to n′

Fig. 2. Standard Max-sum.

for value d ∈ Dx the message will include:
∑

f ′∈Fx,f ′ 6=f cost(f
′.d), where Fx is the

set of function-node neighbors of variable x and cost(f ′.d) is the cost/utility for value
d included in the message received from f ′ in iteration i− 1.

A message sent from a function-node f to a variable-node x in iteration i includes
for each possible value d ∈ Dx the best (minimal in a minimization problem, maximal
in a maximization problem) cost/utility that can be achieved from any combination of
assignments to the variables involved in f apart from x and the assignment of value d
to variable x. Formally, in a minimization problem, the message from f to x includes
for each value d ∈ Dx: minass−xcost(〈x, d〉, ass−x), where ass−x is a possible com-
bination of assignments to variables involved in f not including x. The cost of an as-
signment a = (〈x, d〉, ass−x) is: f(a) +

∑
x′∈Xf ,x′ 6=x cost(x

′.d′). Where f(a) is the
original cost in the constraint represented by f for the assignment a and cost(x′.d′) is
the cost which was received in the message sent from node-variable x′ in iteration i−1,
for the value d′ which is assigned to x′ in a.

While the selection of value assignments to variables is not a part of the Max-sum
algorithm, we need to describe how the solution is selected at the end of the run. Each
variable selects the value assignment which received the best (lowest for a minimization
problem and highest for a maximization problem) sum of costs/utilities included in
the messages which were received most recently from its neighboring function-nodes.
Formally, in a minimization problem, for variable x we select the value d̂ ∈ Dx as
follows: d̂ = mind∈Dx

∑
f∈Fx

cost(f.d). Notice that the same information used by
the variable-node to select the content of the messages it sends is used for selecting its
assignment.

4 Max-sum with an Alternating DAG (Max-sum AD)

In this section we propose a version of the Max-sum algorithm which guarantees con-
vergence without eliminating constraints of the original DCOP. We will discuss explo-
ration methods for this version of the algorithm in the next section.

In order to guarantee the convergence of the algorithm we need to avoid the pathol-
ogy described in [3], caused by cycles of various sizes in the factor graph. To this end
we select an order on all nodes in the factor graph. For example, we can order nodes



according to the indexes of agents performing their role in the algorithm. A node who’s
role is performed by agent Ai is ordered before a node who’s role is performed by agent
Aj if i < j. For variable and function nodes held by the same agent, we can determine
(without loss of generality) that a variable-node is ordered before function-nodes held
by the same agent (and not the other way around). Then, we perform the algorithm for
l iterations allowing nodes to send messages only to nodes which are “after” them ac-
cording to this order (in the case of ordering by indexes, send messages only to agents
with larger indexes than their own). After l iterations in this direction, the order is re-
versed and messages are sent for the next l iterations only in the opposite direction (e.g.,
to agents with lower indexes) . In each direction the Max-sum algorithm is performed
as described in Section3 with the exception of the restriction on the messages. Thus, in
every calculation of a message sent by, for example, variable-node x to function-node
f , all of the most recent messages x received from its neighboring functions f ′ ∈ Fx,
f ′ 6= f are considered. However, for neighbors which are before x according to the
current order, the most recent messages were received following the previous iteration,
while from neighboring function-nodes which are after x according to the current order,
the last messages were received before the last alternation of directions.

The resulting algorithm Max-sum AD has messages sent according to a directed
acyclic graph (DAG) which is determined by the current order. Each time the order
changes we get a DAG on which messages on each edge of the graph are sent only in a
single direction.

Max-sum AD (node n)
1. o← select an order on all nodes in the factor graph
2. direct changes← 0
3. Nn ← all of n’s neighboring nodes
4. while (no termination condition is met)
5. if (direct changes is even)
6. current order ← o
7. else
8. current order ← reverse(o)
9. Nprev n ← {n̂ ∈ Nn :

n̂ is before n in current order}
10. Nfollow n ← Nn \Nprev n

11. for(k iterations)
12. collect messages from Nprev n

13. for each n′ ∈ Nfollow n

14. if (n is a variable-node)
15. produce message m′

n using
messages from Nn \ {n′}

16. if (n is a function-node)
17. produce message mn′ using constraint

and messages received from Nn \ {n′}
18. send mn′ to n′

19. direct changes← direct changes+ 1

Fig. 3. Max-sum AD.



Figure 3 presents a sketch of the Max-sum AD algorithm. It deffer’s from standard
Max-sum in the selection of directions and the disjoint sets of neighbors from whom
the nodes receive messages and to whom they send messages (lines 5 - 10). Keeping
track of the number of direction changes allows us to determine the current direction
and act accordingly (lines 2, 5 and 19).
Next we prove the convergence of Max-sum AD.

Lemma 1 For any node n in the factor graph, if l′ is the longest path in the DAG from
some other node to n, then after l′ iterations in the same direction, the content of the
messages n receives does not change until the next change of direction.

Proof: We prove by induction on l′. For l′ = 0, node n does not receive messages from
any other node as long as the direction does not change. We assume the correction of
the Lemma for any length l′ of a path shorter than the longest path in the DAG, l. If
we denote the last node in the path whose length is equal to l by n′, then according to
the assumption, all the neighbors that are sending messages to n′ after l − 1 iterations
receive messages with the same content in all the following iterations with the same
current order. Thus, after l − 1 iterations the data they use to produce the content of
the messages they send is fixed. Therefore, in the following iterations they will send the
same messages to node n′. �.

An immediate corollary from Lemma 1 is that agents will not change their assign-
ment selection for their variable after l iterations in the same direction until the direction
is alternated, since the information used by variable-nodes for selecting an assignment
is the same information they use for generating messages to function-nodes (see Sec-
tion 3). Thus, the algorithm converges to a single complete assignment. The decision
to escape it by changing direction is an algorithmic decision. Notice that after the first
alternation of direction, although we send messages only in a single direction, the data
passed in the last messages which were received before the change in direction is used
for the calculation of the content of messages to be sent. Thus, all the constraints of the
problem are considered.

5 Exploration Methods for Max-sum AD

The Max-sum AD algorithm presented above converges in linear time. After perform-
ing l iterations in each direction (where l as before is the length of the longest path in
the DAG) we allow each of the constraints in the problem to be considered in the final
selection of assignments, i.e., the algorithm is completely exploitive and converges to
a solution after considering all the DCOP constraints . This process is deterministic.
If after the second direction change we set all costs/utilities in the messages received
most recently to zero, and perform l iterations according to the initial order and l in
the reversed order, we will converge to the same solution. We will refer to this ex-
ploitive version of Max-sum AD in which after every even change of directions we set
all costs/utilities to zero as plain. Next, we propose exploration methods which can
allow the Max-sum AD algorithm to continue the search for a better solution.



1. In the first, instead of setting the costs/utilities to zero after even direction changes
we continue to accumulate them as in standard Max-sum. We will refer to this
method as standard.

2. The second method selects a random number of iterations to be performed in each
direction. After each change of direction, a random number 1 ≤ l′ ≤ k is selected
uniformly and the algorithm is performed for l′ iterations in one direction before a
new l′ is selected for the number of iterations to be performed in the reversed di-
rection. We denote this method by Random Number of Iterations Selection (RNIS).
The range k should allow convergence in some cases and avoid them in others. In
our experiments we used k = n where n was the number of nodes in the factor
graph. There exists multiple methods for a random number selection in distributed
systems (e.g., [1]). Specifically in Max-sum AD we can have a single agent select
the random numbers of iterations for future rounds and propagate this selection to
all other agents via a BFS tree on the DAG as in the anytime framework proposed
in [14].

3. The third method handles an unlucky selection of the order on the factor graph
nodes which determines the DAG the algorithm uses. It selects a random order and
performs the algorithm in both directions on this order before selecting an order
again. We denote this method by Random Order Selection (ROS). In our imple-
mentation we selected an agent to be “first” in the order randomly and all the other
agents were ordered according to their indexes following this agent (e.g., in a prob-
lem with 10 agents, if agent A5 is selected to be first, the order is A5, A6, ..., A10, A1, ..., A4).
We determined that for nodes which their role is performed by the same agent,
variable-nodes come before function-nodes in the order.

6 Experimental Evaluation

We present a set of experiments that demonstrate the advantage of the proposed Max-
sum AD algorithm when combined with the proposed exploration methods, over the
Max-sum algorithm.

The experiments were performed on minimization random DCOPs in which each
agent holds a single variable. Each variable had five values in its domain. The network
of constraints in each of the experiments, was generated randomly by selecting the prob-
ability p1 of a constraint among any pair of agents/variables. The cost of any pair of as-
signments of values to a constrained pair of variables was selected uniformly between 1
and 10. Such uniform random DCOPs with constraint networks of n variables, k values
in each domain, a constraint density of p1 and a bounded range of costs/utilities are
commonly used in experimental evaluations of centralized and distributed algorithms
for solving constraint optimization problems [5, 4]. Other experimental evaluations of
DCOPs include random max graph coloring problems [7, 13, 3], which are a subclass
of random generated DCOPs.

Our experimental setup includes problems generated with 35 agents each. The factor
graph generated for all versions of the Max-sum algorithm had agents performing the
role of the variable-nodes representing their own variables, and for each constraint, we
had the agent with the smaller index involved in it perform the role of the corresponding



Fig. 4. Solution cost of Max-sum for every 10th iteration when solving problems with very low
density

function-node. Figure 4 presents results for the standard Max-sum algorithm solving
problems with very low density. Only for problems with extremely low density the
algorithm converges. Thus, for the comparison of Max-sum with Max-sum AD, we
generated problems with two density parameters p1 = 0.1 and p1 = 0.5. For both of
these density parameters Max-sum did not converge.

The Max-sum algorithm was compared with four versions of Max-sum AD: plain,
standard, RNIS and ROS (see Section 5 for their description). We generated 50 ran-
dom problems and ran the algorithms for 700 iterations on each of them. The results we
present are an average on those 50 runs. To make sure that the Max-sum AD algorithms
converge we changed directions every 70 iterations (except in the RNIS version) which
is the longest possible path in the DAG (in case the graph has a chain structure).

For each of the algorithms we present both the sum of the costs of constraints in
the assignment it would have selected in each iteration and the anytime value (the best
sum of costs found for some state visited up to this iteration). The framework proposed
in [14] enhances DCOP local search algorithms with the anytime property. It uses a
Breadth First Search (BFS) tree on the constraints graph in order to accumulate the
costs of agents’ states in the different steps during the execution of the algorithm. The
anytime property in this framework is achieved with a very low overhead in time, mem-
ory and communication. In addition, it preserves a higher level of privacy than other
DCOP algorithms which use tree structures [14].

Figure 5 presents for problems with constraint density p1 = 0.1, for every ten’th
iteration, the cost of the solution that would have been selected by the algorithm if the
run would terminate at this iteration (we do not present the cost at each iteration to pre-
vent the figure from being too dense). It is apparent that while Max-sum traverses states
of low quality (with high costs) and the plain version of Max-sum AD converges to the
same solution over and over again, the versions of Max-sum AD which are combined
with exploration methods traverse lower cost states. The performance of RNIS dete-



Fig. 5. Solution cost for every 10th iteration when solving problems with low density (p1 = 0.1)

Fig. 6. Anytime cost for every 10th iteration when solving problems with low density (p1 = 0.1)

riorates after the fourth change in direction and later the performance of the standard
heuristic deteriorates as well. On the other hand, the ROS heuristic continues to con-
verge to high quality states with low costs. An interesting phenomenon to point out is
that Max-sum visits relatively high quality states in the early iterations of the algorithm
before its deterioration to an unsteady traverse of states with low quality. It seems that



Fig. 7. Solution cost for every 10th iteration when solving problems with high density (p1 = 0.5)

Fig. 8. Anytime cost for every 10th iteration when solving problems with high density (p1 = 0.5)

it takes a number of iterations before the effect of the cycles on its performance begin.
The anytime results for this experiment are presented in Figure 6. Notice that the any-
time result selects the best among states in all the iterations and not only the ones which
their cost was presented in Figure 5.

Similar results are presented in Figures 7 and 8 for problems with constraint density
p1 = 0.5. On dense problem the advantage of the different versions of Max-sum AD
over the standard Max-sum is more apparent. In addition the plain version of the algo-
rithm converges to a solution of high quality and the advantage achieved by the explo-
ration methods is less apparent. Here, the exploitive performance which we observed



Fig. 9. A closer look at the anytime cost for every 10th iteration, starting after 140 iterations
(p1 = 0.5)

for Max-sum in the first iterations of Figure 5 does not appear. This is probably because
the size of the cycles is smaller, thus their destructive effect is instantaneous. A closer
look at the anytime result of the algorithms after the first 140 iterations is presented in
Figure 9. While the ROS method does not improve on the plain method, the standard
method and RNIS find solutions with lower costs. All the versions of Max-sum AD out-
perform Max-sum. It is important to notice that while the average cost in each iteration
as presented in Figure 7 does not reveal an advantage of the exploration methods the
anytime result does. This is because different iterations were successful when solving
different problems. Thus, the average in each iteration does not reveal this success.

Figure 10 demonstrates the balance between exploitation and exploration of the
proposed methods by presenting the states in the run of a single problem for ROS and
RNIS. It is apparent that after each change in direction there is an exploration phase and
a convergence to a solution. RNIS converges only when the random selected number of
iterations in the same direction is large enough while ROS converges after each change
in direction.

7 Conclusion

The Max-sum algorithm offers an innovative approach for solving DCOPs. Unfortu-
nately, when problems include cycles of various sizes in the factor graph, the algorithm
does not converge and the states it visits are of low quality.

In this paper we proposed a new version of the Max-sum algorithm, Max-sum AD,
which guarantees convergence. Max-sum AD uses an alternating DAG to avoid cycles.
We proved that the algorithm converges if the number of iterations it performs in a
single direction is equal to or larger than the longest path in the DAG.



Fig. 10. A single run of RNIS (left) and ROS (right)

The guaranteed convergence of the strictly exploitive (“plain”) algorithm serves as a
baseline on which we add exploration elements and allow the algorithm to continue the
search for a high quality solution. The use of the algorithm within the anytime frame-
work proposed in [14] allows the selection of the best among the complete assignments
it converges to as the algorithm’s outcome.

Our empirical study reveals the advantage of the Max-sum AD algorithm when
combined with exploration methods over Max-sum. In the future we intend to investi-
gate the compatibility of our exploration methods to realistic applications.

Acknowledgment: We thank Alessandro Farinelli for helping us understand the Max-
sum algorithm.
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