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Abstract. A Distributed Constraint Optimization Problem (DCOP) is
a fundamental problem that can formalize various applications related to
multi-agent cooperation. Since it is NP-hard, considering faster incom-
plete algorithms is necessary for large-scale applications. Most incom-
plete algorithms generally do not provide any guarantees on the quality
of solutions. Some notable exceptions are DALO, the bounded max-sum
algorithm, and ADPOP.

In this paper, we develop a new solution criterion called p-optimality and
an incomplete algorithm for obtaining a p-optimal solution. The char-
acteristics of this algorithm are as follows: (i) it can provide the upper
bounds of the absolute/relative errors of the solution, which can be ob-
tained a priori/a posteriori, respectively, (ii) it is based on a pseudo-tree,
which is a widely used graph structure in complete DCOP algorithms,
(iii) it is a one-shot type algorithm, which runs in polynomial-time in
the number of agents n, and (iv) it has adjustable parameter p, so that
agents can trade-off better solution quality against computational over-
head. The evaluation results illustrate that this algorithm can obtain
better quality solutions and bounds compared to existing bounded in-
complete algorithms, while the run time of this algorithm is shorter.

1 Introduction

A Distributed Constraint Optimization Problem (DCOP) is a fundamental prob-
lem that can formalize various applications related to multi-agent cooperation.
A DCOP consists of a set of agents, each of which needs to decide the value as-
signment of its variables so that the sum of the resulting rewards is maximized.
Many application problems in multi-agent systems can be formalized as DCOPs,
in particular, distributed resource allocation problems including distributed sen-
sor networks [1] and meeting scheduling [2]. Various complete algorithms have
been developed for finding globally optimal solution to DCOPs, e.g., DPOP [2],
ADOPT [1], and OptAPO [3]. However, finding optimal DCOP solutions is NP-
hard, so considering faster incomplete algorithms is necessary for large-scale
applications. Various incomplete algorithms have been developed, e.g., DSA [4],
MGM/DBA [5, 6], and ALS-DisCOP [7].



Most incomplete algorithms generally do not provide any guarantees on the
quality of the solutions they compute. Notable exceptions are DALO [8], the
bounded max-sum algorithm [9], and ADPOP [10]. Among these algorithms,
DALO is unique since it can provide the bound of a solution a priori, i.e., the er-
ror bound is obtained before actually running the algorithm. Also, the obtained
bound is independent of problem instances. On the other hand, the bounded
max-sum algorithm and ADPOP can only provide the bound of a solution a
posteriori, i.e., the error bound is obtained only after we actually run the algo-
rithm and obtain an approximate solution. Having a priori bound is desirable,
but a posteriori bound is usually more accurate.

In this paper, we develop an incomplete algorithm based on a new solution
criterion called p-optimality. This algorithm can provide the upper bounds of the
absolute/relative errors of the solution, which can be obtained a priori/a poste-
riori, respectively. These bounds are based on the induced width of a constraint
graph and the maximal value of each reward function, but they are independent
of problem instances. Induced width is a parameter that determines the complex-
ity of many constraint optimization algorithms. This algorithm utilizes a graph
structure called a pseudo-tree, which is widely used in complete DCOP algo-
rithms such as ADOPT and DPOP. This algorithm can obtain an approximate
solution with reasonable quality, while it is a one-shot type algorithm and runs in
polynomial-time in the number of agents n. Thus, it is suitable for applications
that need to obtain reasonable quality solutions (with quality guarantees) very
quickly. Furthermore, in this algorithm, agents can adjust parameter p so that
they can trade-off better solution quality against computational overhead.

DALO is an anytime algorithm based on the criteria of local optimality called
k-size/t-distance optimality [8, 11] and has adjustable parameters k/t. Compared
to this algorithm, our algorithm is a one-shot type algorithm, while DALO is an
anytime algorithm, which repeatedly obtains new local optimal solutions until
the deadline and returns the best solution obtained so far. Also, our algorithm
can provide tighter bounds a priori. Furthermore, in our algorithm, the increase
of computation/communication costs by increasing parameter p is more gradual
compared to those for k-size/t-distance-optimality.

The bounded max-sum algorithm is a one-shot type algorithm. Compared to
this algorithm, our algorithm has adjustable parameter p, while this algorithm
has no adjustable parameter. Also, our algorithm can obtain a priori bound.
Thus, agents can adjust parameter p before actually running the algorithm to
obtain a solution with a desirable bound.

Our proposed algorithm is quite similar to ADPOP, which also eliminates
edges among variables to bound the size of messages. ADPOP is also one-
shot type algorithm and has an adjustable parameter. However, ADPOP uses a
heuristic method to determine which edges to eliminate. As a result, it cannot
obtain a priori bound. We can consider p-optimality gives a simple but theoret-
ically well-founded method to determine which edges to eliminate in ADPOP.



Another advantage of our algorithm is that it can be used for a preprocessing
phase before running a complete algorithm. Since our algorithm utilizes a pseudo-
tree, it would be well-suited with pseudo-tree based complete algorithms.

The rest of this paper is organized as follows. Section 2 formalizes DCOP and
provides basic terms related to the graphs. Section 3 introduces our incomplete
algorithm and provides methods for estimating the error bound obtained by our
algorithm. Section 4 evaluates the solution quality and the accuracy of the error
bounds obtained by our algorithm. Section 5 concludes this paper.

2 Preliminaries

In this section, we briefly describe the formalization of Distributed Constraint
Optimization Problems (DCOPs) and the basic terms for graphs.

Definition 1 (DCOP). A distributed constraint optimization problem is de-
fined by a set of agents S, a set of variables X, a set of binary constraint rela-
tions C, and a set of binary reward functions F . An agent i has its own variable
xi. A variable xi takes its value from a finite, discrete domain Di. A binary con-
straint relation (i, j) means there exists a constraint relation between xi and xj.
For xi and xj, which have a constraint relation, the reward for an assignment
{(xi, di), (xj , dj)} is defined by a binary reward function ri,j(di, dj) : Di ×Dj →
R. For a value assignment to all variables A, let us denote

R(A) =
∑

(i,j)∈C,{(xi,di),(xj ,dj)}⊆A

ri,j(di, dj).

Then, an optimal assignment A∗ is given as argmaxA R(A), i.e., A∗ is an as-
signment that maximizes the sum of the value of all reward functions.

Since there exists a one-to-one relationship between an agent and its vari-
able, for notation simplicity, we occasionally don’t distinguish an agent and
its variable. For example, we define a constraint optimization problem by a
tuple ⟨X,C, F ⟩, where X is a set of agents/variables. In this paper, we as-
sume all reward values are non-negative and that the maximal value of each
binary reward function is bounded, i.e., we assume ∀i, ∀j, where (i, j) ∈ C,
∀di ∈ Di, ∀dj ∈ Dj , 0 ≤ ri,j(di, dj) ≤ rmax holds.

A DCOP problem can be represented using a constraint graph, in which a
node represents an agent/variable and an edge represents a constraint.

Definition 2 (Constraint Graph). For a distributed constraint optimization
problem ⟨X,C, F ⟩, we say G = (X,C) as a constraint graph of ⟨X,C, F ⟩. More
specifically, a constraint graph is obtained by assuming each agent/variable as a
node, and each binary constraint relation as an edge.

In this paper, we consider subgraphs that are obtained by removing several
edges/constraints from the original DCOP/constraint graph. We define a reward
obtained in a subgraph as follows.
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Fig. 1. (a) shows a constraint graph with ten nodes. (b) shows the induced chordal
graph of (a) based on o = 1 ≺ . . . ≺ 10. Induced width of (b) is three. (c) shows
the subgraph of (b) obtained by removing edges (1, 4) and (7, 10). This graph is not
chordal.

Definition 3 (Rewards in a subgraph). For a distributed constraint opti-
mization problem ⟨X,C, F ⟩, its constraint graph G = (X,C), and G′ = (X,C ′),
which is a subgraph of G, i.e., C ′ ⊆ C, we define the rewards of an assignment
A in subgraph G′ = (X,C ′) (denoted as RC′(A)) as

RC′(A) =
∑

(i,j)∈C′,{(xi,di),(xj ,dj)}⊆A

ri,j(di, dj).

Let us introduce several basic terms for graphs.

Definition 4 (Undirected graph). An undirected graph G = (V,E) consists
of a set of nodes V = {1, . . . , n} and a set of edges between nodes E. We denote
e ∈ E using nodes connected by the edge as e = (i, j).

Definition 5 (Connected graph). We say an undirected graph G = (V,E) is
connected if any two nodes i, j ∈ V are reachable via edges in E.

In the rest of this paper, we assume a graph is connected.

Definition 6 (Neighboring nodes). For a graph G = (V,E) and a node
i ∈ V , we call Nb(E, i) = {j | (i, j) ∈ E} as i’s neighboring nodes.

Definition 7 (Total ordering among nodes). A total ordering among nodes
o is a permutation of a sequence of nodes ⟨1, 2, . . . , n⟩. We say node i precedes



node j (denoted as i ≺ j), if i occurs before j in o. We also denote ord(i) for
the i-th node in a total ordering o.

Definition 8 (Ancestors). For a graph G = (V,E), a total ordering o, and a
node i ∈ V , we call A(E, o, i) = {j | (i, j) ∈ E ∧ j ≺ i} as i’s ancestors.

Definition 9 (Chordal graph based on total ordering). For a graph G =
(V,E) and a total ordering o, we say G is a chordal graph based on total ordering
o when the following condition holds:

– ∀i,∀j, ∀k ∈ V , if j, k ∈ A(E, o, i), then (j, k) ∈ E.

Definition 10 (Induced chordal graph based on total ordering). For a
graph G = (V,E) and a total ordering o, we say a chordal graph G′ = (V,E′)
based on total ordering o, which is obtained by the following procedure, as an
induced chordal graph 1 of G based on total ordering o.

1. Set E′ to E.
2. Choose each node i ∈ V from the last to the first based on o and apply the

following procedure.
– if ∃j,∃k ∈ A(E′, o, i) s.t. (j, k) ̸∈ E′, then set E′ to E′ ∪ {(j, k)}.

3. Return G′ = (V,E′).

Next, we introduce a parameter called induced width, which can be used as
a measure for checking how close a given graph is to a tree. For example, if
the induced width of a graph is one, it is a tree. Also, the induced width of a
complete graph with n variables is n− 1.

Definition 11 (Width based on total ordering). For a graph G = (V,E),
a total ordering o, and a node i ∈ V , we call |A(E, o, i)| as the width of node i
based on total ordering o. Furthermore, we call maxi∈V |A(E, o, i)| as the width
of graph G based on total ordering o and is denoted as w(G, o).

Definition 12 (Induced width based on total ordering). For a graph G =
(V,E) and a total ordering o, we call w(G′, o) as the induced width of G based
on total ordering o, where G′ = (V,E′) is the induced chordal graph of G based
on total ordering o.

We show a simple example of the induced chordal graph of a graph and its
induced width.

Example 1 (Induced width of induced chordal graph). Figure 1-(a) shows a con-
straint graph with ten nodes. (b) presents the induced chordal graph based on
total ordering o = 1 ≺ . . . ≺ 10. The ancestors of node 10 are nodes 7, 8, and 9.
Since no edge exists between ancestors 7 and 9, edge (7, 9) is added. Similarly,
several new edges are added (shown as broken lines). The induced width of (b)
is three.
1 In constraint reasoning literature [12], such a graph is simply called an induced graph.
However, the term induced is used in a more general meaning in graph theory. Thus,
we use a more specific term, i.e., induced chordal graph in this paper.
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Fig. 2. (a) presents a part of p-reduced graph G′′ = (V,E′′), where j, k ∈ A(E′′, o, i),
and (j, k) ̸∈ E′′. (b) presents a situation where (j, k) is not j’s first back-edge in G,
i.e., there exists node l s.t. l ≺ k, (j, l) ∈ E, and (j, l) ̸∈ E′′.

A pseudo-tree is a special graph structure, where a unique root node exists
and each non-root node has a parent node.

Definition 13 (Pseudo-tree representation of chordal graph based on
total ordering). A chordal graph G = (V,E) based on total ordering o can be
assumed as a pseudo-tree as follows: (i) the node that appears first in o is the root
node, and (ii) for each non-root node i, i’s parent is node j, where j ∈ A(E, o, i)
and ∀k ∈ A(E, o, i) and k ̸= j, k ≺ j holds.

Definition 14 (Back-edge). When assuming a chordal graph G = (V,E)
based on total ordering o as a pseudo-tree, we say an edge (i, j) is a back-edge
of i, if j ∈ A(E, o, i) and j is not i’s parent. Also, when (i, j1), (i, j2), . . . , (i, jk)
are all back-edges of i, and j1 ≺ j2 ≺ . . . ≺ jk holds, we call (i, j1), (i, j2), . . . ,
(i, jk) as first back-edge, second back-edge, . . ., k-th back-edge, respectively.

Clearly, a node has at most w(G, o)− 1 back-edges.

3 Bounded Incomplete Algorithm based on Induced
Width

In this section, we describe our new incomplete algorithm based on the induced
width of a constraint graph. The basic idea of this algorithm is that we remove
several edges from a constraint graph, so that the induced width of the remaining
graph is bounded. Then we compute the optimal solution of the remaining graph,
which is used as the approximate solution of the original graph.



3.1 Incomplete Algorithm and p-optimality

Our proposed incomplete algorithm has two phases:

Phase 1: Generate a subgraph from the induced chordal graph based on the
total ordering by removing several edges, so that the induced width of the
induced chordal graph obtained from the subgraph is bounded by parameter
p.

Phase 2: Find an optimal solution to the graph obtained in Phase 1 using any
complete DCOP algorithms.

First, let us describe Phase 1. Our goal is to obtain a subgraph so that the
induced width of the induced chordal graph obtained from the subgraph equals
p. At the same time, we want to bound the number of removed edges. This
is not easy. One might imagine that we can easily obtain such a subgraph by
just removing the back-edges so that all nodes have at most p − 1 back-edges.
However, by this simple method, we cannot guarantee that the remaining graph
is chordal and we might need to add some edges to make it chordal. As a result,
the induced width of the induced chordal graph can be more than p.

Let us show an example where the simple method does not work.

Example 2 (Simple method does not work). Figure 1-(c) presents the subgraph
of (b) in Example 1. If we simply remove edges (1, 4) and (7, 10), each node has
at most two edges with its ancestors (in (c)). However, the graph shown in (c) is
not chordal, i.e., edge (1, 4) is missing, while there exist edges (1, 6) and (4, 6).

We develop a method for Phase 1 as follows. We call the obtained subgraph
a p-reduced graph.

Definition 15 (p-reduced graph). For a induced chordal graph G = (V,E)
based on total ordering o, we say a graph G′ = (V,E′) obtained by the following
procedure as p-reduced graph of G (where 1 ≤ p ≤ w(G, o)):

1. Set E′ to E.
2. Repeat the following procedure w(G, o)− p times

– For each i ∈ V where p+ 1 ≤ ord(i) ≤ w(G, o)
remove the first back-edge in G′ = (V,E′) from E′ if there is one.

3. Return G′ = (V,E′).

Assuming that the agents know the pseudo-tree among them, running this
procedure by these agents is quite simple. For obtaining the p-reduced graph,
each agent i (p+1 ≤ ord(i) ≤ w(G, o)) simply removes its first back-edge, second
back-edge, . . . , (w(G, o)− p)-th back-edge.

Theorem 1. For a induced chordal graph G = (V,E) based on total ordering
o, for any 1 ≤ p ≤ w(G, o), and G’s p-reduced graph G′ = (V,E′), the following
conditions hold:

1. G′ is a chordal graph based on total ordering o.



2. w(G′, o) is p.

Proof. When obtaining p-reduced graph G′, for each node i (p + 1 ≤ ord(i) ≤
w(G, o)), its first back-edge is repeatedly removed w(G, o) − p times. Since the
number of back-edges is at most w(G, o)−1, the number of remaining back-edges
is at most p− 1. Also, there exists at least one node who has exactly w(G, o)− 1
back-edges. Thus, since the remaining back-edges for the node are p−1, w(G′, o),
i.e., the width of G′ based on o, is p.

Next, we show that G′ is a chordal graph based on total ordering o. Since
p-reduced graph G′ is obtained by repeatedly removing first back-edges for each
node, it suffices to show that graph G′′ = (V,E′′), which is obtained by removing
first back-edges for each node in G, is a chordal graph based on total ordering o.
We prove this fact by contradiction, i.e., we derive a contradiction by assuming
that ∃i ∈ V, ∃j, ∃k ∈ A(E′′, o, i), s.t., (j, k) ̸∈ E′′. Without loss of generality, we
can assume k ≺ j (Fig. 2-(a)).

Since G = (V,E) is a chordal graph based on total ordering o, (j, k) ∈ E
holds. Furthermore, since (j, k) ̸∈ E′′, (j, k) must be the first back-edge of j
in G. Also, since k ∈ A(E′′, o, i), (i, k) ∈ E′′ holds. Thus, there exists node l
s.t. l ≺ k, (i, l) ∈ E, and (i, l) ̸∈ E′′ holds, i.e., (i, l) is i’s first back-edge in G
and is removed in G′′. Furthermore, since G = (V,E) is a chordal graph based
on total ordering o, and (i, l) ∈ E and (i, j) ∈ E hold, (j, l) ∈ E must hold
(Fig. 2-(b)). However, since l ≺ k, (j, k) cannot be j’s first back-edge in G. This
is a contradiction. Thus, G′′ = (V,E′′) must be a chordal graph based on total
ordering o.

We introduce a new criterion for approximated solutions.

Definition 16 (p-optimality). We say an assignment A is p-optimal for a
distributed constraint optimization problem ⟨X,C, F ⟩ and a total ordering o,
when A maximizes the total rewards in G′′ = (X,C ′′), where G′ = (X,C ′) is an
induced chordal graph of G = (X,C) based on total ordering o, and G′′ = (X,C ′′)
is the p-reduced graph of G′. More specifically, ∀A′, RC′′(A) ≥ RC′′(A′) holds.

Next, let us describe Phase 2. To find a p-optimal solution, we can use any
complete DCOP algorithms. We use the obtained p-optimal solution as an ap-
proximate solution of the original graph. In particular, since we already obtained
a pseudo-tree whose induced width is bounded, using pseudo-tree-based DCOP
algorithms would be convenient.

3.2 Quality Guarantees

We provide two methods for estimating the error of the solution obtained by our
algorithm. One method estimates absolute error which can be obtained a priori,
i.e., agents can obtain the estimate before obtaining an approximate solution.
Thus, agents can choose parameter p based on the estimation before actually
obtaining an approximate solution.



Theorem 2. For a distributed constraint optimization problem ⟨X,C, F ⟩, its
constraint graph G = (X,C), and a total ordering o, if A is p-optimal, then
the following condition holds among R(A∗) and R(A), where A∗ is an optimal
assignment:

R(A∗)−R(A) ≤ rmax ×
w(G,o)−p∑

k=1

(|X| − (k + 1))

Proof. Since A is p-optimal, for G′ = (X,C ′), which is an induced chordal graph
of G based on total ordering o, and G′′ = (X,C ′′), which is a p-reduced graph
of G′, the following condition holds:

RC′′(A∗) ≤ RC′′(A).

Furthermore, C ′ is obtained by adding edges to C, and C ′′ is obtained from C ′

by removing at most
∑w(G,o)−p

k=1 (|X| − (k+1)) edges. Since the maximal reward
of each edge is bounded by rmax, the following condition holds:

R(A∗) ≤ RC′′(A∗) + rmax ×
w(G,o)−p∑

k=1

(|X| − (k + 1)).

Furthermore, it is clear that the following condition holds:

RC′′(A) ≤ R(A).

Thus, we obtain

R(A∗)−R(A) ≤ rmax ×
w(G,o)−p∑

k=1

(|X| − (k + 1)).

Intuitively, the absolute error is given by the product of rmax and the maximal
number of removed back-edges.

Furthermore, we can compute the upper bound of the relative error using
a method similar to ADPOP [10]. Note that this error bound can be obtained
only a posteriori, i.e., we first need to obtain an approximate solution, then, we
know the upper-bound of the relative error. Intuitively, if we remove a back-
edge connecting i and j, we add an edge that connects i and j′, where j′ is a
copy of j but it is connected only to i and has no unary reward. If we add an
equality constraint between j and j′, this problem is equivalent to the original
problem. By ignoring such a constraint, we obtain a relaxed problem. Note that
the induced width of this relaxed problem is p. This method, which ignores some
dependencies among variables, is similar to minibucket elimination scheme [12].

4 Experimental Evaluation

In this section, we evaluate the solution quality and the accuracy of the error
bounds obtained by our algorithm and show comparisons with DALO-t [13] and
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Fig. 3. (a), (b), and (c) in p-optimal algorithm for graphs with 20 nodes, induced width
5, and density 0.4. Value closer to 1 is desirable.

the bounded max-sum algorithm [9]. In our evaluations, we use the following
problem instances. The domain size of each variable is three, and the reward
of each binary constraint is in the range [0,. . . ,99]. Each data point in a graph
represents an average of 30 problem instances. We generate random graphs with
a fixed induced width. For Phase 2 of our p-optimal algorithm, we use the DPOP
algorithm with FRODO [14](version 2.7.1). For comparison, we use the DALO-
t algorithm that obtains t-distance-optimal solutions, since [8] shows that the
error bounds for t-distance-optimality are usually better than that for k-size
optimality. In our comparison, we mostly use settings p=1 and t=1.

First, we show (a) the quality of an obtained solution, (b) the estimated
quality of an optimal solution based on the relative error bound, and (c) the
estimated quality of an optimal solution based on the absolute error bound for
the p-optimal algorithm. The results of (a), (b), and (c) are normalized by the
quality of an actual optimal solution, where (a) should be less than 1, and (b)
and (c) should be more than 1. For all of them, a value closer to 1 is desirable.
Figure 3 shows these values for graphs with 20 nodes, induced width 5, and the
density of the binary constraints 0.4. We vary parameter p from 1 to 5. Note
that when we set the number of nodes to 20 and the induced width to 5, we
cannot create a graph whose density is greater than 0.6. We can see that the
obtained solution quality and estimation are reasonable for most cases, except
that (c) becomes rather inaccurate when p = 1. This is because the number of
removed edges is large. In such a case, we need to increase p to obtain a better
estimation.
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Fig. 4. (a), (b), and (c) in p=1-optimal algorithm and DALO-t=1 for graphs with (i)
20 nodes, induced width 5, (ii) 20 nodes, density 0.3, and (iii) density 0.3, induced
width 3. Broken line indicates results for DALO-t=1. Value closer to 1 is desirable.

Next, we compare our algorithm for p=1-optimality and DALO-t=1 for t=1-
distance-optimality. Usually, DALO-t is used as an anytime algorithm, i.e., it
continuously obtains t-optimal solutions. In this paper, we stop DALO-t when
the first t-optimal solution is found. Figure 4(i) shows (a), (b), and (c) in the
p=1-optimal algorithm and in DALO-t=1 for graphs with 20 nodes and induced
width 5, varying the density. A value closer to 1 is desirable. The broken lines
indicate the results for DALO-t=1. We can see (a), (b), and (c) are better/more
accurate in the p=1-optimal algorithm compared with DALO-t=1. Results (b)
and (c) for the p=1-optimal algorithm become less accurate when the density
increases. This is because the number of removed edges becomes large in the
high density region. Figure 4(ii) shows the results for graphs with 20 nodes and
density 0.3, varying the induced width. We can see even the induced width is
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increased, (a), (b), and (c) for p=1-optimal algorithm are better/more accurate
compared with DALO-t=1. Figure 4(iii) shows the results for graphs with density
0.3 and induced width 3, varying the number of nodes. The obtained results are
similar to Fig. 4(i), i.e., (b) and (c) for the p=1-optimal algorithm become less
accurate when the number of nodes increases.

Moreover, we show the results for large-scale problem instances. For them,
obtaining an optimal solution is infeasible. Figure 5 shows the results for graphs
with 1000 nodes and induced width 5, varying the density. Since we cannot
obtain optimal solutions for these problem instances, we show the values of the
obtained reward (which are not normalized). By setting the induced width to
5, we cannot create a graph whose density is greater than 0.01. We can see the
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Fig. 6. (a), (b), and (c) in p=1-optimal algorithm and bounded max-sum algorithm
for graphs with induced width 2. Broken line indicates results for bounded max-sum
(bmaxsum) algorithm. Value closer to 1 is desirable.

rewards/run time for the p=1-optimal algorithm are greater/shorter compared
to those for DALO-t=1.

Finally, we compare our algorithm for p=1-optimality and the bounded max-
sum (bmaxsum) algorithm. We used graph coloring problems in the same settings
presented in [9], except that the reward of each binary constraint is in the range
[0,. . . ,6]. Figure 6 shows the results for graphs with induced width 2, varying
the number of nodes. A value closer to 1 is desirable. Broken lines indicate the
results for the bounded max-sum algorithm. We can see (a) and (b) (also (c))
are better in the p=1-optimal algorithm compared with the bounded max-sum
algorithm.

One might imagine that the relative error of bounded-max-sum can be higher
than the absolute error of p-optimality with p=1, since bounded max-sum al-
gorithm uses some information about the real cost of removed edges. Since our
algorithm and the bounded maxsum algorithm use different graph structures
(i.e., a standard constraint graph and a factor graph, respectively), we cannot
simply say that an informed/heuristic method for eliminating edges should work
better. Our speculation is that the set of eliminated edges chosen by the bounded
maxsum algorithm is somewhat far away from an optimal overall choice, since
the elimination method is greedy/local.

We show the results for large-scale problem instances (graphs with 1000 nodes
and induced width 2) in Fig. 7. Similar to the problem instances used in Fig. 5,
obtaining an optimal solution is infeasible for these problem instances. By setting
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Fig. 7. Obtained rewards (not normalized) and run time (ms) for graphs with 1000
nodes and induced width 2. Broken line indicates results for bounded max-sum (bmax-
sum) algorithm.

the induced width to 2, we cannot create a graph whose density is greater than
0.004. We show the values of the obtained reward (which are not normalized) as
in Fig. 5. We can see the rewards/run time for the p=1-optimal algorithm are
greater/shorter compared to those for the bounded max-sum algorithm.

In summary, these experimental results reveal that (i) the quality of the
obtained solution of the p=1-optimal algorithm is much better compared with
DALO-t=1 and bounded max-sum algorithms, (ii) the estimated quality of an
optimal solution based on the absolute/relative error bounds for the p=1-optimal
algorithm is more accurate than the other algorithms, and (iii) the run time of
our algorithm is much shorter.

Although we did not show the results of ADPOP, they are basically similar
to our algorithms, since these two algorithms differ only in the methods to de-



termine which edges to eliminate. The advantage of our algorithm is that it can
provide the bound of a solution a priori.

Let us speculate why our algorithm can obtain better results compared to
DALO-t and the bounded max-sum algorithm. These algorithms obtain approx-
imate solutions of the original problem, while our algorithm obtains an optimal
solution for a relaxed problem. If the relaxed problem is not so different from
the original problem (e.g., the induced width is small), our algorithm can find a
better solution quickly.

It must be mentioned that we require knowledge of the induced width and
rmax to obtain a priori bound based on p-optimality. On the other hand, the
error bound obtained by k/t-optimality is independent from problem instances.
If rmax can be extremely large, while the average of the binary rewards is rather
small compared to rmax, the absolute error bound of p-optimality becomes less
informative.

5 Conclusion

We developed a new solution criterion called p-optimality and an incomplete al-
gorithm for obtaining a p-optimal solution. This algorithm utilizes a graph struc-
ture called a pseudo-tree, which is widely used in complete DCOP algorithms.
We provided the upper bounds of the absolute/relative errors of the solution,
which can be obtained a priori/a posteriori, respectively. We showed that our
algorithm for p=1-optimality can obtain better quality solutions and estimate
more accurate error bounds compared with DALO-t for t=1-distance-optimality
and the bounded max-sum algorithm. Furthermore, we showed that the run time
for our algorithm for p=1-optimality is much shorter compared to these existing
algorithms. Our future works include developing an anytime/complete algorithm
that utilizes our algorithm as a preprocessing phase. A similar idea, i.e., using
ADPOP as a preprocessing for ADOPT, is presented in [15].
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