
Uninformed
Search

strategies

Uninformed Search strategies
AIMA sections 3.4

Uninformed
Search

strategies

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition
♦ Breadth-first search
♦ Uniform-cost search
♦ Depth-first search
♦ Depth-limited search
♦ Iterative deepening search

Uninformed
Search

strategies

Breadth-first search

Expand shallowest unexpanded node
Implementation:

frontier is a FIFO queue, i.e., new successors go at the end

Uninformed
Search

strategies

Breadth-first search

Expand shallowest unexpanded node
Implementation:

frontier is a FIFO queue, i.e., new successors go at the end

Uninformed
Search

strategies

Breadth-first search

Expand shallowest unexpanded node
Implementation:

frontier is a FIFO queue, i.e., new successors go at the end

Uninformed
Search

strategies

Breadth-first search

Expand shallowest unexpanded node
Implementation:

frontier is a FIFO queue, i.e., new successors go at the end

Uninformed
Search

strategies

Breadth-First Search Algorithm

function BFS(problem) returns a solution, or failure
node← node with State=problem.Initial-State,Path-Cost=0
if problem.Goal-Test(node.State) then return node
explored← empty set
frontier←FIFO queue with node as the only element
loop do
if frontier is empty then return failure
node←Pop(frontier)
add node.State to explored
for each action in problem.Actions(node.State) do
child←Child-Node(problem,node,action)
if child.State is not in explored or frontier then
if problem.Goal-Test(child.State) then return child
frontier← Insert(child)

end if
end for

end loop

Uninformed
Search

strategies

Properties of breadth-first search

Complete??

Yes (if b is finite)
Time?? b + b2 + b3 + . . .+ bd = O(bd), i.e., exp. in d
Space?? O(bd) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general
Space is the big problem; can easily generate nodes at
100MB/sec

so 24hrs = 8640GB.

Uninformed
Search

strategies

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time??

b + b2 + b3 + . . .+ bd = O(bd), i.e., exp. in d
Space?? O(bd) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general
Space is the big problem; can easily generate nodes at
100MB/sec

so 24hrs = 8640GB.

Uninformed
Search

strategies

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? b + b2 + b3 + . . .+ bd = O(bd), i.e., exp. in d
Space??

O(bd) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general
Space is the big problem; can easily generate nodes at
100MB/sec

so 24hrs = 8640GB.

Uninformed
Search

strategies

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? b + b2 + b3 + . . .+ bd = O(bd), i.e., exp. in d
Space?? O(bd) (keeps every node in memory)
Optimal??

Yes (if cost = 1 per step); not optimal in general
Space is the big problem; can easily generate nodes at
100MB/sec

so 24hrs = 8640GB.

Uninformed
Search

strategies

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? b + b2 + b3 + . . .+ bd = O(bd), i.e., exp. in d
Space?? O(bd) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at
100MB/sec

so 24hrs = 8640GB.

Uninformed
Search

strategies

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? b + b2 + b3 + . . .+ bd = O(bd), i.e., exp. in d
Space?? O(bd) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general
Space is the big problem; can easily generate nodes at
100MB/sec

so 24hrs = 8640GB.

Uninformed
Search

strategies

Uniform cost search

Expand least-cost unexpanded node (i.e., minimum step cost)
Implementation:

frontier = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost ≥ ε
Time?? # of nodes with g ≤ cost of optimal solution,
O(bdC

∗/εe)
where C ∗ is the cost of the optimal solution

Space?? # of nodes with g ≤ cost of optimal solution,
O(bdC

∗/εe)
Optimal?? Yes—nodes expanded in increasing order of g(n)

Uninformed
Search

strategies

Depth-first search

Expand deepest unexpanded node
Implementation:

frontier = LIFO queue, i.e., put successors at front

Uninformed
Search

strategies

Depth-first search

Expand deepest unexpanded node
Implementation:

frontier = LIFO queue, i.e., put successors at front

Uninformed
Search

strategies

Depth-first search

Expand deepest unexpanded node
Implementation:

frontier = LIFO queue, i.e., put successors at front

Uninformed
Search

strategies

Depth-first search

Expand deepest unexpanded node
Implementation:

frontier = LIFO queue, i.e., put successors at front

Uninformed
Search

strategies

Depth-first search

Expand deepest unexpanded node
Implementation:

frontier = LIFO queue, i.e., put successors at front

Uninformed
Search

strategies

Depth-first search

Expand deepest unexpanded node
Implementation:

frontier = LIFO queue, i.e., put successors at front

Uninformed
Search

strategies

Depth-first search

Expand deepest unexpanded node
Implementation:

frontier = LIFO queue, i.e., put successors at front

Uninformed
Search

strategies

Depth-first search

Expand deepest unexpanded node
Implementation:

frontier = LIFO queue, i.e., put successors at front

Uninformed
Search

strategies

Depth-first search

Expand deepest unexpanded node
Implementation:

frontier = LIFO queue, i.e., put successors at front

Uninformed
Search

strategies

Depth-first search

Expand deepest unexpanded node
Implementation:

frontier = LIFO queue, i.e., put successors at front

Uninformed
Search

strategies

Depth-first search

Expand deepest unexpanded node
Implementation:

frontier = LIFO queue, i.e., put successors at front

Uninformed
Search

strategies

Depth-first search

Expand deepest unexpanded node
Implementation:

frontier = LIFO queue, i.e., put successors at front

Uninformed
Search

strategies

Properties of depth-first search

Complete??

No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than

breadth-first
Space?? O(bm), i.e., linear space!
Optimal?? No!

Uninformed
Search

strategies

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time??

O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than

breadth-first
Space?? O(bm), i.e., linear space!
Optimal?? No!

Uninformed
Search

strategies

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than

breadth-first
Space??

O(bm), i.e., linear space!
Optimal?? No!

Uninformed
Search

strategies

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than

breadth-first
Space?? O(bm), i.e., linear space!
Optimal??

No!

Uninformed
Search

strategies

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than

breadth-first
Space?? O(bm), i.e., linear space!
Optimal?? No!

Uninformed
Search

strategies

Depth-limited search

DFS + depth limit l : nodes at depth l have no successors
Recursive implementation:

function DLS(problem, limit) returns soln/fail/cutoff
R-DLS(Make-Node(problem.Initial-State),problem, limit)

function R-DLS(node,problem, limit) returns soln/fail/cutoff
if problem.Goal-Test(node.State) then return node
else if limit = 0 then return cutoff
else

cutoff-occurred?← false
for each action in problem.Actions(node.State) do

child←Child-Node(problem,node, action)
result←R-DLS(child,problem, limit-1)
if result = cutoff then cutoff-occurred?← true
else if result 6= failure then return result

end for
if cutoff-occurred? then return cutoff else return failure

end else

Uninformed
Search

strategies

Iterative deepening search

function IDS(problem) returns a solution
inputs: problem, a problem

for depth← 0 to ∞ do
result←DLS(problem, depth)
if result 6= cutoff then return result

end

Uninformed
Search

strategies

Iterative deepening search

Uninformed
Search

strategies

Iterative deepening search

Uninformed
Search

strategies

Iterative deepening search

Uninformed
Search

strategies

Iterative deepening search

Uninformed
Search

strategies

Properties of iterative deepening search

Complete??

Yes
Time?? db1 + (d − 1)b2 + . . .+ bd = O(bd)
Space?? O(bd)
Optimal?? Yes, if step cost = 1

Can be modified to explore uniform-cost tree

Uninformed
Search

strategies

Properties of iterative deepening search

Complete?? Yes
Time??

db1 + (d − 1)b2 + . . .+ bd = O(bd)
Space?? O(bd)
Optimal?? Yes, if step cost = 1

Can be modified to explore uniform-cost tree

Uninformed
Search

strategies

Properties of iterative deepening search

Complete?? Yes
Time?? db1 + (d − 1)b2 + . . .+ bd = O(bd)
Space??

O(bd)
Optimal?? Yes, if step cost = 1

Can be modified to explore uniform-cost tree

Uninformed
Search

strategies

Properties of iterative deepening search

Complete?? Yes
Time?? db1 + (d − 1)b2 + . . .+ bd = O(bd)
Space?? O(bd)
Optimal??

Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Uninformed
Search

strategies

Properties of iterative deepening search

Complete?? Yes
Time?? db1 + (d − 1)b2 + . . .+ bd = O(bd)
Space?? O(bd)
Optimal?? Yes, if step cost = 1

Can be modified to explore uniform-cost tree

Uninformed
Search

strategies

BFS Vs IDS

Numerical comparison for b = 10 and d = 5, solution at far
right leaf:

N(IDS) = 50+ 400+ 3, 000+ 20, 000+ 100, 000
= 123, 450

N(BFS) = 10+ 100+ 1, 000+ 10, 000+ 100, 000
= 111, 101

IDS repeats dome nodes but it does not do much worse than
BFS because complexity is dominated by exponential growth of
nodes.

Uninformed
Search

strategies

Summary of algorithms

♦ Considering tree-search versions

Criterion BF UC DF DL ID

Complete? Yes∗ Yes∗,† No Yes∗, if l ≥ d Yes∗

Time bd bdC
∗/εe bm bl bd

Space bd bdC
∗/εe bm bl bd

Optimal? Yes? Yes No Yes?, if l ≥ d Yes?

*: complete if branching factor is finite
†: complete if step cost is ≥ ε
?: optimal if step costs are all identical

Uninformed
Search

strategies

Summary

♦ Variety of uninformed search strategies
♦ Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms
♦ Graph search can be exponentially more efficient than tree
search

Uninformed
Search

strategies

Exercise: Search Space Dimension

BFS vs IDS
Assume: i) a well balanced search tree; ii) the goal state is the
last one to be expanded in its level (e.g., the rightmost).
♦ if the branching factor is 3, the shallowest goal state is at
depth 3 (root has depth 0) and we proceed breadth first how
many nodes are generated ?
♦ if the branching factor is 3, the shallowest goal state is
at depth 3 (root has depth 0) we proceed with an iterative
deepening approach, how many nodes are generated ?

Uninformed
Search

strategies

Exercise: formalizing and solving problem through
search

The Wolf Sheep and Cabbage Problem
A man owns a wolf, a sheep and a cabbage: He is on a river bank
with a boat that can carry him with only one of his goodies at a
time.
The man wants to reach the other bank with his wolf, sheep and
cabbage, but he knows that wolves eat sheeps, and sheeps eat
cabbages, so he cannot leave them alone on a bank.

♦ Formalize the WSC problem as a search problem
♦ Use breadth first to find a solution

Uninformed
Search

strategies

Exercise: formalizing and solving problem through
search

The Missionaries and Cannibals
Three missionaries and three cannibals are on the same river bank,
and want to cross it.
They have a boat that can carry two people at most. Cannibals
should never outnumber missionaries, on any bank, as they could
eat them.
♦ Formalize the MC problem as a search problem
♦ Give a solution

Uninformed
Search

strategies

Exercise: Optimality for Graph Search

Differences between different search strategies
Consider the state space graph in the figure, all moves cost 1.

S

G

S2 S3S1

S0

U D

R R

Answer to the following questions:
State whether a Graph Search version of BFS would always
return the optimal solution for this problem, if not provide
an execution where this is not the case.
State whether a Graph Search version of IDS would always
return the optimal solution for this problem, if not provide
an execution where this is not the case.

