Uncertainty

Uncertainty AIMA Chapter 13

Outline

- ♦ Uncertainty
- \Diamond Probability
- ♦ Syntax and Semantics
- ♦ Inference
- ♦ Independence and Bayes' Rule

Uncertainty

Uncertainty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1) partial observability (road state, other drivers' plans, etc.)
- 2) noisy sensors (traffic reports)
- 3) uncertainty in action outcomes (flat tire, etc.)
- 4) immense complexity of modelling and predicting traffic Hence a purely logical approach either
- a) risks falsehood: " A_{25} will get me there on time"

but I'd have to stay overnight in the airport ...

b) leads to conclusions that are too weak for decision making: " A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc." Note: A_{1440} might reasonably be said to get me there on time

Methods for handling uncertainty

Uncertainty

<u>Default or nonmonotonic</u> logic:

Assume my car does not have a flat tire Assume A_{25} works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Fuzzy logic handles degree of truth NOT uncertainty e.g., WetGrass is true to degree 0.2

Probability

Given the available evidence,

 A_{25} will get me there on time with probability 0.04

Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

Probability

Uncertainty

Probabilistic assertions summarize effects of

<u>laziness</u>: failure to enumerate exceptions, qualifications, etc.

ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

Probabilities relate propositions to one's own state of knowledge

e.g., $P(A_{25}|\text{no reported accidents}) = 0.06$

These do **not** represent degrees of truth but rather degrees of **belief**

Probabilities of propositions change with new evidence:

e.g., $P(A_{25}|\text{no reported accidents}, 5 a.m.) = 0.15$

(Analogous to logical entailment status $KB \models \alpha$, not truth.)

Making decisions under uncertainty

 ${\sf Uncertainty}$

Suppose I believe the following:

```
P(A_{25} \text{ gets me there on time}|...) = 0.04

P(A_{90} \text{ gets me there on time}|...) = 0.70

P(A_{120} \text{ gets me there on time}|...) = 0.95

P(A_{1440} \text{ gets me there on time}|...) = 0.9999
```

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory

Maximum Expected Utility (MEU) = choosing the action that yields the highest expected utility averaged over all the possible outcomes of the action

Probability basics

Uncertainty

Begin with a set Ω —the sample space e.g., 6 possible rolls of a dice.

 $\omega \in \Omega$ is a sample point/possible world/atomic event A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.

$$0 \le P(\omega) \le 1$$

$$\sum_{\omega} P(\omega) = 1$$

e.g.,
$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$$
.

An event A is any subset of Ω

$$P(A) = \sum_{\{\omega \in A\}} P(\omega)$$

$$P(\text{dice roll} < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2$$

Random variables

Uncertainty

Variables in probability theory are called random variable.

Random variables can have various domains e.g.,

$$Odd = \{true, false\}, Dice_roll = \{1, \cdots, 6\}.$$

The values of the random variable are subject to chances.

i.e., we can not decide on random variable allocation

P induces a probability distribution for any r.v. X:

$$P(X=x_i) = \sum_{\{\omega: X=x_i\}} P(\omega)$$

e.g.,

$$P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2$$

Propositions

Uncertainty

Think of a proposition as the event (set of sample points) where the proposition is true Given Boolean random variables A and B: event $a = \text{set of sample points where } A(\omega) = true$ event $\neg a = \text{set of sample points where } A(\omega) = \text{false}$ event $a \wedge b = \text{points}$ where $A(\omega) = true$ and $B(\omega) = true$ Often in Al applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables With Boolean variables, sample point = propositional logic model

e.g.,
$$A = true$$
, $B = false$, or $a \land \neg b$.

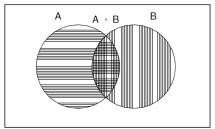
Proposition = disjunction of atomic events in which it is true e.g., $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$ $\implies P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$

Why use probability?

Uncertainty

The definitions imply that certain logically related events must have related probabilities

E.g.,
$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$



de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Syntax for propositions

```
Basic Propositions = random variables (RV)
Propositions = Arbitrary Boolean combinations of RVs
Types of random variables:
Propositional or Boolean RV
 e.g., Cavity (do I have a cavity?)
 Cavity = true is a proposition, also written cavity
♦ Discrete RV (finite or infinite)
 e.g., Weather is one of (sunny, rain, cloudy, snow)
 Weather = rain is a proposition
 Values must be exhaustive and mutually exclusive
Continuous RV (bounded or unbounded)
 e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.
```

Atomic Events

- \Diamond Assignment of all variables \Rightarrow Atomic Event (AE) e.g., if RVs = {Cavity, Toothache}, then {cavity, toothache} is AE
- ♦ Key properties for AEs
 - 1) mutually exclusive cavity \land toothache or cavity \land ¬toothache not both
 - 2) exhaustive disjunction of all atomic events must be true
 - 3) entails truth of every proposition standard semantic of logical connectives
 - 4) any prop. logically equivalent to disjunction of relevant AEs e.g., $cavity \equiv (cavity \land toothache) \lor (cavity \land \neg toothache)$
- ♦ AEs analogous to models for logic

Prior probability

- \Diamond Prior or unconditional probabilities of propositions e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72
- ♦ correspond to belief prior to arrival of any (new) evidence
- \diamondsuit analogous to facts in KB
- ♦ Probability distribution: values for all possible assignments:
 - $P(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$ (normalized: sums to 1)

Joint probability

Uncertainty

Joint probability distribution for a set of RVs gives the probability of every atomic event on those RVs (i.e., every sample point)

 $P(Weather, Cavity) = a 4 \times 2 \text{ matrix of values:}$

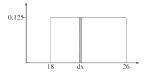
Weather =	sunny	rain	cloudy	snow
Cavity = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

Every question about a domain can be answered by the full joint distribution because every event is a sum of sample points

Probability for continuous variables

Uncertainty

Express distribution as a parameterized function of value: P(X=x) = U[18,26](x) = uniform density between 18 and 26

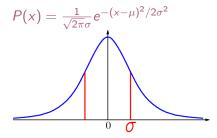


Here P is a density; integrates to 1.

$$P(X = 20.5) = 0.125$$
 really means

$$\lim_{dx\to 0} P(20.5 \le X \le 20.5 + dx)/dx = 0.125$$

Gaussian density



- lacksquare area under the curve between $-\sigma$ and σ accounts for 68.2% of the set
- area under the curve between -2σ and 2σ accounts for 95.4% of the set
- area under the curve between -3σ and 3σ accounts for 99.7% of the set

Conditional probability

```
Conditional or posterior probabilities
 e.g., P(cavity | toothache) = 0.6
 i.e., given that toothache is all I know
 NOT "if toothache then 60% chance of cavity"
(Notation for conditional distributions:
 P(Cavity | Toothache) = 2-element vector of 2-element
vectors)
If we know more, e.g., cavity is also given, then we have
 P(cavity | toothache, cavity) = 1
Note: the less specific belief remains valid after more evidence
arrives, but is not always useful
New evidence may be irrelevant, allowing simplification, e.g.,
 P(cavity|toothache, sunny) = P(cavity|toothache) = 0.6
This kind of inference, sanctioned by domain knowledge, is
crucial
```

Conditional probability

Uncertainty

Definition of conditional probability:

$$P(a|b) = \frac{P(a \wedge b)}{P(b)}$$
 if $P(b) \neq 0$

Product rule gives an alternative formulation:

$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

A general version holds for whole distributions, e.g.,

$$P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)$$

(View as a 4×2 set of equations, **not** matrix mult.)

Chain rule is derived by successive application of product rule:

$$P(X_1,...,X_n) = P(X_1,...,X_{n-1}) P(X_n|X_1,...,X_{n-1})$$

$$P(X_1,...,X_{n-2}) P(X_{n-1}|X_1,...,X_{n-2}) P(X_n|X_1,...,X_{n-1})$$

$$= \prod_{i=1}^{n} P(X_i|X_1,\ldots,X_{i-1})$$

Uncertainty

Start with the joint distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$$

- \diamondsuit recall: any proposition ϕ is equivalent to the disjunction of AEs in which ϕ holds
- ♦ recall: AEs are mutually exclusive (hence no overlap)

Uncertainty

Start with the joint distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

Uncertainty

Start with the joint distribution:

	toothache		¬ toothache	
	catch \ ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(cavity \lor toothache) =$$

$$0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$$

Uncertainty

Start with the joint distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064}$$
$$= 0.4$$

Normalization

Uncertainty

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Denominator can be viewed as a normalization constant α

$$P(\textit{Cavity}|\textit{toothache}) = \alpha P(\textit{Cavity}, \textit{toothache})$$

$$= \alpha [P(\textit{Cavity}, \textit{toothache}, \textit{catch})$$

$$+P(\textit{Cavity}, \textit{toothache}, \neg \textit{catch})]$$

$$= \alpha [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle]$$

$$= \alpha \langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle$$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Inference by enumeration, contd.

Uncertainty

Let X be all the variables. Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E Let the hidden variables be H = X - Y - EThen the required summation of joint entries is done by summing out the hidden variables:

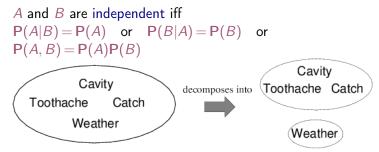
$$P(Y|E=e) = \alpha P(Y,E=e) = \alpha \sum_{h} P(Y,E=e,H=h)$$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables Obvious problems:

- 1) Worst-case time complexity $O(d^n)$ where d is the largest arity
 - 2) Space complexity $O(d^n)$ to store the joint distribution
- 3) How to find the numbers for $O(d^n)$ entries???

Independence

Uncertainty



P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity)P(Weather)

32 entries (2³ * 4) reduced to 12 (2³ + 8);
for n independent biased coins, 2ⁿ → n

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

Uncertainty

```
P(Toothache, Cavity, Catch) has 2^3 - 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity:

(2) P(catch|toothache, \neg cavity) = P(catch|\neg cavity)

Catch is conditionally independent of Toothache given Cavity:

P(Catch|Toothache, Cavity) = P(Catch|Cavity)
```

Equivalent statements: $P(\textit{Toothache}|\textit{Catch},\textit{Cavity}) = P(\textit{Toothache}|\textit{Cavity}) \\ P(\textit{Toothache},\textit{Catch}|\textit{Cavity}) = \\ P(\textit{Toothache}|\textit{Cavity})P(\textit{Catch}|\textit{Cavity})$

Conditional independence contd.

Uncertainty

Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)

- = P(Toothache|Catch, Cavity)P(Catch, Cavity)
- $= \mathsf{P}(\mathit{Toothache}|\mathit{Catch},\mathit{Cavity}) \mathsf{P}(\mathit{Catch}|\mathit{Cavity}) \mathsf{P}(\mathit{Cavity})$
- = P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

Uncertainty

Product rule
$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

$$\implies$$
 Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

or in distribution form

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} = \alpha P(X|Y)P(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

E.g., let *M* be meningitis, *S* be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

Uncertainty

$$P(Cavity | toothache \land catch)$$

- $= \alpha P(toothache \wedge catch|Cavity)P(Cavity)$
- $= \ \alpha \, \mathsf{P}(\mathit{toothache}|\mathit{Cavity}) \mathsf{P}(\mathit{catch}|\mathit{Cavity}) \mathsf{P}(\mathit{Cavity})$

This is an example of a naive Bayes model:

$$P(Cause, Effect_1, \dots, Effect_n)$$

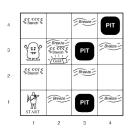
$$= P(Cause) | I_i P(Effect_i | Cause)$$



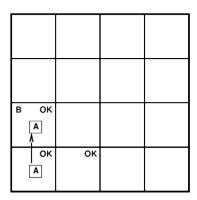
Wumpus World PEAS description

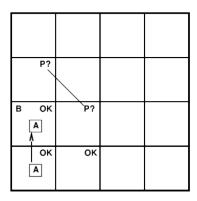
Uncertainty

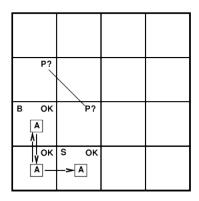
Performance measure gold +1000, death -1000 -1 per step, -10 for using the arrow Environment Squares adjacent to wumpus are smelly Squares adjacent to pit are breezy Glitter iff gold is in the same square Shooting kills wumpus if you are facing it Shooting uses up the only arrow Grabbing picks up gold if in same square Releasing drops the gold in same square Actuators Left turn, Right turn, Forward, Grab, Release, Shoot Sensors Breeze, Glitter, Smell

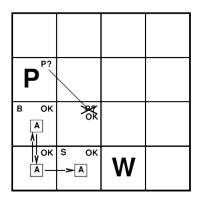


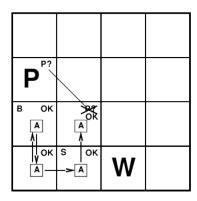
ОК		
OK A	ОК	

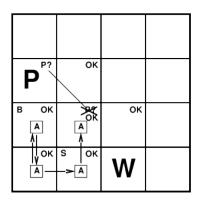


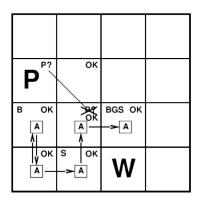






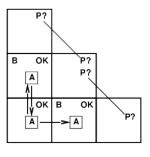






A tight spot

Uncertainty

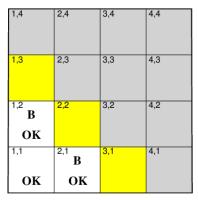


Breeze in (1,2) and (2,1) \implies no safe actions

Assuming pits uniformly distributed, (2,2) has pit w/ prob 0.86, vs. 0.31

Wumpus World

Uncertainty



 $P_{ij} = true$ iff [i, j] contains a pit $B_{ij} = true$ iff [i, j] is breezy Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Specifying the probability model

Uncertainty

The full joint distribution is $P(P_{1,1}, \dots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$ Apply product rule:

$$P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \dots, P_{4,4}) P(P_{1,1}, \dots, P_{4,4})$$

(Do it this way to get P(Effect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise Second term: pits are placed randomly, probability 0.2 per square:

$$P(P_{1,1},\ldots,P_{4,4}) = \prod_{i,j=1,1}^{4,4} P(P_{i,j}) = 0.2^n \times 0.8^{16-n}$$

for n pits.

Observations and query

Uncertainty

We know the following facts:

$$b = \neg b_{1,1} \land b_{1,2} \land b_{2,1}$$

$$known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$$

Query is $P(P_{1,3}|known,b)$

Define $Unknown = P_{ij}s$ other than $P_{1,3}$ and Known For inference by enumeration, we have

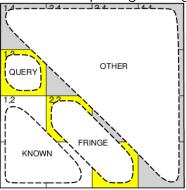
$$P(P_{1,3}|known,b) = \alpha \sum_{unknown} P(P_{1,3}, unknown, known, b)$$

Grows exponentially with number of squares!

Using conditional independence

Uncertainty

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

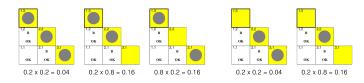


Define $Unknown = Fringe \cup Other$ $P(b|P_{1,3}, Known, Unknown) = P(b|P_{1,3}, Known, Fringe)$ Manipulate query into a form where we can use this!

Using conditional independence contd.

$$\begin{split} &\mathsf{P}(P_{\mathbf{1},\mathbf{3}}|known,b) = \alpha \sum_{unknown} \mathsf{P}(P_{\mathbf{1},\mathbf{3}},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathsf{P}(b|P_{\mathbf{1},\mathbf{3}},known,unknown) \mathsf{P}(P_{\mathbf{1},\mathbf{3}},known,unknown) \\ &= \alpha \sum_{ininge} \sum_{other} \mathsf{P}(b|known,P_{\mathbf{1},\mathbf{3}},fringe,other) \mathsf{P}(P_{\mathbf{1},\mathbf{3}},known,fringe,other) \\ &= \alpha \sum_{fringe} \sum_{other} \mathsf{P}(b|known,P_{\mathbf{1},\mathbf{3}},fringe) \mathsf{P}(P_{\mathbf{1},\mathbf{3}},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathsf{P}(b|known,P_{\mathbf{1},\mathbf{3}},fringe) \sum_{other} \mathsf{P}(P_{\mathbf{1},\mathbf{3}},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathsf{P}(b|known,P_{\mathbf{1},\mathbf{3}},fringe) \sum_{other} \mathsf{P}(P_{\mathbf{1},\mathbf{3}}) \mathsf{P}(known) \mathsf{P}(fringe) \mathsf{P}(other) \\ &= \alpha P(known) \mathsf{P}(P_{\mathbf{1},\mathbf{3}}) \sum_{fringe} \mathsf{P}(b|known,P_{\mathbf{1},\mathbf{3}},fringe) \mathsf{P}(fringe) \sum_{other} \mathsf{P}(other) \\ &= \alpha' \mathsf{P}(P_{\mathbf{1},\mathbf{3}}) \sum_{fringe} \mathsf{P}(b|known,P_{\mathbf{1},\mathbf{3}},fringe) \mathsf{P}(fringe) \end{split}$$

Using conditional independence contd.



$$P(P_{1,3}|known,b) = \alpha' \langle 0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16) \rangle$$
 $\approx \langle 0.31, 0.69 \rangle$
 $P(P_{2,2}|known,b) \approx \langle 0.86, 0.14 \rangle$

Summary

- ♦ Probability is a rigorous formalism for uncertain knowledge
- ♦ Joint probability distribution specifies probability of every atomic event
- ♦ Queries can be answered by summing over atomic events
- ♦ For nontrivial domains, we must find a way to reduce the joint size
- \diamondsuit Independence and conditional independence provide the tools