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Uncertainty

Let action At = leave for airport t minutes before flight
Will At get me there on time?
Problems:
1) partial observability (road state, other drivers’ plans, etc.)
2) noisy sensors (traffic reports)
3) uncertainty in action outcomes (flat tire, etc.)
4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either
a) risks falsehood: “A25 will get me there on time”
b) leads to conclusions that are too weak for decision making:

“A25 will get me there on time if there’s no accident on the
bridge and it doesn’t rain and my tires remain intact etc etc.”
Note: A1440 might reasonably be said to get me there on time
but I’d have to stay overnight in the airport . . .
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Methods for handling uncertainty

Default or nonmonotonic logic:
Assume my car does not have a flat tire
Assume A25 works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle
contradiction?
Fuzzy logic handles degree of truth NOT uncertainty e.g.,

WetGrass is true to degree 0.2
Probability
Given the available evidence,

A25 will get me there on time with probability 0.04
Mahaviracarya (9th C.), Cardamo (1565) theory of gambling
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Probability

Probabilistic assertions summarize effects of
laziness: failure to enumerate exceptions, qualifications, etc.
ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:
Probabilities relate propositions to one’s own state of knowledge

e.g., P(A25|no reported accidents) = 0.06
These do not represent degrees of truth but rather degrees of
belief
Probabilities of propositions change with new evidence:

e.g., P(A25|no reported accidents, 5 a.m.) = 0.15
(Analogous to logical entailment status KB |= α, not truth.)



Uncertainty

Making decisions under uncertainty

Suppose I believe the following:

P(A25 gets me there on time| . . .) = 0.04
P(A90 gets me there on time| . . .) = 0.70

P(A120 gets me there on time| . . .) = 0.95
P(A1440 gets me there on time| . . .) = 0.9999

Which action to choose?
Depends on my preferences for missing flight vs. airport cuisine,
etc.
Utility theory is used to represent and infer preferences
Decision theory = utility theory + probability theory
Maximum Expected Utility (MEU) = choosing the action that
yields the highest expected utility averaged over all the possible
outcomes of the action
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Probability basics

Begin with a set Ω—the sample space
e.g., 6 possible rolls of a dice.
ω ∈ Ω is a sample point/possible world/atomic event

A probability space or probability model is a sample space
with an assignment P(ω) for every ω ∈ Ω s.t.
0 ≤ P(ω) ≤ 1

ΣωP(ω) = 1
e.g., P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.
An event A is any subset of Ω

P(A) =Σ{ω∈A}P(ω)

E.g.,
P(dice roll < 4) = P(1)+P(2)+P(3) = 1/6+1/6+1/6 = 1/2
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Random variables

Variables in probability theory are called random variable.
Random variables can have various domains e.g.,

Odd = {true, false}, Dice_roll = {1, · · · , 6}.
The values of the random variable are subject to chances.
i.e., we can not decide on random variable allocation

P induces a probability distribution for any r.v. X :

P(X = xi ) =Σ{ω:X = xi}P(ω)

e.g.,
P(Odd = true) = P(1) + P(3) + P(5) = 1/6+ 1/6+ 1/6 = 1/2
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Propositions

Think of a proposition as the event (set of sample points)
where the proposition is true
Given Boolean random variables A and B :
event a = set of sample points where A(ω) = true
event ¬a = set of sample points where A(ω) = false
event a ∧ b = points where A(ω) = true and B(ω) = true

Often in AI applications, the sample points are defined
by the values of a set of random variables, i.e., the
sample space is the Cartesian product of the ranges of the
variables
With Boolean variables, sample point = propositional logic
model

e.g., A = true, B = false, or a ∧ ¬b.
Proposition = disjunction of atomic events in which it is true
e.g., (a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)
=⇒ P(a ∨ b) = P(¬a ∧ b) + P(a ∧ ¬b) + P(a ∧ b)
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Why use probability?

The definitions imply that certain logically related events must
have related probabilities
E.g., P(a ∨ b) = P(a) + P(b)− P(a ∧ b)

de Finetti (1931): an agent who bets according to probabilities
that violate these axioms can be forced to bet so as to lose
money regardless of outcome.
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Syntax for propositions

Basic Propositions = random variables (RV)
Propositions = Arbitrary Boolean combinations of RVs
Types of random variables:
♦ Propositional or Boolean RV
e.g., Cavity (do I have a cavity?)
Cavity = true is a proposition, also written cavity
♦ Discrete RV (finite or infinite)
e.g., Weather is one of 〈sunny , rain, cloudy , snow〉
Weather = rain is a proposition
Values must be exhaustive and mutually exclusive
♦ Continuous RV (bounded or unbounded)
e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.
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Atomic Events

♦ Assignment of all variables ⇒ Atomic Event (AE)
e.g., if RVs = {Cavity ,Toothache}, then {cavity , toothache}

is AE
♦ Key properties for AEs
1) mutually exclusive

cavity ∧ toothache or cavity ∧ ¬toothache not both
2) exhaustive
disjunction of all atomic events must be true

3) entails truth of every proposition
standard semantic of logical connectives

4) any prop. logically equivalent to disjunction of relevant AEs
e.g., cavity ≡ (cavity ∧ toothache) ∨ (cavity ∧ ¬toothache)
♦ AEs analogous to models for logic
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Prior probability

♦ Prior or unconditional probabilities of propositions
e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72
♦ correspond to belief prior to arrival of any (new) evidence
♦ analogous to facts in KB
♦ Probability distribution: values for all possible assignments:
P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉 (normalized: sums to 1)
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Joint probability

Joint probability distribution for a set of RVs gives the
probability of every atomic event on those RVs (i.e., every
sample point)
P(Weather ,Cavity) = a 4× 2 matrix of values:

Weather = sunny rain cloudy snow

Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by
the full joint distribution because every event is a sum of
sample points
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Probability for continuous variables

Express distribution as a parameterized function of value:
P(X = x) = U[18, 26](x) = uniform density between 18 and

26

Here P is a density; integrates to 1.
P(X = 20.5) = 0.125 really means

lim
dx→0

P(20.5 ≤ X ≤ 20.5 + dx)/dx = 0.125
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Gaussian density

P(x) = 1√
2πσ

e−(x−µ)
2/2σ2

area under the curve between −σ and σ accounts for
68.2% of the set
area under the curve between −2σ and 2σ accounts for
95.4% of the set
area under the curve between −3σ and 3σ accounts for
99.7% of the set
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Conditional probability

Conditional or posterior probabilities
e.g., P(cavity |toothache) = 0.6
i.e., given that toothache is all I know
NOT “if toothache then 60% chance of cavity ”

(Notation for conditional distributions:
P(Cavity |Toothache) = 2-element vector of 2-element

vectors)
If we know more, e.g., cavity is also given, then we have

P(cavity |toothache, cavity) = 1
Note: the less specific belief remains valid after more evidence
arrives, but is not always useful
New evidence may be irrelevant, allowing simplification, e.g.,

P(cavity |toothache, sunny) = P(cavity |toothache) = 0.6
This kind of inference, sanctioned by domain knowledge, is
crucial
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Conditional probability

Definition of conditional probability:

P(a|b) =
P(a ∧ b)

P(b)
if P(b) 6= 0

Product rule gives an alternative formulation:
P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)

A general version holds for whole distributions, e.g.,
P(Weather ,Cavity) = P(Weather |Cavity)P(Cavity)

(View as a 4× 2 set of equations, not matrix mult.)
Chain rule is derived by successive application of product rule:
P(X1, . . . ,Xn) = P(X1, . . . ,Xn−1) P(Xn|X1, . . . ,Xn−1)
=

P(X1, . . . ,Xn−2) P(Xn−1|X1, . . . ,Xn−2) P(Xn|X1, . . . ,Xn−1)
= . . .

=Π
n

i = 1P(Xi |X1, . . . ,Xi−1)
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Inference by enumeration

Start with the joint distribution:

For any proposition φ, sum the atomic events where it is true:

P(φ) =Σω:ω|=φP(ω)
♦ recall: any proposition φ is equivalent to the
disjunction of AEs in which φ holds
♦ recall: AEs are mutually exclusive (hence no overlap)
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Inference by enumeration

Start with the joint distribution:

For any proposition φ, sum the atomic events where it is true:

P(φ) =Σω:ω|=φP(ω)
P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Start with the joint distribution:

For any proposition φ, sum the atomic events where it is true:

P(φ) =Σω:ω|=φP(ω)
P(cavity ∨ toothache) =
0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28
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Inference by enumeration

Start with the joint distribution:

Can also compute conditional probabilities:

P(¬cavity |toothache) =
P(¬cavity ∧ toothache)

P(toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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Normalization

Denominator can be viewed as a normalization constant α

P(Cavity |toothache) = αP(Cavity , toothache)

= α [P(Cavity , toothache, catch)

+P(Cavity , toothache,¬catch)]

= α [〈0.108, 0.016〉+ 〈0.012, 0.064〉]
= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables
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Inference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variables be H = X− Y− E
Then the required summation of joint entries is done by
summing out the hidden variables:

P(Y|E= e) = αP(Y,E= e) = αΣhP(Y,E= e,H=h)

The terms in the summation are joint entries because Y, E, and
H together exhaust the set of random variables
Obvious problems:
1) Worst-case time complexity O(dn) where d is the largest

arity
2) Space complexity O(dn) to store the joint distribution
3) How to find the numbers for O(dn) entries???
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Independence

A and B are independent iff
P(A|B) =P(A) or P(B|A) =P(B) or
P(A,B) =P(A)P(B)

P(Toothache,Catch,Cavity ,Weather)
= P(Toothache,Catch,Cavity)P(Weather)

32 entries (23 ∗ 4) reduced to 12 (23 + 8);
for n independent biased coins, 2n → n

Absolute independence powerful but rare
Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Conditional independence

P(Toothache,Cavity ,Catch) has 23 − 1 = 7 independent
entries
If I have a cavity, the probability that the probe catches in it
doesn’t depend on whether I have a toothache:
(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven’t got a cavity:
(2) P(catch|toothache,¬cavity) = P(catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity :
P(Catch|Toothache,Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache,Catch|Cavity) =
P(Toothache|Cavity)P(Catch|Cavity)
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Conditional independence contd.

Write out full joint distribution using chain rule:
P(Toothache,Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2
remove 2)
In most cases, the use of conditional independence reduces the
size of the representation of the joint distribution from
exponential in n to linear in n.
Conditional independence is our most basic and robust
form of knowledge about uncertain environments.
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Bayes’ Rule

Product rule P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)

=⇒ Bayes’ rule P(a|b) =
P(b|a)P(a)

P(b)

or in distribution form

P(Y |X ) =
P(X |Y )P(Y )

P(X )
= αP(X |Y )P(Y )

Useful for assessing diagnostic probability from causal
probability:

P(Cause|Effect) =
P(Effect|Cause)P(Cause)

P(Effect)

E.g., let M be meningitis, S be stiff neck:

P(m|s) =
P(s|m)P(m)

P(s)
=

0.8× 0.0001
0.1

= 0.0008

Note: posterior probability of meningitis still very small!
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Bayes’ Rule and conditional independence

P(Cavity |toothache ∧ catch)

= αP(toothache ∧ catch|Cavity)P(Cavity)

= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . ,Effectn)

= P(Cause)ΠiP(Effecti |Cause)

Total number of parameters is linear in n
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Wumpus World PEAS description

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow
Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell
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Exploring a wumpus world
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Exploring a wumpus world
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A tight spot

Breeze in (1,2) and (2,1)
=⇒ no safe actions

Assuming pits uniformly dis-
tributed, (2,2) has pit w/ prob
0.86, vs. 0.31
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Wumpus World

Pij = true iff [i , j ] contains a pit
Bij = true iff [i , j ] is breezy
Include only B1,1,B1,2,B2,1 in the probability model
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Specifying the probability model

The full joint distribution is P(P1,1, . . . ,P4,4,B1,1,B1,2,B2,1)
Apply product rule:
P(B1,1,B1,2,B2,1 |P1,1, . . . ,P4,4)P(P1,1, . . . ,P4,4)
(Do it this way to get P(Effect|Cause).)
First term: 1 if pits are adjacent to breezes, 0 otherwise
Second term: pits are placed randomly, probability 0.2 per
square:

P(P1,1, . . . ,P4,4) =Π
4,4

i ,j = 1,1P(Pi ,j) = 0.2n× 0.816−n

for n pits.
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Observations and query

We know the following facts:
b = ¬b1,1 ∧ b1,2 ∧ b2,1
known = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

Query is P(P1,3|known, b)
Define Unknown = Pijs other than P1,3 and Known
For inference by enumeration, we have

P(P1,3|known, b) = αΣunknownP(P1,3, unknown, known, b)

Grows exponentially with number of squares!
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Using conditional independence

Basic insight: observations are conditionally independent of
other hidden squares given neighbouring hidden squares

Define Unknown = Fringe ∪ Other
P(b|P1,3,Known,Unknown) = P(b|P1,3,Known,Fringe)
Manipulate query into a form where we can use this!
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Using conditional independence contd.

P(P1,3|known, b) = α
∑

unknown

P(P1,3, unknown, known, b)

= α
∑

unknown

P(b|P1,3, known, unknown)P(P1,3, known, unknown)

= α
∑
fringe

∑
other

P(b|known, P1,3, fringe, other)P(P1,3, known, fringe, other)

= α
∑
fringe

∑
other

P(b|known, P1,3, fringe)P(P1,3, known, fringe, other)

= α
∑
fringe

P(b|known, P1,3, fringe)
∑
other

P(P1,3, known, fringe, other)

= α
∑
fringe

P(b|known, P1,3, fringe)
∑
other

P(P1,3)P(known)P(fringe)P(other)

= α P(known)P(P1,3)
∑
fringe

P(b|known, P1,3, fringe)P(fringe)
∑
other

P(other)

= α
′ P(P1,3)

∑
fringe

P(b|known, P1,3, fringe)P(fringe)
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Using conditional independence contd.

P(P1,3|known, b) = α
′ 〈0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)〉

≈ 〈0.31, 0.69〉

P(P2,2|known, b) ≈ 〈0.86, 0.14〉
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Summary

♦ Probability is a rigorous formalism for uncertain knowledge
♦ Joint probability distribution specifies probability of every
atomic event
♦ Queries can be answered by summing over atomic events
♦ For nontrivial domains, we must find a way to reduce the
joint size
♦ Independence and conditional independence provide the tools


