Tree Decom-
position
Methods

Tree Decomposition Methods
Constraint Processing 9.1, 9.2.1

Summary

Tree Decom-
position
Methods

m Acyclic Networks

m Join Tree Clustering

Importance of Acyclic Networks

Tree Decom-
position
Methods

Solving Acyclic Network

fele m Topological structure defines key features for a wide class
etwor
of problems

CSP: Inference in acyclic network is extremely efficient
(polynomial)

Idea: remove cycles from the network somehow

We can always compile a cyclic graph into an acyclic
tree-like structure

We always pay a price in term of computational complexity

The price we pay depends on the topological structure

Graph Concept: Brief Review

Tree Decom-
position
Methods

Hypergraphs

Network m Hypergraphs: H=(V,5S)

Acyclic

m Vertices: V = {v1, -+, v}
m Hyperegdes: S = {51, -+, Sk} where S; C V

Example (Hypergraph)

= V=1{AB,C,D,E,F}
m S={{A E F}{A B,CH{C,D,E}{A C E}}

Graph Concept: Brief Review

Tree Decom-

position .
Methods Prlmal Graph

m Primal Graph of a Hypergraph

ﬁcyclick m Nodes — Vertices
sewer m Two nodes connected iff they appear in the same
hyperedge

m For binary contraint networks, Hypergraph and Primal
graph are identical

Example (Primal Graph)

= V=1{AB,C,D,E,F}
m E={{A BYA,CHB,CHA EHA F}
{E,FH{C,D}{C,E}{D,E}}

Graph Concept: Brief Review

Tree Decom-
position

thods Dual Graph

m Dual Graph of a Hypergraph

Network m Nodes — Hyperedges

m Two nodes connected iff they share at least one vertex
m Edges are labeled by the shared vertices

Acyclic

Example (Dual Graph)

m V={{AE F}{A B, C}{C,D,E}A C E}}

m E = {{{A E,F}{A,B,C}}{{A E,F},{C,D,E}}
{{A,E,F},{A, C,E}}{{A, B, C},{C,D,E}}
{{C, D, E}{A G E}H{A, B, C},{A, G, E}}}

Constraint Networks and Graph Representation

Tree Decom-
position
Methods

Graph for Constraint Networks

Acyclic Any constraint network can be associated with a hypergraph
pesterk m Contraint network R = {X, D, C} with
C={Rs,, - ,Rs}
m Hypergraph Hr = (X, H) where H = {51,--- ,S,}
m Dual Graph #% = (H, E) where < S;, S; >€ E iff
Sins #{}
m Dual Problem RY = {H,D’, C"}
m D' ={Dj,---,D/}, D! set of tuples accepted by Rs,

m C'={C, -, C}, C, =<5;,5 >, enforces equality for
the set variables Xi = 5; N S;

Acyclicity of Constraint Network

Tree Decom-
position
Methods

Acyclic B
2L Acyclic Network

m If the graph representation of a problem is acyclic then we
can solve problem efficiently

m Even cyclic graphs can have a tree-like structure relative to
solution techniques

m Some arcs could be redundant
m In general it is hard to recognise redundant constraints

Acyclicity of Dual Problem

Tree Decom-
position
Methods

Redundant Constraints for Dual Problems

Aafe m For the dual graph representation we can use a simple

Network
procedure to check whether a constraint is redundant

m All constraints force equality over shared variables

m A constraint and its corresponding arc can be deleted if the
variables labeling the arc are contained in any alternative
path between the two endpoints

m Because the constraint will be enforced by the other paths.

m This property is called running intersection or
connectedness

Example: Acyclicity of Dual Problem

Tree Decom-
position
Methods

Example (Acyclic Dual Problem)

Consider this dual graph:
Acyclic m V={{AE F}A B,CHC,D E}A C E}

= £ = {{{A E, F}{A B, C}}{{A.E.F},{C, D, E}}
{{AE,F},{A,C,E}}{{A,B,C},{C,D,E}}
{{C.D.E},{A.C.E}})

We can remove redundant constraints:

m {{A E,F}{A, B, C}} because the alternative path
(AEF) — AE — (ACE) — AC — (ABC) enforce constraint on A

m {{A E,F}{C,D,E}} because the alternative path
(AEF) — AE — (ACE) — CE — (CDE) enforce constraint on E

m {{C,D,E}{A, B, C}} because the alternative path
(CDE) — CE — (ACE) — AC — (ABC) enforce constraint on C

The remaining structure is a tree

Acyclic Network

Tree Decom- .
position Maln COncepts

Methods

m Arc Subgraph of a graph G = {V/, E}: any graph
G'={V,E'} such that E' C E

Network m Running Intersection property: G dual graph of an

hypergraph, G’ an arc subgraph satisfies the running

intersection property if given any two nodes of G’ that

share a variable, there exists a path of labeled arcs, each

containing the variable.

Acyclic

m Join Graph: an arc subgraph of the dual graph that
satisfies the running intersection properties

m Join Tree: an acyclic join graph
m Hypertree: a Hypergraph whose dual graph has a join tree

m Acyclic Network: a network whose hypergraph is an
hypertree

Solving Acyclic Network

Tree Decom- Ml Algorithm for Solving Acyclic Network
position

Methods

Algorithm 1 Tree Solver
Acyclic

e Require: An Acyclic Constraint Network R, A join-tree T of R
Ensure: Determine consistency and generate a solution
d={Ri, -+, R/} order induced by T (from root to leaves)
for all j = r to 1 and for all edges < j, k > in the T with k < j do
Rk < Wsk(RK D] Rj)
if we find the empty relation then
EXIT and state the problem has NO SOLUTION

end if

end for

Select a tuple in Ry

for all i =2 to r do
Select a tuple that is consistent with all previous assigned tuples
Ry, -, Ri_1

end for

return The problem is CONSISTENT return the selected SOLUTION

Example: Solving Acyclic Problem

Tree Decom-
position
Methods

Example (Applying Tree Solver)

Acyclic . 0. o.o
Network Consider this join-tree:

m V={{AE FH{AB,C}H{C,D, E}{A C,E}}
m E={{{AE,F},{A C,E}}{{C,D,E},{A,C,E}}
{{A, B, C}.{A, C, E}}}
Assume constraints are given by
® Ragc = Raer = {(0,0,1)(0,1,0)(1,0,0)}
® Repe = Race = {(1,1,0)(0,1,1)(1,0,1)}
m d = {Race, Rcpe; Raer, Ragc}

Recognising Acyclic Networks

Tree Decom-
position
Methods

Acyclic
Network

m To apply the tree solver algorithm we need to know
whether a network is acyclic

m This can not be decided simply by checking whether there
are cycles in the primal or dual graph
m Two main methods

m Dual based Recognition
m Primal based Recognition

Dual Based Recognition

Tree Decom-
position
Methods

Acyclic
Network

Dual Based Recognition: Theoretical Result

m Maier 1983

m If a hypergraph has a join tree then any maximum
spanning tree of its dual graph is a join tree

m Weight of the arc are the number of shared variables

Dual Based Recognition: Procedure

Tree Decom-
position
Methods

Acyclic
Network

m Build the dual graph of the hypergraph

m Compute a maximum spanning tree (weight = number of
shared variables)
m Check whether the hypertree is a join tree

m Efficient because there is only one path for each couple of
nodes

Dual Based Recognition: algorithm

Tree Decom-
position

Methods Dual Acyclicity

Acyclic Algorithm 2 DualAcyclicicty

Network

Require: A hypergraph Hz = (X,S) of a constraint network R =
(X,D, C)
Ensure: A join tree T = (S, E) of Hr if R is acyclic
T = (S, E) < generate a maximum spanning tree of the weighted dual
constraint graph of R
for all couples u, v where u,v € S do
if the unique path connecting them in T does not satisfy the running
intersection property then
EXIT (R is not acyclic)
end if
end for

return R is acyclic and T is a join tree

Dual Based Recognition: Example

Tree Decom-
position

Methods Example (Dual Based Recognition)

resele Consider this dual graph:
Network mV={{A E,F}{A,B,C}{C,D,E}{A C,E}}

m E={{{AE,F}{A B, C}}{{AE,F},{C,D,E}}
{{AE,F},{A C,E}}{{A,B,C},{C,D,E}}
{{C,D,E},{A C,E}}}

If we find a MST weighting edges with number of shared
variables we obtain T:

mV={{A E,F}{A,B,C}{C,D,E}{A C,E}}

m E={{{AE,F} {A C,E}}{{C,D,E} {A ,C,E}}
{{A, B, C},{A C, E}}}

Which satisfies the running intersection property.

Primal Based Recognition

Tree Decom-
position

Methods : . .
Primal Based Recognition: main concepts

Al m A hypergraph has a join tree iff its primal graph is chordal
LSS and conformal [Maier 1983]

m Conformal A primal graph is conformal to a hypergraph if
there is a one to one mapping between maximal cliques
and scopes of constraints

m Chordal A primal graph is chordal if every cycle of length
at least 4 has a chord (an edge connecting two vertices
that are non adjacent in the cycle)

m Checking whether a graph is chordal and conformal can be
done efficiently using a max-cardinality order

Primal Based Recognition using max cardinality
order

Tree Decom-
position
Methods

max cardinality order

Network m max-cardinality order is an ordering over vertices such that:

Acyclic

m first node is chosen arbitrarily
m then the node that is connected to a maximal number of
already ordered nodes is selected (breaking ties arbitrarily)
m Chordal Graph if in a max-cardinality order each vertex and
all its ancestors form a clique
m Find Maximal clique just list nodes in the order and
consider each node ancestors

Primal Based Recognition: Procedure

Tree Decom-
position
Methods

build a max-cardinality order
Test whether the graph is chordal

m use the max-cardinality order
m check if ancestors form a clique

Test whether the graph is conformal

m use the max-cardinality order
m extract maximal cliques, check conformality

Primal Based Recognition: algorithm

Tree Decom-

position P”mal C||C|ty
Methods

Algorithm 3 PrimalAcyclicicty

Acyclic

Network Require: A constraint network R = (X, D, C) and its primal graph G
Ensure: A join tree T = (S, E) of Hp if R is acyclic
Build d” = {x1, - - - , xn} max-cardinality order

Test Chordality using d":
forall i = nto 1 do
if the ancestors of x; are not all connected then
EXIT (R is not acyclic)

end if
end for
Test Conformality using d”: Let {Cy,:--,C,/} be the maximal cliques (a node and all its
ancestors)
forall i =r to 1 do
if C; corresponds to scope of one constraints C then
(R is acyclic)
else
EXIT (R is not acyclic)
end if
end for

Create a join tree of the cliques (e.g., create a maximum spanning tree were weights are number
of shared variables)

return R is acyclic and T is a join tree

Example: Primal based recognition

Tree Decom-
position
Methods

Acyclic
Network

Example (Primal based recognition)

Consider this hypergraph
mV={AB,CDE F}
mS={{AE,FH{AB,C}H{C,D,E}{A C,E}}
decide whether this constraint network is acyclic using the
primal based recongition procedure.

Compiling network to tree-like structures

Tree Decom-
position

Methods .
Clustering

m Aim:
m Compile network to acyclic structure
Ti Based E .. 5
Clustering m Solve the acyclic structure efficiently using a tree-solver
alg.

m Clustering: grouping subsets of constraints to form a
tree-like structure

m Solve each subproblem (replace the set of relations with
the solution of the problem)

m Solve the acyclic network

m If all steps are tractable this process is very efficient

Clustering Approaches

Tree Decom-
position
Methods

ree Bosed m Join Tree Clustering
Ellvsiciting m Given a constraint network

m Computes an acyclic equivalent constraint problem
m Cluster Tree Elimination

m More general scheme

m Given a Tree Decomposition

m Combine the acyclic problem solving with subproblem
solution

Join Tree Clustering |

Tree Decom-
position 1
position Basic Concept

m Input: Hypergraph H = {X, H}, H set of scopes of
constraints

ree Bosed m Output: Hypertree S = {S, E}, and a partition of the

Clustering original relations (Hyperedges) into the new hypertree
nodes

m S each node defines a subproblem containing a constraint if
the constraint’s scope is contained in the node (hyperegde)

m Each subproblem is solved independently

m Each subproblem is replaced with one constraint that has
the scope of the node and accepts the solution tuples of
the subproblem

m The smaller the node size, the better.

Join Tree Clustering Il

Tree Decom- 5
position Basic Steps

Methods .
Choose an order of variable

Create an induced graph given the ordering to ensure the
running intersection property

Tree Based ..

Clustering Create a join tree

m Identify all maximal cliques in the induced graph
Ci,-,Ce
m Create a tree structure T over the cliques (e.g., create a
maximum spanning tree were weights are number of shared
variables)
@A Allocate constraints to any clique that contains its scope
(P; subproblem associated with C;).

Solve each P; with R! its set of solutions
@A Return C' ={R}, - ,R;}

Induced graph

Tree Decom-

echods Induced Graph and Induced Width

m Given graph G :< V, E > and order d over V

m Ancestors: neighbours that precedes the vertices in the
Tree Based ordering
ustering) .
m G* induced graph of G over d is obtained by:

m process variables from last to first
m when processing v, add edges to connect all ancestors of v

The width of a node is the number of ancestors of the node
The width of a graph is the maximal width of its nodes
The induced width w*(d) of G given d is the width of G*

The induced width w* of G is minimum induced width
over all possible orderings

Induced Graph and chordality

Tree Decom-
position
Methods

Induced Graph and chordality

Tree Based m A graph is chordal iff it has a perfect elimination ordering

Clustering

[Fulkerson and Gross 1965]
m Perfect elimination ordering: ordering of the vertices such
that, for each vertex v, v and its ancestors form a clique
m An induced graph < G*,d > is chordal:
m d is a perfect elimination ordering for G*

Example

Tree Decom-
position
Methods

Example (Creating the join tree)

e Baced Consider the following graph and assume it is a primal graph of
Clustering binary contraint newtork:

m Variables: A, B, C, D, E, F Edges:
(A, B)(A, C)(A, E)(B, E)(B, D)(C, D)(D, F)
Consider the orderings
md=FED,CBA
md,=AB,C,D,E,F

Example contd.

Tree Decom-
position
Methods

Example (Creating the join tree)

Tree Based The resulting join trees are:
Clustering

m d; Cliques:
@ =(AB,C,E),Q=(B,C,D,E),Q3 = (D,E,F)
Edges: < @1, @2 >, < @, Q3 >

m d; Cliques: Q1 =(D,F),Q = (A, B, E), Q=
(B,C,D), Qs =(A,B,C)
Edges: < @1, Q3 >, < @, Qs >, < Q3, Qy >

Creating the chordal graph

Tree Decom-
position
Methods

Tree Based
Clustering

max-cardinality order

m Creating the chordal graph using a max-cardinality order is
more efficient

m do not add useless edges if graph is already chordal

Ensuring the graph is conformal

Tree Decom-
position
Methods

conformality

m When finding the maximal cliques we might violate
conformality
m could create maximal cliques that have no mapping to
constraints

Tree Based
Clustering

m Conformality is enforced in later steps
m by creating a unique constraint for each sub problem

Complexity of JTC

Tree Decom-
position
Methods

Complexity

m The running time of join tree clustering is dominated by
computing the set of solutions of each sub problem

Tree Based
Clustering

m This is exponential in the size of the clique

m Running time is dominated by running time to solve the
subproblem of the maximal clique

m Size of maximal cliques is the induced width of the graph
plus one

m The order used to compute the cliques is crucial
m Finding the best ordering is hard

Finding a Complete Solution

Tree Decom-
position
Methods

Constraint Propagation
Tree Based

Gt m Once we have solved the subproblems we still need to

m force arc-consisteny

m expand local solution to a global solution (if problem is
consistent)

m We can use Tree-Solver for this

Exercise: Finding a Complete Solution

Tree Decom-
position
Methods

Tree Solving

Consider the following contraint network
o e m Variables: A,B,C,D,E,F

Clustering

m Domains: ViD; = {0,1}
m Constraints: (A# B)(A# C)(A# E)(B=E)
(B # D)(C#D)D#F)
Solve this constraint network using the JTC algorithm using the
following orderings

md=FED,C,B,A
md=ADB,CD,E,F

	Acyclic Network
	Tree Based Clustering

