
Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Tree Decomposition Methods
Constraint Processing 9.1, 9.2.1



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Summary

Acyclic Networks
Join Tree Clustering



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Importance of Acyclic Networks

Solving Acyclic Network
Topological structure defines key features for a wide class
of problems
CSP: Inference in acyclic network is extremely efficient
(polynomial)
Idea: remove cycles from the network somehow
We can always compile a cyclic graph into an acyclic
tree-like structure
We always pay a price in term of computational complexity
The price we pay depends on the topological structure



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Graph Concept: Brief Review

Hypergraphs

Hypergraphs: H = (V ,S)

Vertices: V = {v1, · · · , vn}
Hyperegdes: S = {S1, · · · ,Sk} where Si ⊆ V

Example (Hypergraph)

V = {A,B,C ,D,E ,F}
S = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Graph Concept: Brief Review

Primal Graph
Primal Graph of a Hypergraph

Nodes → Vertices
Two nodes connected iff they appear in the same
hyperedge

For binary contraint networks, Hypergraph and Primal
graph are identical

Example (Primal Graph)

V = {A,B,C ,D,E ,F}
E = {{A,B}{A,C}{B,C}{A,E}{A,F}
{E ,F}{C ,D}{C ,E}{D,E}}



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Graph Concept: Brief Review

Dual Graph
Dual Graph of a Hypergraph

Nodes → Hyperedges
Two nodes connected iff they share at least one vertex
Edges are labeled by the shared vertices

Example (Dual Graph)

V = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}
E = {{{A,E ,F}{A,B,C}}{{A,E ,F}, {C ,D,E}}
{{A,E ,F}, {A,C ,E}}{{A,B,C}, {C ,D,E}}
{{C ,D,E}, {A,C ,E}}{{A,B,C}, {A,C ,E}}}



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Constraint Networks and Graph Representation

Graph for Constraint Networks
Any constraint network can be associated with a hypergraph

Contraint network R = {X ,D,C} with
C = {RS1 , · · · ,RSr }
Hypergraph HR = (X ,H) where H = {S1, · · · , Sr}
Dual Graph Hd

R = (H,E ) where < Si , Sj >∈ E iff
Si ∩ Sj 6= { }
Dual Problem Rd = {H,D ′,C ′}

D ′ = {D ′1, · · · ,D ′r}, D ′i set of tuples accepted by RSi

C ′ = {C ′1, · · · ,C ′k}, C ′k =< Si ,Sj >, enforces equality for
the set variables Xk = Si ∩ Sj



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Acyclicity of Constraint Network

Acyclic Network
If the graph representation of a problem is acyclic then we
can solve problem efficiently
Even cyclic graphs can have a tree-like structure relative to
solution techniques
Some arcs could be redundant
In general it is hard to recognise redundant constraints



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Acyclicity of Dual Problem

Redundant Constraints for Dual Problems
For the dual graph representation we can use a simple
procedure to check whether a constraint is redundant
All constraints force equality over shared variables
A constraint and its corresponding arc can be deleted if the
variables labeling the arc are contained in any alternative
path between the two endpoints
Because the constraint will be enforced by the other paths.
This property is called running intersection or
connectedness



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Example: Acyclicity of Dual Problem

Example (Acyclic Dual Problem)

Consider this dual graph:

V = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}

E = {{{A,E ,F}{A,B,C}}{{A,E ,F}, {C ,D,E}}
{{A,E ,F}, {A,C ,E}}{{A,B,C}, {C ,D,E}}
{{C ,D,E}, {A,C ,E}}}

We can remove redundant constraints:

{{A,E ,F}{A,B,C}} because the alternative path
(AEF )− AE − (ACE )− AC − (ABC ) enforce constraint on A

{{A,E ,F}{C ,D,E}} because the alternative path
(AEF )− AE − (ACE )− CE − (CDE ) enforce constraint on E

{{C ,D,E}{A,B,C}} because the alternative path
(CDE )− CE − (ACE )− AC − (ABC ) enforce constraint on C

The remaining structure is a tree



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Acyclic Network

Main Concepts

Arc Subgraph of a graph G = {V ,E}: any graph
G ′ = {V ,E ′} such that E ′ ⊆ E

Running Intersection property: G dual graph of an
hypergraph, G ′ an arc subgraph satisfies the running
intersection property if given any two nodes of G ′ that
share a variable, there exists a path of labeled arcs, each
containing the variable.
Join Graph: an arc subgraph of the dual graph that
satisfies the running intersection properties
Join Tree: an acyclic join graph
Hypertree: a Hypergraph whose dual graph has a join tree
Acyclic Network: a network whose hypergraph is an
hypertree



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Solving Acyclic Network

Algorithm for Solving Acyclic Network

Algorithm 1 Tree Solver
Require: An Acyclic Constraint Network R, A join-tree T of R
Ensure: Determine consistency and generate a solution

d = {R1, · · · ,Rr} order induced by T (from root to leaves)
for all j = r to 1 and for all edges < j , k > in the T with k < j do

Rk ← πSk (RK ./ Rj)
if we find the empty relation then

EXIT and state the problem has NO SOLUTION
end if

end for
Select a tuple in R1

for all i = 2 to r do
Select a tuple that is consistent with all previous assigned tuples
R1, · · · ,Ri−1

end for
return The problem is CONSISTENT return the selected SOLUTION



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Example: Solving Acyclic Problem

Example (Applying Tree Solver)

Consider this join-tree:
V = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}
E = {{{A,E ,F}, {A,C ,E}}{{C ,D,E}, {A,C ,E}}
{{A,B,C}, {A,C ,E}}}

Assume constraints are given by
RABC = RAEF = {(0, 0, 1)(0, 1, 0)(1, 0, 0)}
RCDE = RACE = {(1, 1, 0)(0, 1, 1)(1, 0, 1)}
d = {RACE ,RCDE ,RAEF ,RABC}



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Recognising Acyclic Networks

Main methods
To apply the tree solver algorithm we need to know
whether a network is acyclic
This can not be decided simply by checking whether there
are cycles in the primal or dual graph
Two main methods

Dual based Recognition
Primal based Recognition



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Dual Based Recognition

Dual Based Recognition: Theoretical Result
Maier 1983
If a hypergraph has a join tree then any maximum
spanning tree of its dual graph is a join tree
Weight of the arc are the number of shared variables



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Dual Based Recognition: Procedure

Main idea
Build the dual graph of the hypergraph
Compute a maximum spanning tree (weight = number of
shared variables)
Check whether the hypertree is a join tree

Efficient because there is only one path for each couple of
nodes



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Dual Based Recognition: algorithm

Dual Acyclicity

Algorithm 2 DualAcyclicicty
Require: A hypergraph HR = (X , S) of a constraint network R =

(X ,D,C)
Ensure: A join tree T = (S ,E) of HR if R is acyclic

T = (S ,E) ← generate a maximum spanning tree of the weighted dual
constraint graph of R
for all couples u, v where u, v ∈ S do

if the unique path connecting them in T does not satisfy the running
intersection property then

EXIT (R is not acyclic)
end if

end for
return R is acyclic and T is a join tree



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Dual Based Recognition: Example

Example (Dual Based Recognition)

Consider this dual graph:
V = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}
E = {{{A,E ,F}{A,B,C}}{{A,E ,F}, {C ,D,E}}
{{A,E ,F}, {A,C ,E}}{{A,B,C}, {C ,D,E}}
{{C ,D,E}, {A,C ,E}}}

If we find a MST weighting edges with number of shared
variables we obtain T :

V = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}
E = {{{A,E ,F}, {A,C ,E}}{{C ,D,E}, {A,C ,E}}
{{A,B,C}, {A,C ,E}}}

Which satisfies the running intersection property.



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Primal Based Recognition

Primal Based Recognition: main concepts
A hypergraph has a join tree iff its primal graph is chordal
and conformal [Maier 1983]
Conformal A primal graph is conformal to a hypergraph if
there is a one to one mapping between maximal cliques
and scopes of constraints
Chordal A primal graph is chordal if every cycle of length
at least 4 has a chord (an edge connecting two vertices
that are non adjacent in the cycle)
Checking whether a graph is chordal and conformal can be
done efficiently using a max-cardinality order



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Primal Based Recognition using max cardinality
order

max cardinality order
max-cardinality order is an ordering over vertices such that:

first node is chosen arbitrarily
then the node that is connected to a maximal number of
already ordered nodes is selected (breaking ties arbitrarily)

Chordal Graph if in a max-cardinality order each vertex and
all its ancestors form a clique
Find Maximal clique just list nodes in the order and
consider each node ancestors



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Primal Based Recognition: Procedure

Main idea
1 build a max-cardinality order
2 Test whether the graph is chordal

use the max-cardinality order
check if ancestors form a clique

3 Test whether the graph is conformal
use the max-cardinality order
extract maximal cliques, check conformality



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Primal Based Recognition: algorithm

Primal Acyclicity

Algorithm 3 PrimalAcyclicicty
Require: A constraint network R = (X ,D, C) and its primal graph G
Ensure: A join tree T = (S, E) of HR if R is acyclic

Build dm = {x1, · · · , xn} max-cardinality order
Test Chordality using dm:
for all i = n to 1 do

if the ancestors of xi are not all connected then
EXIT (R is not acyclic)

end if
end for
Test Conformality using dm: Let {C1, · · · , Cr} be the maximal cliques (a node and all its
ancestors)
for all i = r to 1 do

if Ci corresponds to scope of one constraints C then
(R is acyclic)

else
EXIT (R is not acyclic)

end if
end for
Create a join tree of the cliques (e.g., create a maximum spanning tree were weights are number
of shared variables)

return R is acyclic and T is a join tree



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Example: Primal based recognition

Example (Primal based recognition)

Consider this hypergraph
V = {A,B,C ,D,E ,F}
S = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}

decide whether this constraint network is acyclic using the
primal based recongition procedure.



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Compiling network to tree-like structures

Clustering
Aim:

Compile network to acyclic structure
Solve the acyclic structure efficiently using a tree-solver
alg.

Clustering: grouping subsets of constraints to form a
tree-like structure
Solve each subproblem (replace the set of relations with
the solution of the problem)
Solve the acyclic network
If all steps are tractable this process is very efficient



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Clustering Approaches

Methods
Join Tree Clustering

Given a constraint network
Computes an acyclic equivalent constraint problem

Cluster Tree Elimination
More general scheme
Given a Tree Decomposition
Combine the acyclic problem solving with subproblem
solution



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Join Tree Clustering I

Basic Concept

Input: Hypergraph H = {X ,H}, H set of scopes of
constraints
Output: Hypertree S = {S ,E}, and a partition of the
original relations (Hyperedges) into the new hypertree
nodes
S each node defines a subproblem containing a constraint if
the constraint’s scope is contained in the node (hyperegde)
Each subproblem is solved independently
Each subproblem is replaced with one constraint that has
the scope of the node and accepts the solution tuples of
the subproblem
The smaller the node size, the better.



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Join Tree Clustering II

Basic Steps
1 Choose an order of variable
2 Create an induced graph given the ordering to ensure the

running intersection property
3 Create a join tree

Identify all maximal cliques in the induced graph
C1, · · · ,Ct

Create a tree structure T over the cliques (e.g., create a
maximum spanning tree were weights are number of shared
variables)

4 Allocate constraints to any clique that contains its scope
(Pi subproblem associated with Ci ).

5 Solve each Pi with R ′i its set of solutions
6 Return C ′ = {R ′1, · · · ,R ′t}



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Induced graph

Induced Graph and Induced Width
Given graph G :< V ,E > and order d over V
Ancestors: neighbours that precedes the vertices in the
ordering
G ∗ induced graph of G over d is obtained by:

process variables from last to first
when processing v , add edges to connect all ancestors of v

The width of a node is the number of ancestors of the node
The width of a graph is the maximal width of its nodes
The induced width w∗(d) of G given d is the width of G ∗

The induced width w∗ of G is minimum induced width
over all possible orderings



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Induced Graph and chordality

Induced Graph and chordality
A graph is chordal iff it has a perfect elimination ordering
[Fulkerson and Gross 1965]
Perfect elimination ordering: ordering of the vertices such
that, for each vertex v, v and its ancestors form a clique
An induced graph < G ∗, d > is chordal:

d is a perfect elimination ordering for G∗



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Example

Example (Creating the join tree)

Consider the following graph and assume it is a primal graph of
binary contraint newtork:

Variables: A,B,C ,D,E ,F Edges:
(A,B)(A,C )(A,E )(B,E )(B,D)(C ,D)(D,F )

Consider the orderings
d1 = F ,E ,D,C ,B,A

d2 = A,B,C ,D,E ,F



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Example contd.

Example (Creating the join tree)

The resulting join trees are:
d1 Cliques:
Q1 = (A,B,C ,E ),Q2 = (B,C ,D,E ),Q3 = (D,E ,F )
Edges: < Q1,Q2 >,< Q2,Q3 >

d1 Cliques: Q1 = (D,F ),Q2 = (A,B,E ),Q3 =
(B,C ,D),Q4 = (A,B,C )
Edges: < Q1,Q3 >,< Q2,Q4 >,< Q3,Q4 >



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Creating the chordal graph

max-cardinality order
Creating the chordal graph using a max-cardinality order is
more efficient
do not add useless edges if graph is already chordal



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Ensuring the graph is conformal

conformality
When finding the maximal cliques we might violate
conformality

could create maximal cliques that have no mapping to
constraints

Conformality is enforced in later steps
by creating a unique constraint for each sub problem



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Complexity of JTC

Complexity
The running time of join tree clustering is dominated by
computing the set of solutions of each sub problem
This is exponential in the size of the clique
Running time is dominated by running time to solve the
subproblem of the maximal clique
Size of maximal cliques is the induced width of the graph
plus one
The order used to compute the cliques is crucial
Finding the best ordering is hard



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Finding a Complete Solution

Constraint Propagation
Once we have solved the subproblems we still need to

force arc-consisteny
expand local solution to a global solution (if problem is
consistent)

We can use Tree-Solver for this



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Exercise: Finding a Complete Solution

Tree Solving
Consider the following contraint network

Variables: A,B,C ,D,E ,F

Domains: ∀iDi = {0, 1}
Constraints: (A 6= B)(A 6= C )(A 6= E )(B = E )
(B 6= D)(C 6= D)(D 6= F )

Solve this constraint network using the JTC algorithm using the
following orderings

d1 = F ,E ,D,C ,B,A

d2 = A,B,C ,D,E ,F


	Acyclic Network
	Tree Based Clustering

