
Sequential
Decision
Making

Sequential Decision Making
AIMA Chapters: 17.1, 17.2, 17.3.

Sutton and Barto, Reinforcement Learning: an
Introduction, 2nd Edition: Chapters 3 and 4

Sequential
Decision
Making

Outline

♦ Sequential decision problems
♦ Value iteration
♦ Policy iteration
♦ POMDPs (basic concepts)
♦ Slides partially based on the Book "Reinforcement Learning:
an introduction" by Sutton and Barto
♦ Thanks to Prof. George Chalkiadakis for providing some of
the slides.

Sequential
Decision
Making

Sequential decision problems

Sequential
Decision
Making

Sequential decisions

Decisions are rarely taken in isolation, we have to decide on
sequences of actions.

to enroll in a course students should have an idea of what
job they would like to do.

The value of an action goes beyond the immediate benefit (aka
reward)

Long term utility/opportunities: student goes to a lesson
not only because he/she enjoys the lecture but also to
pass the exam...
Acquire information: student follows the first lesson to
know how the exam modalities will be

Need a sound framework to make sequential decisions and face
uncertainty!

Sequential
Decision
Making

Example problem: exploring a maze

States s ∈ S, actions a ∈ A
Model T (s, a, s ′) ≡ P(s ′|s, a) = probability that a in s leads to
s ′
Reward function R(s) (or R(s, a), R(s, a, s ′))

=
{
−0.04 (small penalty) for nonterminal states
±1 for terminal states

Sequential
Decision
Making

A simple approach

Example: computing the value for a sequence of actions in the
maze scenario.

Sequential
Decision
Making

Issues with this approach

conceptual: evaluating all sequence of actions without
considering real outcome is not the right thing to do:

It may be better to do a1 again if I end up to s2, but best
to do a2 if I end up at s3

practical: utility for a sequence is typically harder to
estimate than utility of single states
computational: k actions, t stages, n outcomes per action:
ktnt possible trajectories to evaluate

Sequential
Decision
Making

The need for policies

In search problems, aim is to find an optimal sequence
Considering uncertainty, aim is to find an optimal policy π(s)

i.e., best action for every possible state s
(because can’t predict where one will end up)

The optimal policy maximizes (say) the expected sum of
rewards
Optimal policy when state penalty R(s) is –0.04:

Sequential
Decision
Making

Risk and reward

Sequential
Decision
Making

Decision trees

Sequential
Decision
Making

Solving a decision tree

Backward induction/rollback (a.k.a. expectimax)
Main idea: start from leaves and use MEU

Value of a leaf node C is given :
EU(C) = V (C)
Value of a chance node, not leaf (i.e., circles) C :
EU(C) =

∑
D∈Child(C) Pr(D)EU(D)

Value of a decision node (i.e., squares) C :
EU(D) = maxC∈Child(D) EU(C)
Policy: maximise utility of decision node:
π(D) = arg maxC∈Child(D) EU(C)

Sequential
Decision
Making

Markov Decision Processes

MDPs: a general class of non-deterministic search problem

more compact than decision trees.
Four components: 〈S,A,R,Pr〉
S a (finite) set of states (|S| = n)
A a (finite) set of actions (|A| = m)
Transition function
p(s ′|s, a) = Pr{St+1 = s ′|St = s,At = a}
Real valued reward function
r(s ′, a, s) = E[Rt+1|St+1 = s ′,At = a,St = s]

Sequential
Decision
Making

Why Markov ?

Andrey Markov (1856-1922)

Markov Chain: given current state future is independent
from the past
In MDPs past actions/states are irrelevant when taking
decision in a given state.

Sequential
Decision
Making

Markov Property and other assumptions

Markov Dynamics (history independence)

Pr{Rt+1, St+1|S0,A0,R1, · · · , St−1,At−1,Rt , St ,At}
Markov property:
Pr{Rt+1, St+1|St ,At}

Stationary (not dependent on time)
Pr{Rt+1, St+1|St ,At} = Pr{Rt′+1, St′+1|St′ ,At′}∀ t, t ′

Full observability: we can not predict exactly which state
we will reach but we know where we are

Sequential
Decision
Making

MDP: recycling robot

Possible actions:
search for a can (high chance, may run out of battery)
wait for someone to bring a can (low chance, no battery
depletion)
go home to recharge its battery

Agent decides based on battery level {low , high}

Action set considering states:
A(high) = {search,wait}
A(low) = {search,wait, recharge}

Sequential
Decision
Making

Recycling robot, transition graph

α = probability of maintaining a high battery level when
performing a search action
β = probability of maintaining a low battery level when
performing a search action

Sequential
Decision
Making

Policies

Non-stationary policy
π : S × T → A
π(s, t) action at state s with t states to go.

Stationary policy
π : S → A
π(s) action for state s (regardless of time)

Stochastic policy
π(a|s) probability of choosing action a in state s

Sequential
Decision
Making

Utility of state sequences

Need to understand preferences between sequences of states
Typically consider stationary preferences on reward sequences:

[r , r0, r1, r2, . . .] � [r , r ′0, r ′1, r ′2, . . .] ⇔ [r0, r1, r2, . . .] � [r ′0, r ′1, r ′2, . . .]

Theorem: there are only two ways to combine rewards over
time.
1) Additive utility function:
U([s0, s1, s2, . . .]) = R(s0) + R(s1) + R(s2) + · · ·

2) Discounted utility function:
U([s0, s1, s2, . . .]) = R(s0) + γR(s1) + γ2R(s2) + · · ·
where γ is the discount factor

Sequential
Decision
Making

Value of a Policy

How good is a policy ? How do we measure accumulated
reward ?
Value function V : S → <

Associates a value considering accumulated rewards
vπ(s) denotes value of policy π for state s

expected accumulated reward over horizon of interest

Sequential
Decision
Making

Dealing with infinite utilities

Problem: infinite state sequences (infinite horizon
problems) have infinite accumulated rewards
Solutions:

Choose a finite horizon
Terminate episodes after a fixed T steps
Produces non-stationary policies

Absorbing states: guarantee that for every policy a
terminal state will eventually be reached
Use discounting: ∀ 0 < γ < 1

U([r0, · · · , r∞]) =
∑∞

t=0 γ
trt ≤ Rmax

1−γ

Sequential
Decision
Making

More on discounting

smaller γ → shorter horizons
Better sooner than later: sooner rewards have higher
utility than later rewards
Example: γ = 0.5

U([r1 = 1, r2 = 2, r3 = 3]) = 1∗1+0.5∗2+0.25∗3 = 2.375
U([1, 2, 3]) = 2.375 < U([3, 2, 1]) = 4.125

Sequential
Decision
Making

Common formulation of value

Finite horizon T = total expected reward given π
Infinite horizon, discounted: sum of accumulated
discounted rewards given π.
Also: average reward per time step
Example: effect of discounting in a linear maze.

Sequential
Decision
Making

Solving MDPs

what is an optimal plan, or sequence of actions?
MDPs: we want an optimal policy π∗ : S → A
An optimal policy maximizes expected utility if followed:

Defines a reflex agent

Sequential
Decision
Making

Values and Q-Values

Value of a state s when following policy π: expected
accumulated (discounted) reward when starting at s and
following π everafter

vπ(s) = E{
∑∞

k=0 γ
k rt+k+1|st = s}

Q-value (action value or quality function): value of taking
action a in state s following policy π

qπ(s, a) =
∑

s′ p(s ′|a, s)(r(s, a, s ′) + γvπ(s ′))
Note: vπ(s) = qπ(s, π(s))

Sequential
Decision
Making

Bellman equations for policy value

value of the start state must equal the (discounted) value
of the expected next state, plus the reward expected along
the way.
vπ(s) =

∑
s′ p(s ′|π(s), s)(r(s, π(s), s ′) + γvπ(s ′))

can be considered as a self-consistency condition

Back-up diagrams for vπ and qπ
Example: Bellman update for given policy on simple linear
maze.

Sequential
Decision
Making

Optimal policy

π∗(s) is an optimal policy iff vπ∗(s) ≥ vπ(s)∀ s, π
v∗(s) = maxπ vπ(s) expected utility starting in s and
acting optimally everafter
optimal action-value function q∗(a, s) = maxπ qπ(s, a)
Example: optimal policy for the maze scenario varying the
rewards.

Sequential
Decision
Making

Bellman optimality equation

v∗(s) must comply with the self-consistency condition
dictated by the Bellman equation
v∗(s) is the optimal value hence the consistency condition
can be written in a special form
The value of a state under an optimal policy must equal
the expected return for the best action from that state
v∗(s) = maxa∈A(s) q∗(s, a) =
maxa∈A(s)

∑
s′ p(s ′|a, s)(r(s, a, s ′) + γv∗(s ′))

Note: A(s): actions that can be performed in state s.

Back-up diagrams for v∗ and q∗

Sequential
Decision
Making

Value iteration

Idea: turn the Bellman optimality equation into an
"update rule", combining policy evaluation (computing the
value vπ of a given policy) and policy improvement
(making π greedy with respect to vπ).
the resulting method, Value Iteration, is a successive
approximation, Dynamic Programming algorithm.
Basic DP step: back-up state evaluations to solve the
recurrence relations.

Sequential
Decision
Making

Value iteration: Bellman backup

Bellman backup:
vk+1(s) = maxa

∑
s′ p(s ′|a, s)(r(a, s, s ′) + γvk(s ′))

Back up the value of every state to produce new (k + 1
stage) value function estimates
The optimality solution of k + 1 stage uses the solution to
stage k problem

Sequential
Decision
Making

Value iteration: Algorithm

Sequential
Decision
Making

Value iteration: exploring a maze

Example of bellman back-up
v(1, 1) = −0.04
+ γ max{0.8v(1, 2) + 0.1v(2, 1) + 0.1v(1, 1), up

0.9v(1, 1) + 0.1v(1, 2) left
0.9v(1, 1) + 0.1v(2, 1) down
0.8v(2, 1) + 0.1v(1, 2) + 0.1v(1, 1)} right

Sequential
Decision
Making

Value iteration: exploring a maze

Policy is a greedy selection of best action for every state
considering the MPDs dynamics
See policy for state (3, 1), π∗((3, 1)) = left but state with
highest value is up.

Sequential
Decision
Making

Value iteration: discussion

Value iteration is guaranteed to converge to the optimal
value function

convergence can be guaranteed also for asynchronous
versions (i.e., no need to do a systematic sweep of states)
as long as updates of each states are done infinitely often.

The infinite horizon optimal policy is stationary: optimal
action at a state is the same at all times (efficient to
store).
Complexity per iteration is quadratic in the number of
states and linear in the number of actions.
Convergence rate is linear.

Sequential
Decision
Making

Policy iteration

Howard, 1960: search for optimal policy and utility values
simultaneously
Algorithm:
π ← an arbitrary initial policy
repeat until no change in π
compute utilities given π (policy evaluation)
update π as if utilities were correct (policy improvement)

Sequential
Decision
Making

Policy evaluation step

To compute utilities given a fixed π (policy evaluation):
v(s) =

∑
s′ p(s ′|s, π(s))(r(s, π(s), s ′) + γv(s ′))

Can be performed:
by solving n simultaneous linear equations in n unknowns
(solve in O(n3))
iterative approximation

Sequential
Decision
Making

Policy improvement step

Given the value of all state (v(s))
greedily change the first action taken when in a state
based on current value of states
if the value of the state can be improved, the new action
is adopted by the policy; thus, the performance of the
policy is strictly improved.

Sequential
Decision
Making

Modified policy iteration

Policy iteration often converges in few iterations, but each is
expensive

Idea: use a few steps of value iteration (but with π fixed)
starting from the value function produced the last time to
produce an approximate policy evaluation step.

Often converges much faster than pure VI or PI

Leads to much more general algorithms where Bellman value
updates and Howard policy updates can be performed locally in
any order

Sequential
Decision
Making

Policy improvement step

The algorithm iterates policy evaluation and policy
improvements steps until no improvements are possible.
The policy is then guaranteed to be optimal.

Sequential
Decision
Making

Partial observability

POMDP has an observation model O(s, e) defining the
probability that the agent obtains evidence e when in state s

Agent does not know which state it is in =⇒ makes no sense
to talk about policy π(s)!!

Theorem (Astrom, 1965): the optimal policy in a POMDP is a
function π(b) where b is the belief state (probability
distribution over states)

Can convert a POMDP into an MDP in belief-state space,
where T (b, a, b′) is the probability that the new belief state is
b′ given that the current belief state is b and the agent does a.

Sequential
Decision
Making

Partial observability contd.

Solutions automatically include information-gathering behavior
If there are n states, b is an n-dimensional real-valued vector
=⇒ solving POMDPs is very (actually, PSPACE-) hard!
The real world is a POMDP (with initially unknown T and O)

Sequential
Decision
Making

Summary

♦ MDPs can tackle planning problem with uncertainty
♦ "Good" solution algorithms for MDPs (Value and Policy
iteration): convergence, optimality, tractable
♦ POMDPs = MDPs in belief state, represent a much more
realistic setting but are intractable
♦ Example: computing optimal policy for maze scenario.

