
Solving
Problems by
Searching

Solving Problems by Searching
AIMA Sections 3.1–3.3

Solving
Problems by
Searching

Outline

♦ Problem-solving agents
♦ Problem types
♦ Problem formulation
♦ Example problems
♦ General search algorithm

Solving
Problems by
Searching

Problem-solving agents

function Simple-Problem-Solving-Agent(percept) returns an
action

static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state←Update-State(state, percept)
if seq is empty then

goal←Formulate-Goal(state)
problem←Formulate-Problem(state, goal)
seq← Search(problem)

action←First(seq)
seq←Rest(seq)
return action

Solving
Problems by
Searching

Problem-solving agents

Restricted form of general agent: Goal based agents

formulate a goal and a problem given the current state
search for a solution
execute the solution ignoring perceptions

Note: this is offline problem solving; solution executed “eyes
closed.”
Online problem solving involves acting without complete
knowledge.

Solving
Problems by
Searching

An example: Traveling in Romania

Example (Holidays in Romania)

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest
Formulate goal:

be in Bucharest
Formulate problem:

states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Solving
Problems by
Searching

An example: Traveling in Romania

Example (Holidays in Romania)

Solving
Problems by
Searching

Problem types

Deterministic, fully observable =⇒ single-state problem
Agent knows exactly which state it will be in; solution is a

sequence
Non-observable =⇒ conformant problem

Agent may have no idea where it is; solution (if any) is a
sequence
Nondeterministic and/or partially observable =⇒ contingency
problem

percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space =⇒ exploration problem (“online”)

Solving
Problems by
Searching

Example: vacuum world

Single-state, start in #5. Solution??

Solving
Problems by
Searching

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant
start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}.
Solution??

Solving
Problems by
Searching

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant
start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}.
Solution??
[Right, Suck, Left,Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean
carpet
Local sensing: dirt, location only.
Solution??

Solving
Problems by
Searching

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant
start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}.
Solution??
[Right, Suck, Left,Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean
carpet
Local sensing: dirt, location only.
Solution??
[Right, if dirt then Suck]

Solving
Problems by
Searching

Single-state problem formulation

A problem is defined by four items:
initial state e.g., “at Arad”
successor function S(x) = set of action–state pairs

e.g., S(A) = {< Arad → Zerind ,Zerind >, . . .}
goal test, can be

explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x , a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions
leading from the initial state to a goal state

Solving
Problems by
Searching

Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states
(Abstract) action = complex combination of real actions

e.g., “Arad → Zerind” represents a complex set
of possible routes, detours, rest stops, etc.

For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original
problem!

Solving
Problems by
Searching

Example: vacuum world state space graph

states??:

discrete dirt and robot locations (ignore dirt amounts)

actions??:

Left, Right, Suck , NoOp

goal test??:

no dirt

path cost??:

1 per action (0 for NoOp)

Solving
Problems by
Searching

Example: vacuum world state space graph

states??: discrete dirt and robot locations (ignore dirt amounts)
actions??:

Left, Right, Suck , NoOp

goal test??:

no dirt

path cost??:

1 per action (0 for NoOp)

Solving
Problems by
Searching

Example: vacuum world state space graph

states??: discrete dirt and robot locations (ignore dirt amounts)
actions??: Left, Right, Suck , NoOp
goal test??:

no dirt

path cost??:

1 per action (0 for NoOp)

Solving
Problems by
Searching

Example: vacuum world state space graph

states??: discrete dirt and robot locations (ignore dirt amounts)
actions??: Left, Right, Suck , NoOp
goal test??: no dirt
path cost??:

1 per action (0 for NoOp)

Solving
Problems by
Searching

Example: vacuum world state space graph

states??: discrete dirt and robot locations (ignore dirt amounts)
actions??: Left, Right, Suck , NoOp
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)

Solving
Problems by
Searching

Example: The 8-puzzle

states??:

integer locations of tiles (ignore intermediate
positions)

actions??:

move blank left, right, up, down

goal test??:

given goal state

path cost??:

1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Solving
Problems by
Searching

Example: The 8-puzzle

states??: integer locations of tiles (ignore intermediate
positions)
actions??:

move blank left, right, up, down

goal test??:

given goal state

path cost??:

1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Solving
Problems by
Searching

Example: The 8-puzzle

states??: integer locations of tiles (ignore intermediate
positions)
actions??: move blank left, right, up, down
goal test??:

given goal state

path cost??:

1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Solving
Problems by
Searching

Example: The 8-puzzle

states??: integer locations of tiles (ignore intermediate
positions)
actions??: move blank left, right, up, down
goal test??: given goal state
path cost??:

1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Solving
Problems by
Searching

Example: The 8-puzzle

states??: integer locations of tiles (ignore intermediate
positions)
actions??: move blank left, right, up, down
goal test??: given goal state
path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Solving
Problems by
Searching

Example: The 8-puzzle

states??: integer locations of tiles (ignore intermediate
positions)
actions??: move blank left, right, up, down
goal test??: given goal state
path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Solving
Problems by
Searching

Example: robotic assembly

states??: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints
goal test??: complete assembly with no robot included!
path cost??: time to execute

Solving
Problems by
Searching

Tree search algorithm

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)

function Tree-Search(problem, strategy) returns a solution, or
failure

initialize the search tree using the initial state of problem
loop do

if no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if node contains a goal state then return the solution
else add successor nodes to the search tree (expansion)

end

Solving
Problems by
Searching

Tree search example

Solving
Problems by
Searching

Tree search example

Solving
Problems by
Searching

Tree search example

Solving
Problems by
Searching

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes parent, action, children, depth, path cost (i.e., g(x))
States do not have parents, actions,children, depth, or path
cost!

The Expand function creates new nodes, filling in the various
fields and using the SuccessorFn of the problem to create the
corresponding states.

Solving
Problems by
Searching

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes parent, action, children, depth, path cost (i.e., g(x))
States do not have parents, actions,children, depth, or path
cost!

The Expand function creates new nodes, filling in the various
fields and using the SuccessorFn of the problem to create the
corresponding states.

Solving
Problems by
Searching

Implementation: general tree search

function Tree-Search(problem, frontier) returns a solution, or
failure

frontier← Insert(Make-Node(problem.Initial-State))
loop do
if frontier is empty then return failure
node←Pop(frontier)
if problem.Goal-Test(node.State) then return node
frontier← InsertAll(Expand(node,problem))

end loop

Solving
Problems by
Searching

Implementation: expand nodes

function Expand(node, problem) returns a set of nodes
successors← the empty set
for each action, result in Successor-Fn(problem,node.State)
do

s← a new Node
s.Parent-Node← node;
s.Action← action;
s.State← result
s.Path-Cost← node.Path-Cost +

Step-Cost(node.State, action, result)
s.Depth← node.Depth + 1
add s to successors

return successors

Solving
Problems by
Searching

Search strategies

A strategy is defined by picking the order of node expansion
Strategies are evaluated along the following dimensions:

completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be ∞)

Solving
Problems by
Searching

Repeated states

Failure to detect repeated states can turn a linear problem into
an exponential one!

Solving
Problems by
Searching

Graph search

function Graph-Search(problem, frontier) returns a solution,
or failure

explored← an empty set
frontier← Insert(Make-Node(problem.Initial-State))
loop do
if frontier is empty then return failure
node←Pop(frontier)
if problem.Goal-Test(node.State) then return node
if node.State is not in explored then

add node.State to explored
frontier← InsertAll(Expand(node,problem))

end if
end loop

