Reinforcement Learning

Reinforcement Learning

AIMA Chapters: 21.1, 21.2, 21.3. Sutton and Barto, Reinforcement Learning: an Introduction, 2nd Edition: Chapters 6 (6.1 - 6.5)

Outline

- ♦ Reinforcement Learning: the basic problem
- ♦ Model based RL
- ♦ Model free RL (Q-Learning, SARSA)
- ♦ Exploration vs. Exploitation
- ♦ Slides partially based on the Book "Reinforcement Learning: an introduction" by Sutton and Barto and partially on course by Prof. Pieter Abbeel (UC Berkeley).
- ♦ Thanks to Prof. George Chalkiadakis for providing some of the slides.

Reinforcement Learning: basic ideas

- ♦ Reinforcement Learning: learn how to map situations to actions, so as to maximize a sequence of rewards.
- ♦ Key features for RL
 - trial and error while interacting with the environment
 - delayed reward (actions have effect in the future)
- \Diamond Essentially we need to estimate the long term value of V(s) and find $\pi(s)$

Reinforcement Learning: relationships with MDPs

Reinforcement Learning

Guide an MDP without knowing the dynamics

- do not know which states are good/bad (no R(s, a, s'))
- do not know where actions will lead us (no T(s, a, s'))
- hence we must try out actions/states and collect the reward

Recycling robot example: RL

To use a model or not to use a model?

- <u>Model-Based</u> methods methods try to **learn a model**
 - + avoid repeating bad states/actions
 - + fewer execution steps
 - + efficient use of data
- Model-Free methods methods try to learn Q-function and policy directly
 - + simplicity, no need to build and use a model
 - + no bias in model design

Example: Expected Age

- ♦ Model Based vs. Model Free approaches
- ♦ GOAL: compute expected age for this class.
- \diamondsuit Given probability distribution of ages: $\mathbb{E}[A] = \sum_a P(a) \cdot a$
 - Model Based: estimate $\hat{P}(a)$
 - $\hat{P}(a) = \frac{num(a)}{N}$
 - $\blacksquare \mathbb{E}[A] \approx \sum_{a} \hat{P}(a) \cdot a$
 - where num(a) is the number of students that have age a
 - works because we learn the right model
 - Model Free: no estimate
 - $\blacksquare \mathbb{E}[A] \approx \frac{1}{N} \sum_{i} a_{i}$
 - \blacksquare where a_i is the age value of person i
 - works because samples appear with right frequency

Learning a model: general idea

- **E**stimate P(x) from samples
 - Acquire samples: $x_i \sim P(x)$
 - Estimate: $\hat{P}(x) = count(x)/k$
- **E**stimate $\hat{T}(s, a, s')$ from samples
 - Acquire samples: $s_0, a_0, s_1, a_1, s_2, ...$
 - Estimate $\hat{T}(s, a, s') = \frac{count(s_{t+1}=s', a_t=a, s_t=s)}{count(s_t=s, a_t=a)}$
- it works because samples appear with the right frequencies

Example: learning a model for the recycling robot

Reinforcement Learning

♦ Given Learning episodes:

E1: (L, R, H, 0), (H, S, H, 10), (H, S, L, 10)

E2 : (L, R, H, 0), (H, S, L, 10), (L, R, H, 0)

E3 : (H, S, L, 10), (L, R, H, 0), (H, S, L, 10)

 \diamondsuit Estimate T(s, a, s') and R(s, a, s')

Model-Based methods

Reinforcement Learning

Algorithm ${f 1}$ Model Based approach to RL

```
Require: A, S, S_0

Ensure: \hat{T}, \hat{R}, \hat{\pi}

Initialize \hat{T}, \hat{R}, \hat{\pi}

repeat

Execute \hat{\pi} for a learning episode

Acquire a sequence of tuples \langle (s, a, s', r) \rangle

Update \hat{T} and \hat{R} according to tuples \langle (s, a, s', r) \rangle

Given current dynamics compute a policy (e.g., VI or PI)
```

- until termination condition is met
- ♦ learning episode: a terminal state is reached or a given amount of time steps
- ♦ Always execute best action given current model: no exploration

 \Diamond Want to compute an expectation weighted by P(x):

$$\mathbb{E}[f(x)] = \sum_{x} P(x)f(x)$$

 \Diamond Model-based estimate P(x) from samples then compute:

$$x_i \sim P(x), \ \hat{P}(x) = num(x)/N, \ \mathbb{E}[f(x)] \approx \sum_x \hat{P}(x)f(x)$$

♦ Model-free estimate expectation directly from samples:

$$x_i \sim P(x), \mathbb{E}[f(x)] \approx \frac{1}{N} \sum_i f(x_i)$$

Evaluate Value Function from Experience

- \diamondsuit Goal: compute value function given a policy π
- ♦ Average all observed samples
 - lacktriangle execute π for some learning episodes
 - compute sum of (discounted) reward every time a state is visited
 - compute average over collected samples

Example: direct value function evaluation for the recycling robot

Reinforcement Learning

♦ Given Learning episodes:

E1: (L, R, H, 0), (H, S, H, 10), (H, S, L, 10)

E2: (L, R, H, 0), (H, S, L, 10), (L, R, H, 0)

E3 : (H, S, L, 10), (L, R, H, 0), (H, S, L, 10)

 \Diamond Estimate V(s)

 \diamondsuit Goal: improve estimate of V by considering the Bellman update (given a policy π)

$$V_{\pi}^{k+1}(s) = \sum_{s'} T(s, \pi(s), s') (R(s, \pi(s), s') + \gamma V_{\pi}^{k}(s'))$$

- ♦ Take samples for outcomes of s' and average
 - $sample_1 = R(s, \pi(s), s_1^{'}) + \gamma V_{\pi}^{k}(s_1^{'})$
 - $sample_2 = R(s, \pi(s), s_2') + \gamma V_{\pi}^{k}(s_2')$
 - **...**
 - $sample_N = R(s, \pi(s), s'_N) + \gamma V_{\pi}^k(s'_N)$
- $\Diamond V_{\pi}^{k+1}(s) = \frac{1}{N} \sum_{i} sample_{i}$

Temporal Difference Learning

- ♦ Learn from every experience (not after an episode)
 - Update V(s) after every action given the obtained (s, a, s', r)
 - if we see s' more often this will contribute more (i.e., we are exploiting the underlying T model)
- ♦ Temporal difference learning of values
 - compute a running average
 - Sample of $V_{\pi}(s)$: sample = $R(s, \pi(s), s') + \gamma V_{\pi}(s')$
 - Update $V_{\pi}(s)$: $V_{\pi}(s) \leftarrow (1-\alpha)V_{\pi}(s) + \alpha(sample)$
 - Temporal Difference: $V_{\pi}(s) \leftarrow V_{\pi}(s) + \alpha(sample V_{\pi}(s))$
 - α must decrease over time for average to converge, simple option: $\alpha_n = \frac{1}{n}$

$$V_{\pi}(s) \leftarrow (1-\alpha)V_{\pi}(s) + \alpha(R(s,\pi(s),s') + \gamma V_{\pi}(s'))$$

Example: sample-based value function evaluation for the recycling robot

Reinforcement Learning

♦ Given Learning episodes:

E1: (L, R, H, 0), (H, S, H, 10), (H, S, L, 10)

E2: (L, R, H, 0), (H, S, L, 10), (L, R, H, 0)

E3 : (H, S, L, 10), (L, R, H, 0), (H, S, L, 10)

 \Diamond Estimate V(s) considering the structure of bellman update

TD learning for control

- ♦ TD gives sample based policy evaluation given a policy
- \Diamond We want to compute a policy based on V(s)
- \diamondsuit Can not directly use V to compute π
 - $\pi(s) = \arg\max_a Q(s, a)$
 - $Q(s, a) = \sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V(s'))$
- ♦ Key idea: we can learn Q-values directly!

A celebrated model-free RL method: Q-Learning

- ♦ Q-Learning: sample based Q-Value iteration
- ♦ Value iteration:

$$V_{k+1}(s) = \max_{a} \sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_k(s'))$$

- \Diamond Q-Value iteration: write Q recursively over k
 - $Q_{k+1}(s,a) = \sum_{s'} T(s,a,s') (R(s,a,s') + \gamma \max_{a'} Q_k(s',a'))$
 - can find optimal Q-Values iteratively
 - recall we can not use the model (no T no R)

Reinforcement Learning

♦ Compute an expectation based on samples:

$$\mathbb{E}(f(x)) = \frac{1}{N} \sum_{i} f(x_i)$$

- \Diamond Our sample: $R(s, a, s') + \gamma \max_{a'} Q_k(s', a')$
- \diamondsuit Learn Q(s, a) values as you go:
 - Receive a sample (s, a, s', r)
 - Consider your old estimate Q(s, a)
 - Consider your new sample: $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$
 - Incorporate the new estimate into a running average:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(R(s, a, s') + \gamma \max_{a'}Q(s', a'))$$

Properties for Q-Learning

- ♦ Q-Learning converges to optimal policy
 - if you explore enough
 - if you make the learning rate small enough
 - ... but not decrease it too quickly
- ♦ Action selection does not impact on convergence
 - Off Policy Learning: learn optimal policy without following it
- ♦ BUT to guarantee convergence you have to visit every state/action pair infinitely often

Q-Learning: pseudo-code

Reinforcement Learning

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]
S \leftarrow S';
until S is terminal
```

 \Diamond ϵ -greedy: choose best action most of the time, but every once in a while (with probability ϵ) choose randomly amongst all action (with equal probability)

SARSA: on-policy alternative for model free RL

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma Q(S',A') - Q(S,A)]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

- \diamondsuit SARSA: derives from tuple: (S, A, R, S', A')
- ♦ Characterized by the fact that we compute next action based on policy (on-policy)
- \diamondsuit If the policy converges (in the limit) to the greedy policy (and every state/action pairs are visited infinitely often) SARSA converges to optimal $Q^*(s, a)$

SARSA vs Q-Learning

- \Diamond Q-Learning learns the optimal policy but occasionally fails due to ϵ -greedy action selection.
- \diamondsuit SARSA, being on-policy has a better on-line performance

The Exploration Vs. Exploitation Dilemma

- ♦ To explore or to exploit ?
 - Stay/be happy with whay I already know or
 - attempt to test other states-action pairs ?
- ♦ RL: the agent should explicitly explore the environment to acquire knowledge
- ♦ Act to improve the estimate of the value function (exploration) or to get high (expected) payoffs (exploitation) ?
- ♦ Reward maximization requires exploration, but too much exploration of irrelevant parts can waste time.
 - choice depends on particular domain and learning technique.

Exploration vs. Exploitation: standard approaches

- ♦ Key point: to guarantee convergence to optimal we need to explore every state-action pairs sufficiently often in the long run.
- ♦ Main methods used in practice:
 - \bullet e-greedy:
 - \blacksquare choose greedily most of the time (probability 1- ϵ)and choose randomly with probability ϵ
 - soft-max (or Boltzmann)
 - choose action a with probability $p(a) = \frac{e^{Q(s,a)/T}}{\sum_{a'} e^{Q(s,a')/T}}$
 - *T* is a parameter (often called temperature)
 - lacktriangle high T o all actions are equiprobable (we explore more)
 - lacktriangleright low T o greater difference in selection probability towards actions with highest Q (we exploit more)

Exploration functions

- ♦ Key point: include bonus to explore new parts of the state space inside the Q-Update
- \diamondsuit Main idea: explore areas if we are not sure they are bad (optimism in face of uncertainty)
- ♦ Exploration function
 - Consider an estimate u and visit count n and compute f(u, n) = u + k/n
 - regular update:

$$Q(s,a) = (1-\alpha)Q(s,a) + \alpha(R(s,a,s') + \gamma \max_{a'} Q(s,a'))$$

- modified update: $Q(s, a) = (1 \alpha)Q(s, a) + \alpha(R(s, a, s') + \gamma \max_{a'} f(Q(s, a'), N(s', a'))$
- N(s', a') is our n (number of times we visited a state-action pair)
- k is a fixed parameter

Summary

- ♦ RL: agent tries to learn what to do while acting
- ♦ Assume an underlying unknown MDP
- ♦ Model based methods: try to learn dynamics and then compute policy
- \diamondsuit Model free methods: try to directly estimate Q-values for state-action pairs
 - Q-learning one of the most interesting off-policy method
- Exploration vs. Exploitation trad-off
 - depends on specific domain techniques
 - lacktriangle practical approaches are ϵ -greedy or soft max