Reinforcement
Learning

Reinforcement Learning

AIMA Chapters: 21.1, 21.2, 21.3.
Sutton and Barto, Reinforcement Learning: an

Introduction, 2nd Edition: Chapters 6 (6.1 — 6.5)




Outline

Reinforcement
Learning

Reinforcement Learning: the basic problem
Model based RL

Model free RL (Q-Learning, SARSA)
Exploration vs. Exploitation

Slides partially based on the Book "Reinforcement Learning:
introduction" by Sutton and Barto and partially on course
by Prof. Pieter Abbeel (UC Berkeley).

& Thanks to Prof. George Chalkiadakis for providing some of
the slides.

LSOO



Reinforcement Learning: basic ideas

Reinforcement
Learning

percepts
actions

actuators

{ Reinforcement Learning: learn how to map situations to
actions, so as to maximize a sequence of rewards.
{ Key features for RL

m trial and error while interacting with the environment
m delayed reward (actions have effect in the future)

> Essentially we need to estimate the long term value of V(s)
and find 7(s)



Reinforcement Learning: relationships with MDPs

Reinforcement
Learning

Guide an MDP without knowing the dynamics
m do not know which states are good/bad (no R(s, a,s’))
m do not know where actions will lead us (no T(s, a,s’))

m hence we must try out actions/states and collect the
reward



Recycling robot example:

Reinforcement
Learning

- @ @

search recharge
wait search
a wait

Planning Learning



To use a model or not to use a model ?

Reinforcement
Learning

m Model-Based methods methods try to learn a model
+ avoid repeating bad states/actions
+ fewer execution steps
+ efficient use of data
m Model-Free methods methods try to learn Q-function
and policy directly
+ simplicity, no need to build and use a model
-+ no bias in model design



Example: Expected Age

Reinforcement

Learning {» Model Based vs. Model Free approaches
¢ GOAL: compute expected age for this class.
¢ Given probability distribution of ages: E[A] =3, P(a) - a

Model Based: estimate P(a)

,E’(a) _ nurlr\7/(a)

EAl~ Y, Pa)-a

where num(a) is the number of students that have age a

works because we learn the right model

Model Free: no estimate
o1
E[A] ~ N Zi aj
where a; is the age value of person i

works because samples appear with right frequency



Learning a model: general idea

Reinforcement
Learning

m Estimate P(x) from samples
m Acquire samples: x; ~ P(x)
m Estimate: P(x) = count(x)/k

m Estimate T(s,a,s’) from samples
m Acquire samples: sy, ag, S1, 31,2, - - -

. A 1\ _ count(se1=s’,ar=a,s:=s)
m Estimate T(57 a,s ) - count(s;=s,ar=a)

m it works because samples appear with the right frequencies




Example: learning a model for the recycling robot

Reinforcement
Learning

search recharge
wait search
wait

< Given Learning episodes:

E1 : (L R, H,0),(H,S,H,10),(H,S, L, 10)
E2 : (L,R, H,0),(H,S,L 10),(L, R, H,0)

E3 : (H,S,L,10),(L, R, H,0),(H,S, L,10)
¢ Estimate T(s,a,s’) and R(s, a,s’)



Model-Based methods

Reinforcement
Learning

Algorithm 1 Model Based approach to RL
Require: A, S, S
Ensure: T, fA?
Initialize '7'
repeat
Execute @ for a learning episode
Acquire a sequence of tuples ((s, a,s’, r))
Update T and R according to tuples ((s a,s’,r))
Given current dynamics compute a policy (e.g., VI or PI)

)
T
R,

until termination condition is met

& learning episode: a terminal state is reached or a given
amount of time steps

¢ Always execute best action given current model:

no exploration



Model Free Reinforcement Learning

Reinforcement
Learning

¢ Want to compute an expectation weighted by P(x):

E[f(x ]—ZP

¢ Model-based estimate P(x) from samples then compute:

xi ~ P(x), P(x) = num(x)/N, E[f(x)] ~ ZP
& Model-free estimate expectation directly from samples:

xi ~ P(x), E[f(x fo,



Evaluate Value Function from Experience

Reinforcement
Learning

¢ Goal: compute value function given a policy 7
{ Average all observed samples

m execute 7w for some learning episodes
m compute sum of (discounted) reward every time a state is
visited

m compute average over collected samples



Example: direct value function evaluation for the
recycling robot

Reinforcement
Learning

search recharge
wait search
wait

< Given Learning episodes:

El: (L,R,H,0),(H,S, H,10),(H,S,L,10)
E2 : (L,R,H,0),(H,S,L,10),(L,R,H,0)

E3 : (H,S,L,10),(L,R,H,0),(H,S,L,10)
¢ Estimate V(s)



Sample-Based Policy Evaluation

Reinforcement
Learning

< Goal: improve estimate of V by considering the Bellman
update (given a policy )

Viti(s) = Y T(s,a(s), s')(R(s,m(s), s) + 7 Vi (s"))

< Take samples for outcomes of s’ and average
m sample; = R(s, 7(s), s;) + vV (s;)
m sample; = R(s, 7(s), s5) + 7V (s,)
u ...
m sampley = R(s,7(s), sy) + 7V (sy)
O VE(s) = b5, sample



Temporal Difference Learning

SRRl O Learn from every experience (not after an episode)

Learning

m Update V/(s) after every action given the obtained
(s,a,s',r)
m if we see s’ more often this will contribute more (i.e., we
are exploiting the underlying T model)
{ Temporal difference learning of values
compute a running average
Sample of V. (s): sample = R(s,7(s),s’) + vV (s)
Update Vi (s): Vz(s) < (1 — a)Vz(s) + a(sample)
Temporal Difference: Vi (s) < Vi (s) + a(sample — Vy(s))

« must decrease over time for average to converge, simple
option: a, = %

Vi(s) < (1 — a)Vi(s) + a(R(s, m(s),s") + v Vx(s))



Example: sample-based value function evaluation
for the recycling robot

Reinforcement
Learning

search recharge
wait search
wait

< Given Learning episodes:

El: (L,R,H,0),(H,S, H,10),(H,S,L,10)
E2 : (L,R,H,0),(H,S,L,10),(L,R,H,0)

E3 : (H,S,L,10),(L,R,H,0),(H,S,L,10)

{ Estimate V/(s) considering the structure of bellman update



TD learning for control

Reinforcement
Learning

< TD gives sample based policy evaluation given a policy
& We want to compute a policy based on V(s)
¢ Can not directly use V to compute 7

m 7(s) = argmax, Q(s, a)
u Q(57 a) = Zs’ T(57 375,)(R(57 375,) +7V(sl))
{ Key idea: we can learn Q-values directly!



A celebrated model-free RL method: Q-Learning

Reinforcement
Learning

{ Q-Learning: sample based Q-Value iteration
¢ Value iteration:

Vir1(s) = max, Yoo T(s, a,s")(R(s, a,s") + v Vi(s'))

& Q-Value iteration: write Q recursively over k
u Qk-l—l(sv a) = Zs’ T(Sv a, S/)(R(S, a, 5/) +ymaxy Qk(sla a/))
m can find optimal Q-Values iteratively

m recall we can not use the model (no T no R)



Sample based Q-Value iteration

Reinforcement
Learning

{ Compute an expectation based on samples:
E(f(x)) = 5 i f(x)

& Our sample: R(s, a,s’) + ymaxy Qk(s', ")
& Learn Q(s, a) values as you go:

H /
Receive a sample (s, a,s’,r)

Consider your old estimate Q(s, a)

Consider your new sample:
sample = R(s, a,s’) + ymaxy Q(s', a)

m Incorporate the new estimate into a running average:

Q(s,a) + (1—a)Q(s,a)+a(R(s,a,s")+ymaxy Q(s', "))



Properties for Q-Learning

Reinforcement
Learning

{ Q-Learning converges to optimal policy
m if you explore enough
m if you make the learning rate small enough
m ... but not decrease it too quickly
& Action selection does not impact on convergence
m Off Policy Learning: learn optimal policy without following
It
¢ BUT to guarantee convergence you have to visit every
state/action pair infinitely often



Q-Learning: pseudo-code

Reinforcement
Learning

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., =-greedy)
Take action A, observe R, 5’
Q(S. A) — Q(S, 4) + o[ R+ v max, Q(S',.a) - Q(S, A)]
S+ S,

until S is terminal

{ e-greedy: choose best action most of the time, but every
once in a while (with probability €) choose randomly amongst
all action (with equal probabiliy)



SARSA: on-policy alternative for model free RL

Reinforcement
Learning Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Iuitialize S
Choose A from S using policy derived from Q) (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S using policy derived from @ (e.g., e-greedy)
Q(S, 4) — Q(S, A) + a[R+~Q(S', A) — Q(S, A)
S 5§ A AL

until S is terminal

¢ SARSA: derives from tuple: (S, A, R,S" A)

> Characterized by the fact that we compute next action
based on policy (on-policy)

¢ If the policy converges (in the limit) to the greedy policy
(and every state/action pairs are visited infinitely often)
SARSA converges to optimal Q*(s, a)




SARSA vs Q-Learning

Reinforcement
Learning

R=-1| - safe path Q-learning ‘

]

optimal path =75

S The Cliff G

W R SR R R
R=-100 Episodes

{ Q-Learning learns the optimal policy but occasionally fails
due to e-greedy action selection.
& SARSA, being on-policy has a better on-line performance




The Exploration Vs. Exploitation Dilemma

Reinforcement
Learning

{ To explore or to exploit ?
m Stay/be happy with whay | already know or
m attempt to test other states-action pairs ?

& RL: the agent should explicitly explore the environment to
acquire knowledge

{ Act to improve the estimate of the value function
(exploration) or to get high (expected) payoffs (exploitation) ?
¢ Reward maximization requires exploration, but too much
exploration of irrelevant parts can waste time.

m choice depends on particular domain and learning
technique.




Exploration vs. Exploitation: standard approaches

Reinforcement
Learning

< Key point: to guarantee convergence to optimal we need to
explore every state-action pairs sufficiently often in the long
run.

< Main methods used in practice:

m e-greedy:
m choose greedily most of the time (probability 1-¢ )and
choose randomly with probability €

m soft-max (or Boltzmann)

. . . Qls,)/ T
m choose action a with probability p(a) = W

m T is a parameter (often called temperature)

m high T — all actions are equiprobable (we explore more)

m low T — greater difference in selection probability towards
actions with highest Q (we exploit more)



Exploration functions

Reinforcement
Learning

{ Key point: include bonus to explore new parts of the state
space inside the Q-Update

¢ Main idea: explore areas if we are not sure they are bad
(optimism in face of uncertainty)
& Exploration function

m Consider an estimate u and visit count n and compute
f(u,n)=u+k/n
m regular update:

Q(s,a) = (1 — a)Q(s, a) + a(R(s, a,s") + ymaxy Q(s, a'))
m modified update: Q(s,a) =

(1 - OZ)Q(S, a) -I-OL(R(S, a, 5/) +ymaxy f(Q(S, a/)v N(Slv al))

m N(s',a") is our n (number of times we visited a
state-action pair)

m k is a fixed parameter



Summary

Reinforcement
Learning

< RL: agent tries to learn what to do while acting
< Assume an underlying unknown MDP
{ Model based methods: try to learn dynamics and then
compute policy
{ Model free methods: try to directly estimate Q-values for
state-action pairs

m Q-learning one of the most interesting off-policy method
{ Exploration vs. Exploitation trad-off

m depends on specific domain techniques

m practical approaches are e-greedy or soft max



