
Reinforcement
Learning

Reinforcement Learning
AIMA Chapters: 21.1, 21.2, 21.3.

Sutton and Barto, Reinforcement Learning: an
Introduction, 2nd Edition: Chapters 6 (6.1 – 6.5)



Reinforcement
Learning

Outline

♦ Reinforcement Learning: the basic problem
♦ Model based RL
♦ Model free RL (Q-Learning, SARSA)
♦ Exploration vs. Exploitation
♦ Slides partially based on the Book "Reinforcement Learning:
an introduction" by Sutton and Barto and partially on course
by Prof. Pieter Abbeel (UC Berkeley).
♦ Thanks to Prof. George Chalkiadakis for providing some of
the slides.



Reinforcement
Learning

Reinforcement Learning: basic ideas

♦ Reinforcement Learning: learn how to map situations to
actions, so as to maximize a sequence of rewards.
♦ Key features for RL

trial and error while interacting with the environment
delayed reward (actions have effect in the future)

♦ Essentially we need to estimate the long term value of V (s)
and find π(s)



Reinforcement
Learning

Reinforcement Learning: relationships with MDPs

Guide an MDP without knowing the dynamics
do not know which states are good/bad (no R(s, a, s ′))
do not know where actions will lead us (no T (s, a, s ′))
hence we must try out actions/states and collect the
reward



Reinforcement
Learning

Recycling robot example: RL

Planning Learning



Reinforcement
Learning

To use a model or not to use a model ?

Model-Based methods methods try to learn a model
+ avoid repeating bad states/actions
+ fewer execution steps
+ efficient use of data

Model-Free methods methods try to learn Q-function
and policy directly
+ simplicity, no need to build and use a model
+ no bias in model design



Reinforcement
Learning

Example: Expected Age

♦ Model Based vs. Model Free approaches
♦ GOAL: compute expected age for this class.
♦ Given probability distribution of ages: E[A] =

∑
a P(a) · a

Model Based: estimate P̂(a)
P̂(a) = num(a)

N

E[A] ≈
∑

a P̂(a) · a
where num(a) is the number of students that have age a
works because we learn the right model

Model Free: no estimate
E[A] ≈ 1

N
∑

i ai

where ai is the age value of person i
works because samples appear with right frequency



Reinforcement
Learning

Learning a model: general idea

Estimate P(x) from samples
Acquire samples: xi ∼ P(x)
Estimate: P̂(x) = count(x)/k

Estimate T̂ (s, a, s ′) from samples
Acquire samples: s0, a0, s1, a1, s2, . . .

Estimate T̂ (s, a, s ′) = count(st+1=s′,at =a,st =s)
count(st =s,at =a)

it works because samples appear with the right frequencies



Reinforcement
Learning

Example: learning a model for the recycling robot

♦ Given Learning episodes:
E1 : (L,R,H, 0), (H,S,H, 10), (H, S, L, 10)
E2 : (L,R,H, 0), (H,S, L, 10), (L,R,H, 0)
E3 : (H, S, L, 10), (L,R,H, 0), (H, S, L, 10)
♦ Estimate T (s, a, s ′) and R(s, a, s ′)



Reinforcement
Learning

Model-Based methods

Algorithm 1 Model Based approach to RL
Require: A,S, S0
Ensure: T̂ ,R̂,π̂

Initialize T̂ , R̂, π̂
repeat

Execute π̂ for a learning episode
Acquire a sequence of tuples 〈(s, a, s ′, r)〉
Update T̂ and R̂ according to tuples 〈(s, a, s ′, r)〉
Given current dynamics compute a policy (e.g., VI or PI)

until termination condition is met

♦ learning episode: a terminal state is reached or a given
amount of time steps
♦ Always execute best action given current model:
no exploration



Reinforcement
Learning

Model Free Reinforcement Learning

♦ Want to compute an expectation weighted by P(x):

E[f (x)] =
∑

x
P(x)f (x)

♦ Model-based estimate P(x) from samples then compute:

xi ∼ P(x), P̂(x) = num(x)/N, E[f (x)] ≈
∑

x
P̂(x)f (x)

♦ Model-free estimate expectation directly from samples:

xi ∼ P(x), E[f (x)] ≈ 1
N

∑
i

f (xi)



Reinforcement
Learning

Evaluate Value Function from Experience

♦ Goal: compute value function given a policy π
♦ Average all observed samples

execute π for some learning episodes
compute sum of (discounted) reward every time a state is
visited
compute average over collected samples



Reinforcement
Learning

Example: direct value function evaluation for the
recycling robot

♦ Given Learning episodes:
E1 : (L,R,H, 0), (H,S,H, 10), (H, S, L, 10)
E2 : (L,R,H, 0), (H,S, L, 10), (L,R,H, 0)
E3 : (H, S, L, 10), (L,R,H, 0), (H, S, L, 10)
♦ Estimate V (s)



Reinforcement
Learning

Sample-Based Policy Evaluation

♦ Goal: improve estimate of V by considering the Bellman
update (given a policy π)

V k+1
π (s) =

∑
s′

T (s, π(s), s ′)(R(s, π(s), s ′) + γV k
π (s ′))

♦ Take samples for outcomes of s’ and average
sample1 = R(s, π(s), s ′

1) + γV k
π (s ′

1)
sample2 = R(s, π(s), s ′

2) + γV k
π (s ′

2)
. . .

sampleN = R(s, π(s), s ′
N) + γV k

π (s ′
N)

♦ V k+1
π (s) = 1

N
∑

i samplei



Reinforcement
Learning

Temporal Difference Learning

♦ Learn from every experience (not after an episode)
Update V (s) after every action given the obtained
(s, a, s ′, r)
if we see s ′ more often this will contribute more (i.e., we
are exploiting the underlying T model)

♦ Temporal difference learning of values
compute a running average
Sample of Vπ(s): sample = R(s, π(s), s ′) + γVπ(s ′)
Update Vπ(s): Vπ(s)← (1− α)Vπ(s) + α(sample)
Temporal Difference: Vπ(s)← Vπ(s) +α(sample−Vπ(s))
α must decrease over time for average to converge, simple
option: αn = 1

n

Vπ(s)← (1− α)Vπ(s) + α(R(s, π(s), s ′) + γVπ(s ′))



Reinforcement
Learning

Example: sample-based value function evaluation
for the recycling robot

♦ Given Learning episodes:
E1 : (L,R,H, 0), (H,S,H, 10), (H, S, L, 10)
E2 : (L,R,H, 0), (H,S, L, 10), (L,R,H, 0)
E3 : (H, S, L, 10), (L,R,H, 0), (H, S, L, 10)
♦ Estimate V (s) considering the structure of bellman update



Reinforcement
Learning

TD learning for control

♦ TD gives sample based policy evaluation given a policy
♦ We want to compute a policy based on V (s)
♦ Can not directly use V to compute π

π(s) = arg maxa Q(s, a)
Q(s, a) =

∑
s′ T (s, a, s ′)(R(s, a, s ′) + γV (s ′))

♦ Key idea: we can learn Q-values directly!



Reinforcement
Learning

A celebrated model-free RL method: Q-Learning

♦ Q-Learning: sample based Q-Value iteration
♦ Value iteration:
Vk+1(s) = maxa

∑
s′ T (s, a, s ′)(R(s, a, s ′) + γVk(s ′))

♦ Q-Value iteration: write Q recursively over k
Qk+1(s, a) =

∑
s′ T (s, a, s ′)(R(s, a, s ′) + γmaxa′Qk(s ′, a′))

can find optimal Q-Values iteratively
recall we can not use the model (no T no R)



Reinforcement
Learning

Sample based Q-Value iteration

♦ Compute an expectation based on samples:
E(f (x)) = 1

N
∑

i f (xi)
♦ Our sample: R(s, a, s ′) + γmaxa′Qk(s ′, a′)
♦ Learn Q(s, a) values as you go:

Receive a sample (s, a, s ′, r)
Consider your old estimate Q(s, a)
Consider your new sample:
sample = R(s, a, s ′) + γmaxa′Q(s ′, a′)
Incorporate the new estimate into a running average:

Q(s, a)← (1−α)Q(s, a)+α(R(s, a, s ′)+γmaxa′Q(s ′, a′))



Reinforcement
Learning

Properties for Q-Learning

♦ Q-Learning converges to optimal policy
if you explore enough
if you make the learning rate small enough
... but not decrease it too quickly

♦ Action selection does not impact on convergence
Off Policy Learning: learn optimal policy without following
it

♦ BUT to guarantee convergence you have to visit every
state/action pair infinitely often



Reinforcement
Learning

Q-Learning: pseudo-code

♦ ε-greedy: choose best action most of the time, but every
once in a while (with probability ε) choose randomly amongst
all action (with equal probabiliy)



Reinforcement
Learning

SARSA: on-policy alternative for model free RL

♦ SARSA: derives from tuple: (S,A,R,S ′,A′)
♦ Characterized by the fact that we compute next action
based on policy (on-policy)
♦ If the policy converges (in the limit) to the greedy policy
(and every state/action pairs are visited infinitely often)
SARSA converges to optimal Q∗(s, a)



Reinforcement
Learning

SARSA vs Q-Learning

♦ Q-Learning learns the optimal policy but occasionally fails
due to ε-greedy action selection.
♦ SARSA, being on-policy has a better on-line performance



Reinforcement
Learning

The Exploration Vs. Exploitation Dilemma

♦ To explore or to exploit ?
Stay/be happy with whay I already know or
attempt to test other states-action pairs ?

♦ RL: the agent should explicitly explore the environment to
acquire knowledge
♦ Act to improve the estimate of the value function
(exploration) or to get high (expected) payoffs (exploitation) ?
♦ Reward maximization requires exploration, but too much
exploration of irrelevant parts can waste time.

choice depends on particular domain and learning
technique.



Reinforcement
Learning

Exploration vs. Exploitation: standard approaches

♦ Key point: to guarantee convergence to optimal we need to
explore every state-action pairs sufficiently often in the long
run.
♦ Main methods used in practice:

ε-greedy:
choose greedily most of the time (probability 1-ε )and
choose randomly with probability ε

soft-max (or Boltzmann)
choose action a with probability p(a) = eQ(s,a)/T∑

a′ eQ(s,a′)/T

T is a parameter (often called temperature)
high T → all actions are equiprobable (we explore more)
low T → greater difference in selection probability towards
actions with highest Q (we exploit more)



Reinforcement
Learning

Exploration functions

♦ Key point: include bonus to explore new parts of the state
space inside the Q-Update
♦ Main idea: explore areas if we are not sure they are bad
(optimism in face of uncertainty)
♦ Exploration function

Consider an estimate u and visit count n and compute
f (u, n) = u + k/n

regular update:
Q(s, a) = (1− α)Q(s, a) + α(R(s, a, s ′) + γmaxa′Q(s, a′))
modified update: Q(s, a) =
(1−α)Q(s, a)+α(R(s, a, s ′)+γmaxa′ f (Q(s, a′),N(s ′, a′))

N(s ′, a′) is our n (number of times we visited a
state-action pair)
k is a fixed parameter



Reinforcement
Learning

Summary

♦ RL: agent tries to learn what to do while acting
♦ Assume an underlying unknown MDP
♦ Model based methods: try to learn dynamics and then
compute policy
♦ Model free methods: try to directly estimate Q-values for
state-action pairs

Q-learning one of the most interesting off-policy method
♦ Exploration vs. Exploitation trad-off

depends on specific domain techniques
practical approaches are ε-greedy or soft max


