
Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Search Strategies: Lookahead
AIMA 6.3 (6.3.3 excluded),

Constraint Processing, R. Dechter
Sections 5.1, 5.3 (5.3.2 excluded)



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Summary

Introduction and Consistency Levels
Backtracking
Look-Ahead



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Approximate Inference and Search

Need to take chances
Complete inference (e.g., strong n-consistency) ensures no
dead-end in extending partial solutions to complete
solutions
However, strong i-consistency is exponential (in the
number of variables) → not practical
Approximate Inference is polynomial but we still need to
search for a solution
search: proceed by trial and errors



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Running Example: Map-Coloring

Variables WA, NT , Q, NSW , V , SA, T
Domains Di = {red , green, blue}
Constraints: adjacent regions must have different colors
e.g., WA 6= NT (if the language allows this), or
(WA,NT ) ∈
{(red , green), (red , blue), (green, red), (green, blue), . . .}



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Example: Map-Coloring contd.

Solutions are assignments satisfying all constraints, e.g.,
{WA= red ,NT = green,Q = red ,
NSW = green,V = red ,SA= blue,T = green}



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Constraint graph

Binary CSP: each constraint relates at most two variables



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Standard search formulation for CP

Naive choice
States are defined by the values assigned so far
♦ Initial state: the empty assignment, { }
♦ Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
=⇒ fail if no legal assignments (not fixable!)
♦ Goal test: the current assignment is complete

1 This is the same for all CSPs!
2 Every solution appears at depth n with n variables

=⇒ use depth-first search
3 Path is irrelevant, so can also use complete-state

formulation
4 b=(n − `)d at depth `, hence n!dn leaves!!!!



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking search

A better formulation
Variable assignments are commutative, i.e.,
[WA= red then NT = green] same as [NT = green then
WA= red ]
Only need to consider assignments to a single variable at each
node
=⇒ b= d and there are dn leaves

♦ Depth-first search for CSPs with single-variable assignments
is called backtracking search

♦ Backtracking search is the basic uninformed algorithm for
CSPs. Can solve n-queens for n ≈ 25

♦ Variable ordering counts for performance



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking search

function Backtracking-Search(csp) returns solution or failure
return Backtrack({ }, csp)

function Backtrack(assignment, csp) returns solution or failure
if assignment is complete then return assignment
var← Select-Unassigned-Variable(csp)
for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment then
add {var = value} to assignment
inferences← Inferences(csp, var, value)
if inferences 6= failure then

add inferences to assignment
result←Backtracking(assignment, csp)
if result 6= failure then

return result
endif

endif
endif

remove {var = value} and inferences from assignment
endfor

return failure



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking example



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking example



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking example



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking example



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Improving Backtracking

♦ General Goal: Reducing size of explored search space
Ingredients

ordering variable and variables’ values
local consistency (e.g., arc or path consistency)
look-ahead, predict future inconsistencies
(look-back, where to backtrack)
tree decomposition, exploit problem structure



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Ordering Variables: Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Ordering Variables: Degree heuristic

Tie-breaker among MRV variables
Degree heuristic:
choose the variable with the most constraints on remaining

variables

MRV and DH can be applied to any CSP



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Variable Orderings: Example

Exercise: Dividing Integer
Consider the following network R
Variables: x , y , l , z ,
Domains:
Dx = Dy = {2, 3, 4},Dl = {2, 5, 6},Dz = {2, 3, 5}
Constraints: z divides evenly x , y , l

Compute number of expanded nodes for assigning variable with
different orderings:

d1 = {x , y , l , z}
Use Minimum Remaining Values and degree heuristic to
choose next value



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Value ordering: Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining

variables

Combining these heuristics makes 1000 queens feasible
Gains depend on the specific problem



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Consistency Level and Search Space

Good effects on Search Space Size
Tighter constraints → smaller search space
Given two equivalent network R and R′

if R′ ⊆ R then any solution path appearing in the search
space of R′ also appears in the search space of R, for any
ordering d .
Higher level of consistency reduce the search space



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Consistency Level and Search process

Negative effects on Searching
Adding constraints requires more computation
Each time a new variable is assigned need to check many
more constraints
If only binary constraints we never have more than O(n)
checks
If r -ary constraints then we could have O(nr−1) checks



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtrack Free Search

Backtrack Free Network
A network R is backtrack free if every leaf is a goal state
A DFS on a backtrack free network ensure a complete
consistent assignment
E.g. R + arc consistency + {z , x , y , l} → backtrack free
network



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Look-Ahead

Look-Ahead Schemes
Given approximate inference (arc consistency,
path-consistency)
Foresee impact of next move (which variable, which value)
Impact: how next move restricts future assignment
Efficient way to update information for choosing next
variable/value

Can efficiently compute remaining legal values given
current assignment



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Look-Ahead Strategies

Strategies
Forward Checking

check unassigned variables separately
Arc consistency look-ahead

propagate arc consistency



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Look-ahead: Discussion

Discussion
Incur extra cost for assigning values

need to propagate constraints
Can restrict search space significantly

e.g., discover that a value makes a sub-problem
inconsistent
remove values from future variables’ domains

Usually no changes on worst case performance: trade-off
between costs and benefits



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Generalised Look-ahead

Algorithm

Algorithm 1 Generalised Look-ahead
Require: A constraint network R
Ensure: A solution or notification that the network is inconsistent

i ← 1
D′i ← Di
while 1 ≤ i ≤ n do

xi ← SelectValueX
if xi is null then

i ← i − 1
Reset D′k for each k > i to its value before i was last instantiated

else
i ← i + 1

end if
end while
if i is 0 then

return inconsistent
else

return instantiated valuse for {x1, · · · , xn}

end if



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Forward Checking

Forward Checking
most limited form of constraint propagation
propagates the effect of a selected value to future variables
separately
if domains of one of future variables becomes empty, try
next value for current variable.



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Select Value Forward Checking

Algorithm

Algorithm 2 SelectValueForwardChecking
a← D′i select an arbitrary value
while D′i 6= { } do

for all k, i < k ≤ n do
for all b, b ∈ D′k do

if < āi−1, xi = a, xk = b > is not consistent then
D′k ← D′k \ {b}

end if
end for
if D′k = { } then

emptyDomain ← true
end if

end for
if emptyDomain then

reset each D′k to its value before assigning a
else

return a
end if

end while

return null



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Forward checking

Idea: Keep track of remaining legal values for unassigned
variables

Terminate search when any variable has no legal values



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Forward checking

Idea: Keep track of remaining legal values for unassigned
variables

Terminate search when any variable has no legal values



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Forward checking

Idea: Keep track of remaining legal values for unassigned
variables

Terminate search when any variable has no legal values



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Forward checking

Idea: Keep track of remaining legal values for unassigned
variables

Terminate search when any variable has no legal values



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Forward Checking: Example

Example (Graph Colouring Example)

Variables: x1, x2, x3, x4, x5, x6, x7,
Domains: Dx1 = {R,B,G},Dx2 = Dx5 = {B,G},Dx3 =
Dx4 = Dx7 = {R,B},Dx6 = {R,G ,Y }
Constraints: x1! = x2, x1! = x3, x1! = x4, x1! = x7, x2! =
x6, x3! = x7, x4! = x5, x4! = x7, x5! = x6, x5! = x7

x1 = red reduces domains of x3, x4, x7

x2 = blue no effects
x3 = blue (only available) makes x7 empty → x3 dead-end



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Complexity of Forward Checking

Complexity of Select Value Forward Checking

O(ek2)

eu consistency check for each value of each future variable
xu

k value for each future variables O(euk)∑
u eu = e then O(ek)

k value for the current variable



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Arc Consistency Look-Ahead

Arc Consistency Look ahead
force full arc consistency on all remaining variables
select a value for current variable xi = a

apply AC − 1 on all unassigned variables with xi = a

If a variable domain becomes empty reject current
assignment
can use AC − 3 or AC − 4 instead



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Arc Consistency Look-Ahead Complexity

Arc Consistency Look Ahead

Best algorithm for AC is AC − 4 complexity O(ek2)

worst case for Select Arc Consistency look-ahead is O(ek3)



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Example of AC Look-Ahead

Example (AC Look-Ahead for Map Colouring)



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Example of AC Look-Ahead

Example (AC Look-Ahead for Map Colouring)



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Example of AC Look-Ahead

Example (AC Look-Ahead for Map Colouring)



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Example of AC Look-Ahead

Example (AC Look-Ahead for Map Colouring)



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Mantaining Arc Consistency

MAC - variant of Arc Consistency Look-Ahead
Apply Full Arc Consistency each time a value is rejected
if empty domain → no solutions
otherwise continue backtracking with another variable

Example

Consider variable x1 with D1 = 1, 2, 3, 4
Apply Backtracking with AC look ahead
Suppose value 1 is rejected: apply full AC with D1 = 2, 3, 4

if empty domain → stop
else value selection with next variable

search in a binary virtual tree x1 = 1 or x1 6= 1



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Exploiting problem structure in Look ahead

Definition (Cycle Cutset)

Given an undirected graph, a subset of nodes in the graph is a
cycle cutset iff its removal result in an acyclic graph

Exploiting problem structure
Once a variable is assigned it can be removed from the
graph (conditioning)
If we remove a cycle-cutset the rest of the problem is a tree
Can use arc consistency to solve that sub-problem
We need to check all possible assignments of cycle-cutset
variables and do arc propagation
Complexity is still exponential but in the size of the
cycle-cutset!



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Exploiting problem structure: example

Example (Cycle Cut Set for Map Colouring)

Conditioning: instantiate a variable, prune its neighbors’
domains

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree
Cutset size c =⇒ runtime O(dc · (n − c)d2), very fast for
small c



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Exercise: AC Look-Ahead

AC Look-Ahead for Map Colouring
Use the AC-3 Algorithm to show that AC Look-Ahead detects an
inconsistency on the partial assignment {WA = red ,V = blue}
for the Australia map colouring problem used above.



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Exercise: Cycle cut set

Cycle cut set for Graph Colouring
Use the Cycle cut set algorithm to solve the graph colouring
problem defined above.


	Search for Constraint Propagation

