Search Strategies: Lookahead

Summary

- Introduction and Consistency Levels
- Backtracking
- Look-Ahead
Approximate Inference and Search

Need to take chances

- Complete inference (e.g., strong n-consistency) ensures no dead-end in extending partial solutions to complete solutions
- However, strong i-consistency is exponential (in the number of variables) \(\rightarrow \) not practical
- Approximate Inference is polynomial but we still need to search for a solution
- search: proceed by trial and errors

Running Example: Map-Coloring

Variables \(WA, NT, Q, NSW, V, SA, T \)
Domains \(D_i = \{ \text{red}, \text{green}, \text{blue} \} \)
Constraints: adjacent regions must have different colors
- e.g., \(WA \neq NT \) (if the language allows this), or
- \((WA, NT) \in \{ (\text{red}, \text{green}), (\text{red}, \text{blue}), (\text{green}, \text{red}), (\text{green}, \text{blue}), \ldots \} \)
Example: Map-Coloring contd.

Solutions are assignments satisfying all constraints, e.g.,
{WA = red, NT = green, Q = red,
 NSW = green, V = red, SA = blue, T = green}

Constraint graph

Binary CSP: each constraint relates at most two variables
Standard search formulation for CP

Naive choice

States are defined by the values assigned so far

♦ Initial state: the empty assignment, \{\}
♦ Successor function: assign a value to an unassigned variable that does not conflict with current assignment.
⇒ fail if no legal assignments (not fixable!)
♦ Goal test: the current assignment is complete

1. This is the same for all CSPs! 😊
2. Every solution appears at depth \(n \) with \(n \) variables
⇒ use depth-first search
3. Path is irrelevant, so can also use complete-state formulation
4. \(b = (n - \ell)d \) at depth \(\ell \), hence \(n!d^n \) leaves!!!! 😈

Backtracking search

A better formulation

Variable assignments are commutative, i.e.,
\[[WA = red \; \text{then} \; NT = green] \; \text{same as} \; [NT = green \; \text{then} \; WA = red] \]

Only need to consider assignments to a single variable at each node
⇒ \(b = d \) and there are \(d^n \) leaves

♦ Depth-first search for CSPs with single-variable assignments is called backtracking search

♦ Backtracking search is the basic uninformed algorithm for CSPs. Can solve \(n \)-queens for \(n \approx 25 \)

♦ Variable ordering counts for performance
Backtracking search

function Backtracking-Search(csp) returns solution/failure
 return Recursive-Backtracking({}, csp)

function Recursive-Backtracking(assign, csp) returns soln/failure
 if assign is complete then return assign.
 var ← Select-Unassigned-Variable(Variables[csp], assign, csp)
 for each value in Order-Domain-Values(var, assign, csp) do
 if value is cons. with assign given Constraints[csp] then
 add {var = value} to assign.
 result ← Recursive-Backtracking(assign, csp)
 if result ≠ failure then return result
 remove {var = value} from assign.
 return failure

Backtracking example
Improving Backtracking

Search Strategies: Lookahead

Search for Constraint Propagation

◊ General Goal: Reducing size of explored search space

Ingredients

- ordering variable and variables’ values
- local consistency (e.g., arc or path consistency)
- look-ahead, predict future inconsistencies
- look-back, where to backtrack
- tree decomposition, exploit problem structure

Ordering Variables: Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values
Ordering Variables: Degree heuristic

Tie-breaker among MRV variables
Degree heuristic:
choose the variable with the most constraints on remaining variables

MRV and DH can be applied to any CSP

Variable Orderings: Example

Exercise: Dividing Integer

- Consider the following network \mathcal{R}
- Variables: x, y, l, z
- Domains:
 $D_x = D_y = \{2, 3, 4\}$, $D_l = \{2, 5, 6\}$, $D_z = \{2, 3, 5\}$
- Constraints: z divides evenly x, y, l

Compute number of expanded nodes for assigning variable with different orderings:
- $d_1 = \{x, y, l, z\}$
- Use Minimum Remaining Values and degree heuristic to choose next value
Value ordering: Least constraining value

Given a variable, choose the least constraining value: the one that rules out the fewest values in the remaining variables.

Combining these heuristics makes 1000 queens feasible. Gains depend on the specific problem.

Consistency Level and Search Space

Good effects on Search Space Size

- Tighter constraints → smaller search space
- Given two equivalent network \mathcal{R} and \mathcal{R}'
- if $\mathcal{R}' \subseteq \mathcal{R}$ then any solution path appearing in the search space of \mathcal{R}' also appears in the search space of \mathcal{R}, for any ordering d.
- Higher level of consistency reduce the search space.
Consistency Level and Search process

Search Strategies: Lookahead

Search for Constraint Propagation

Negative effects on Searching
- Adding constraints requires more computation
- Each time a new variable is assigned need to check many more constraints
- If only binary constraints we never have more than $O(n)$ checks
- If r-ary constraints then we could have $O(n^{r-1})$ checks

Backtrack Free Search

Backtrack Free Network
- A network \mathcal{R} is backtrack free if every leaf is a goal state
- A DFS on a backtrack free network ensure a complete consistent assignment
- E.g. $\mathcal{R} + \text{arc consistency} + \{z, x, y, l\} \rightarrow$ backtrack free network
Look-Ahead

Look-Ahead Schemes
- Given approximate inference (arc consistency, path-consistency)
- Foresee impact of next move (which variable, which value)
- Impact: how next move restricts future assignment
- Efficient way to update information for choosing next variable/value
 - Can efficiently compute remaining legal values given current assignment

Look-Ahead Strategies

Strategies
- Forward Checking
 - check unassigned variables separately
- Arc consistency look-ahead
 - propagate arc consistency
Look-ahead: Discussion

Discussion

- Incur extra cost for assigning values
- Need to propagate constraints
- Can restrict search space significantly
 - E.g., discover that a value makes a sub-problem inconsistent
 - Remove values from future variables’ domains
- Usually no changes on worst case performance: trade-off between costs and benefits

Generalised Look-ahead

Algorithm

Algorithm 1 Generalised Look-ahead

Require: A constraint network \(R \)
Ensure: A solution or notification that the network is inconsistent

\[
i \leftarrow 1
\]

\[
D_i' \leftarrow D_i
\]

while \(1 \leq i \leq n \) do

\[
x_i \leftarrow \text{SelectValue}_X
\]

if \(x_i \) is null then

\[
i \leftarrow i - 1
\]

Reset \(D_i' \) for each \(k > i \) to its value before \(i \) was last instantiated

else

\[
i \leftarrow i + 1
\]

end if

end while

if \(i \) is 0 then

return inconsistent

else

return instantiated values for \(\{x_1, \cdots, x_n\} \)

end if
Forward Checking

- most limited form of constraint propagation
- propagates the effect of a selected value to future variables separately
- if domains of one of future variables becomes empty, try next value for current variable.

Algorithm

Algorithm 2 SelectValueForwardChecking

```plaintext
a ← D_i select an arbitrary value
while D'_i ≠ { } do
    for all k, i < k ≤ n do
        for all b, b ∈ D'_k do
            if < a_{i-1}, x_i = a, x_k = b > is not consistent then
                D'_k ← D'_k \ {b}
            end if
        end for
    end if
    if D'_i = { } then
        emptyDomain ← true
    end if
    if emptyDomain then
        reset each D'_k to its value before assigning a
    else
        return a
    end if
end while
return null
```
Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

Forward Checking: Example

Example (Graph Colouring Example)

- **Variables:** $x_1, x_2, x_3, x_4, x_5, x_6, x_7$
- **Domains:** $D_{x_1} = \{R, B, G\}, D_{x_2} = D_{x_5} = \{B, G\}, D_{x_3} = D_{x_4} = D_{x_7} = \{R, B\}, D_{x_6} = \{R, G, Y\}$
- **Constraints:** $x_1 \neq x_2, x_1 \neq x_3, x_1 \neq x_4, x_1 = x_7, x_2 = x_6, x_3 = x_7, x_4 = x_5, x_4 = x_7, x_5 = x_6, x_5 = x_7$

- $x_1 = \text{red}$ reduces domains of x_3, x_4, x_7
- $x_2 = \text{blue}$ no effects
- $x_3 = \text{blue}$ (only available) makes x_7 empty \rightarrow x_3 dead-end
Complexity of Forward Checking

- $O(ek^2)$ for each node
- e_u consistency check for each value of each future variable x_u
- k value for each future variable $O(e_u k)$
- $\sum_u e_u = e$ then $O(ek)$
- k value for the current variable

Arc Consistency Look-Ahead

- force **full** arc consistency on all remaining variables
- select a value for current variable $x_i = a$
- apply $AC - 1$ on all unassigned variables with $x_i = a$
- If a variable domain becomes empty reject current assignment
- can use $AC - 3$ or $AC - 4$ instead
Arc Consistency Look-Ahead Complexity

- Best algorithm for AC is $AC - 4$ complexity $O(ek^2)$
- Worst case for Select Arc Consistency look-ahead is $O(eK^3)$

Example of AC Look-Ahead

Example (AC Look-Ahead for Map Colouring)
Exploiting problem structure in Look ahead

Definition (Cycle Cutset)
Given an undirected graph, a subset of nodes in the graph is a **cycle cutset** iff its removal result in an acyclic graph.

Exploiting problem structure
- Once a variable is assigned it can be removed from the graph **conditioning**
- If we remove a cycle-cutset the rest of the problem is a tree
- Can use arc consistency to solve that sub-problem
- We need to check all possible assignment of cycle-cutset variables and do arc propagation
- Complexity is still exponential but in the size of the cycle-cutset!

Exploiting problem structure: example

Example (Cycle Cut Set for Map Colouring)
Conditioning: instantiate a variable, prune its neighbors’ domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
Cutset size $c \implies$ runtime $O(d^c \cdot (n - c)d^2)$, very fast for small c
Exercise: AC Look-Ahead

AC Look-Ahead for Map Colouring

Use the AC-3 Algorithm to show that AC Look-Ahead detects an inconsistency on the partial assignment \{WA = red, V = blue\} for the Australia map colouring problem used above.

Exercise: Cycle cut set

Cycle cut set for Graph Colouring

Use the Cycle cut set algorithm to solve the graph colouring problem defined above.