Local search
algorithms

Local search algorithms
AIMA sections 4.1,4.2

Summary

Local search
algorithms

& Hill-climbing
¢ Simulated annealing

¢ Genetic algorithms (briefly)

¢ Local search in continuous spaces (very briefly)

lterative improvement algorithms

Local search
algorithms

¢ In many optimization problems, path is irrelevant;
the goal state itself is the solution
{ Then state space = set of “complete” configurations;

find optimal configuration, e.g., TSP, etc.

or, find configuration satisfying constraints, e.g., n-Queens
& In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it
{ Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

Local search
algorithms

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly
with thousands of cities

Example: /-queens

Local search
algorithms

{ Put n queens on an n x n board with no two queens on the
same, row, column, or diagonal
¢ Move a queen to reduce number of conflicts

G g
e

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n=1million

h=10

Hill-climbing (or gradient ascent/descent)

Local search

algorithms “Like climbing Everest in thick fog with amnesia”

function Hill-Climbing(problem) returns a state that is a local
maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current < Make-Node(problem.Initial-State)
loop do
neighbor < a highest-valued successor of current
if neighbour.Value < current.Value then return
current.State
end if
current < neighbor
end

Hill-climbing contd.

Local search

|gorith 1
Bl Useful to consider state space landscape

abjective function lobal maximum

shoulder
local maximum
"flat" local maximum

state space

current
state

Random-restart hill climbing overcomes local maxima—trivially

complete
Random sideways moves ©) escape from shoulders) loop on

flat maxima

Simulated Annealing

Local search
algorithms

m Inspired by statistical mechanics

m Idea: escape local maxima by allowing some “bad” moves,
but gradually decrease their frequency
m Allow more random moves at the beginning
m we can reach zones with better solutions
m Diminish probability of having a random move towards the
end
m refine search around a good solution

Simulated annealing (pseudo-code)

Local search
algorithms

function Simulated-Annealing(problem, schedule) returns a
solution state

inputs: problem, a problem

schedule, a mapping from time to “temperature’
local variables: current, a node
next, a node
T, a “"temperature” controlling prob. of

downward steps

current <— Make-Node(problem.Initial-State)
for t+ 1 to o do
T + schedule(t)
if T = 0 then return current
next <— a randomly selected successor of current
AE <+ next.Value — current.Value
if AE > 0 then current < next

else current < next only with probability e® £/T

Properties of simulated annealing

Local search
algorithms

At fixed “temperature” T, state occupation probability reaches
Boltzman distribution

E(x)

p(x) = aexT

T decreased slowly enough = always reach best state x*
EG*) , E() E(*)—E(x)
because e 7 ekt =e kT > 1forsmall T

Is this necessarily an interesting guarantee??

¢ Devised by Metropolis et al., 1953, for physical process
modelling

& Widely used in VLSI layout, airline scheduling, etc.

Local beam search

Local search
algorithms

Idea: keep k states instead of 1; choose top k of all their
SUCCESSOrs

Not the same as k searches run in parallel!

Searches that find good states recruit other searches to join
them

Problem: quite often, all k states end up on same local hill
Idea: choose k successors randomly, biased towards good ones
Observe the close analogy to natural selection!

Genetic algorithms

Local search
algorithms

= stochastic local beam search + generate successors from
pairs of states

52411 [B32748552 [327a4Tbz]
48552 [24752411 —~] 24752411

20 26% [32752411 [32752124 | 32’_24|
11 1%~ 23415124 [2aa1581L][2441541

Fitness Selection Pairs Cross-Qver

Genetic algorithms contd.

Local search
algorithms

GAs require states encoded as strings (GPs use programs)
Crossover helps iff substrings are meaningful components

I.i“_'i m. H

GAs # evolution: e.g., real genes encode replication machinery!

Continuous state spaces

Local search

D Suppose we want to site three airports in Romania:

— 6-D state space defined by (x1,y1), (x2,12), (x3.y3)

— objective function f(Xl, Y1, X2, V2, X3, y3) =

sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete
space,
e.g., empirical gradient considers +0 change in each coordinate
Gradient methods compute

<0f of of of of (‘)f>

Vf =

to increase/reduce f, e.g., by x « x + aVf(x)

Sometimes can solve for V£ (x) = 0 exactly (e.g., with one city).
Newton—Raphson (1664, 1690) iterates x < x — H, ' (x)V(x)
to solve V1 (x) = 0, where H;; = 9°f /0x;0x;

Exercise: Local Search for the 4-Queens problem

Local search
algorithms

Consider the 4-Queens problem. Assume the evaluation
function is the number of pairs of queens that attack each
other. Assume initial state is (1234)

m What is the current score for the initial state

m Write down the values of all successor states for this initial
state

m Implement a simple program that computes the next best
state(s) for your hill-climbing approach

m Trace a possible execution of a (deterministic) hill-climbing
approach

m Comment on optimality of final state
m sol: esercllocalSearch.m

http://profs.sci.univr.it/~farinelli/courses/ia/code/eserc1LocalSearch.m

Exercise: Local Beam Search for the 4-Queens

problem

Local search
algorithms

Consider the 4-Queens problem and the deterministic hill
climbing approach described above. Assume k = 3 and initial
states are: (1234),(2222),(3333).

m Trace execution of a parallel search
sol: eserc2Parallel.m

m Trace the execution of a beam search
sol: eserc2BeamSearch.m

http://profs.sci.univr.it/~farinelli/courses/ia/code/eserc2Parallel.m
http://profs.sci.univr.it/~farinelli/courses/ia/code/eserc2BeamSearch.m

