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Intro

• Motivations

• Applications

• Examples
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Combinatorial Problems

Motivations: Combinatorial Problems

Given a set of possible 
solutions find the best one

Main issue: 

Space of possible solutions 
is huge (exponential) hence 
complete search of all 
solutions is impossible
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Combinatorial Problems: Decision

Graph Colouring

Given a graph and k colours
colour each node such that no 
two adjacent nodes have the 
same colour

Combinatorial Problems

Decision

Yes No
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Combinatorial Problems: Optimisation

Graph Colouring (optimisation)

Given a graph and k colours 
colour each node such that the 
minimum number of  two 
adjacent nodes have the same 
colour

Combinatorial Problems

Optimisation

Decision
No No

Best
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Combinatorial Problems: Multi-Objective Opt. 

Combinatorial Problems

MO Optimisation

Optimisation

Decision

Portfolio investment
Given a set of investments
Find a subset of them 
(portfolio)

Such that:
Minimise Risks
Maximise Profits

Combinatorial Problems

MO Optimisation

Optimisation

Decision
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Combinatorial Problems: Graphical Models 
Characteristics:

1) A set of Variables

2) A set of Domains, one 
for each variable

3) A set of Local functions 

Global function is an 
aggregation of local function

Combinatorial Problems

MO Optimisation

Optimisation

Decision

Graphical Model
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Combinatorial Problems: Graphical Models II 
Graph Colouring

- Local functions: number of 
conflicts for each link  

- Global function: sum of local 
functions

GMs: Exploit problem structure
Efficient, General
Used in many fields: 

Constraint Reasoning
Bayesian Network 
Error Correcting codes
...

Combinatorial Problems

MO Optimisation

Optimisation

Decision

Graphical Model
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Dense Deployment
To detect events (e.g., vehicle 
activity)

Features: 
1) Energy Harvesting
2) Energy Neutral Operations
3) Sense/sleep modes

Application: Wide AreaSurveillance

Assumptions:
1) Activity can be detected by single sensor
2) Neighbors (i.e., overlapping sensors) can communicate
3) Only Neighbors are aware of each other 
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Energy neutral operation: Constraints on sense/sleep schedules

Coordination:
Maximise detection probability 
 given constraints on schedules
Minimise periods where no sensor 
 is actively sensing

Similar to Graph Coloring but:
Overlapping Areas -> weights
Non binary relationships 

time

duty cycle

time

duty cycle

The Coordination Problem
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W. A. S. Demo

file:///home/alessandro/Documents/Didattica/Verona/svnDidattica/IA/latex/movies/sensor_coverage_movie.wmv
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Field of Constraint Processing
Where it comes from

Artificial Intelligence (vision)
Programming Languages (Logic Programming)
Logic based languages (propositional logic)

Related Areas

Hardware and Software Verification
Operation Research (Integer Programing)
Information Theory (error correcting codes)
Agents and Multi Agent Systems (coordination)
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CP: what can we express with constraints
All problems that can be formulated as follow:

–  Given a set of variables and a set of domains
–  Find values for variables such that a given relation 
holds    among them

Graph colouring:
–  Variables: nodes 
–  Domain: colour   
–  Find colour for nodes such that adjacent nodes do   
      not have same colour

N-Queens problem:
– Find positions for N queens on a N by N chessboard 
such that none of them can eat another in one move
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4-Queens problem: first formulation
A possible Formulation:

– 8 variables:          
x1,y1,x2,y2,x3,y3,x4,y4  
– No two queens on same 
row: x1 != x2, x1 != x3, ...
– No two queens on same 
column: y1 != y2, y1 != 
y3, ...
– No two queens on same 
diagonal: |x1-x2| != |y1–
y2| ...

 
X1 = 1 y1=2

X2 = 2 y2=1
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4-Queens alternative formulation
A (better) Formulation
In every valid solution one column for each queen

– Variables: columns r1,r2,r3,r4 
    – Domain: rows [1...8]
Constraints:
    – Columns are all different
    – r1 != r2, …
    – |r1 – r2| != 1, |r1 – r3| != 2, ...

r1 = 2 r2 = 1
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Formalization and Representation

Formal Definition

Representing Constraint Networks

Examples
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Constraints encode information

Constraint as information:
– This class is 45 min. Long
– Four nucleotides that make up the DNA can only     
combine in a particular sequence
– In a clause all variables are universally quantified
– In a valid n-queen solutions all queens are in different 
rows

We can exploit constraints to avoid reasoning about useless 
options

– Encode the n-queens problem with n variables that 
have n values each
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Constraint Network

A constraint network is R=(X,D,C)
X set of variables X = {x1,...,xn}
D set of domains  D = {D1,...,Dn} Di = {v1,...,vk(i)}
C set of constraints (Si,Ri) [Si  X] ⊆

scope: variables involved in Ri
Ri subset of cartesian product of variables in Si
Ri expresses allowed tuples over Si

Solution: assignment of all variables that satisfies all 
constraints

Tasks: consistency check, find one or all solutions, count 
solutions, find best solution (optimisation)
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4-Queens example

Four variables all with domain [1,...,4]

C1 = (S1,R1)
S1 = {r1,r2}
R1 = {(1,3)(1,4)(2,4)(3,1)(4,1)(4,2)} = R1-2
...
C4 = (S4,R4)
S4 = {r2,r3}
R4 = {(1,3)(1,4)(2,4)(3,1)(4,1)(4,2)} = R2-3
...
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Solution and partial consistent solutions

Partial Solution 
– Assignment of a subset of variables

Consistent partial solution:
– Partial solution that satisfies all the constraints whose 
scope contains no un-instantiated variables 
– A consistent partial solution may not be a subset of a 
solution

consistent inconsistent solution
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Map Colouring
Given a map decide whether the map can be coloured with 
4 different colours so that no adjacent countries have the 
same colour

  x1

   x4

      x2

  x3

 
 x5

C1 = ({x1,x2}, x1 != x2)
C2 = ({x1,x3}, x1 != x3)
...

Solution
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Constraint Network

Map Colouring

C1

C2

r3 r4

 r2

4-Queens

C1

C4

X1

X4

X3

X2

X5

 r1
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Constraint Graph

Primal graph
– Node: variable
– Arc: constraint holding between variables

Map Colouring

C1

C2

X1

X4

X3

X2

X5



A. Farinelli 24 of 43

Dual Graph

Nodes: constraints’ scopes 
Arcs: shared variables

x1,x2

Map Colouring

x1,x3

x1,x4x1

x2

x1
x2,x4

x3,x4

x2,x5x2

x4x3

x4

x4,x5
x3

x5

x2
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Crossword Puzzle: Primal graph

Possible words: {MAP, ARC}
Only word of correct length

x1

x2

x4

x3

x5

Di : letters of the alphabet
C1 [{x1,x2,x3},(MAP)(ARC)]
C2 [{x2,x4,x5},(MAP)(ARC)]
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Crossword Puzzle: dual graph

Di : letters of the alphabet
C1 [{x1,x2,x3},(MAP)(ARC)]
C2 [{x2,x4,x5},(MAP)(ARC)]

x1,x2,x3 x2,x4,x5
x2

x1

x2

x4

x3

x5
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Hypergraphs and Dual Graphs

x1

x2

x4

x3

x5

x1

x2

x4

x3

x5

x1,x2,x3 x2,x4,x5
x2
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Hypergraph and Binary graphs

Can always convert a hypergraph into a binary graph

– The dual graph of an hypergraph is a binary graph
– We can use it to represent our problem

But each variable has an exponentially larger domain

– This is a problem for efficiency
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Representing Constraints
Tables

– Show all allowed tuples
– Words in the crossword puzzle

Arithmetic expressions
– Give an arithmetic expression that allowed tuples 
should meet
       – X1 != X2 in the n-queen problem

Propositional formula
– Boolean values of variables

– Boolean values that satisfy the formula
– (a or b)  =  {(0,1)(1,0)(1,1)}  
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Propositional CNF
Consider the set of clauses:

– {x1 or not x2, not x2 or not x3, not x3} 
– Constraint formulation for SAT

– C1 ({x1,x2},(0,0)(1,0)(1,1))
– C2 ({x2,x3},(0,0)(1,0)(0,1))
– C3 ({x3},(0)) Unary constraint

– Ex: Compute dual graph

Ex: Consider the set of clauses:
– {not C, A or B or C, not A or B or E, not B or C or D}
– Give CP formulation 
– Give Primal and dual graph

x1

x2

x3

C2C1

C3
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Set operations with relations

Relations are subsets of the cartesian product of the 
variables in their scope

– S: x1,x2,x3
– R: {(a,b,c,)(c,b,a)(a,a,b)}

We can apply standard set-operations on relations
– Intersection 
– Union
– Difference

Scope must be the same
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Selection, Projection and Join
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Binary Constraint Network

• Constraint Inference

• Projection Network

• Minimal Network

• Binary Decomposable Networks
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Constraint Inference

Given R13 and R23
– R13=R23 = (R,Y)(Y,R)

We can infer R12
– R12 = (R,R)(Y,Y)

Composition

Binary constraint Network

R
Y

R
Y

R
Y

!= !=

R
Y

R
Y

R
Y

!= !=

=

x1

x3

x2

x3

x2x1
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R12 is redundant 
– Every deduced constraint is

Equivalence of Constraint Networks:
– Same set of variables
– Same set of solutions

Redundant Constraint
– RC constraint network
– RC’ = removing R* from RC
– If RC is equivalent to RC’ then R* 
is redundant 

Binary constraint Network

R
Y

R
Y

R
Y

!= !=

R
Y

R
Y

R
Y

!= !=

=

x1

x3

x2

x3

x2x1
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Relations vs Binary Networks
Can we represent every relation with binary constraint?
No (unfortunately) 

– most relations cannot be represented by binary 
networks (i.e. graphs):

Given n variables with domain size k
– # of relations (subsets of joint tuples)
– # of binary networks (k^2 tuples for each couple, n^2 
couples at most)
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Representing general rel. : Projection Network

Represent a general relation using a binary network:

– Project a relation onto each pair of its variables
– R = {(1,1,2)(1,2,2)(1,2,1)}
– P[R]: P12 = {(1,1)(1,2)} 

  P13 = {(1,2)(1,1)} 
 P23 = {(1,2)(2,2)(2,1)}

– Sol(P[R]) = {(1,1,2)(1,2,2)(1,2,1)} = R

Is it always the case ?
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Approximation with Projection Network 
– R = {(1,1,2)(1,2,2)(2,1,3)(2,2,2)}
– P[R]: P12 = {(1,1)(1,2)(2,1)(2,2)} 

             P23 = {(1,2)(2,2,)(2,3)}
             P13 = {(1,2)(2,3)(2,2)}

– Sol(P[R]) = {(1,1,2)(1,2,2)(2,1,2)(2,1,3)(2,2,2)}

Sol(P[R]) != R but...

If N is a projection network of R this is always true

The projection network N is the tightest upper bound for R

R  Sol(P [R])⊆

¬ R' R  R'  Sol(P [R])∃ ⊆ ⊂
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“Tighter than” and intersection for networks
– Given two binary networks, N’ and N, on the same set 
of variables, N’ is at least as tight as N iff for each i,j we 
have

– N’ tighter than N then Sol(N’) are included in Sol(N) 

– The intersection of two network is the pair-wise 
intersection of their constraints

– If N and N’ are two equivalent networks then N 
intersection N’ is as tight as both and equivalent to both
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Minimal network
The minimal network is obtained intersecting all equivalent 
networks

The minimal network is identical to the projection network of 
its solutions
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The minimal network is perfectly explicit for every 
constraints (unary,binary) 

– a couple (value) appears in at least one binary (unary) 
constraint 
– the couple (value) will appear in at least one solution
– Ex: find minimal network for 4-queen problem

Finding a solution for minimal network is still hard.

Minimal network and Explicit Constraints
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Given minimal network:
– Easy to find a couple which is part of a solution
– Not easy to extend partial solutions
– Ex: minimal network for 4-queen problem

Binary decomposable network
– Every projection is expressible by a binary network
– For a binary decomposable network  N (X,D,C), P[N] 
expresses Sol(N) and all Sol(S) where S  X⊆
– Ex: r = {(a,a,a,a)(a,b,b,b)(b,b,a,c)} binary dec. ?

Binary Decomposable Network
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Constraint Networks --> efficient way of 
representing and solving combinatorial problem

CN have several representations 
Structure: primal, dual graph
Constraints: logic, arithmetic, tables

Binary Network --> special types of CN
Can not represent all relations but can approximate 
them (projection network) 

Easy Network are the Binary Decomposable ones

Summary


