Informed Search strategies

Informed Search strategies AIMA sections 3.5, 3.6

Informed Search strategies

\diamond Greedy Best-First search

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- $\diamondsuit \ \ \mathsf{A}^* \ \, \mathsf{search}$
- \diamond Heuristics

Review: Tree search

Informed Search strategies

```
function Tree-Search( problem, frontier) returns a solution, or
failure
frontier ← Insert(Make-Node(problem.Initial-State))
loop do
if frontier is empty then return failure
node ← Pop(frontier)
if problem.Goal-Test(node.State) then return node
frontier ← InsertAll(Expand(node, problem))
end loop
```

A strategy is defined by picking the order of node expansion

Best-First search

Informed Search strategies

Idea: use an evaluation function for each node

- estimate of "desirability"


 \Rightarrow Expand most desirable unexpanded node Implementation:

frontier is a queue sorted in decreasing order of desirability Special cases:

greedy best-first search A* search

Romania with straight-line distances to Bucharest

Informed Search strategies

~ ~ ~ ~

э

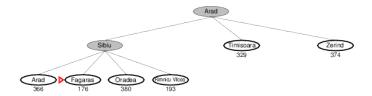
(日)

Greedy search Informed Search strategies Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal E.g., $h_{SLD}(n) = \text{straight-line distance from } n$ to Bucharest Greedy search expands the node that **appears** to be closest to goal

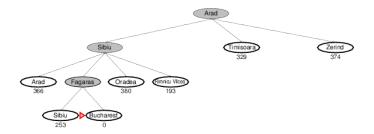
Informed Search strategies

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	1.60	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	1.51	Urzi ceni	80
Iasi	2.26	Vaslui	199
Lugoj	244	Zerind	374

Informed Search strategies


Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	1.60	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	1.51	Urzi ceni	80
Iasi	2.26	Vaslui	199
Lugoj	244	Zerind	374

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで


Informed Search strategies

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	1.60	Oradea	380
Dobreta	2.42	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	1.51	Urzi ceni	80
Iasi	2.26	Vaslui	199
Lugoj	244	Zerind	374

Informed Search strategies

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	1.60	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	1.51	Urzi ceni	80
Iasi	2.26	Vaslui	199
Lugoj	2.44	Zerind	374

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Informed Search strategies

Complete??

Informed Search strategies

 $\label{eq:complete} \underbrace{ \begin{array}{l} \mbox{Complete} ?? & \mbox{No-can get stuck in loops, e.g.,} \\ \mbox{Start: lasi, Goal: Fagaras} \\ \mbox{lasi} \rightarrow \mbox{Neamt} \rightarrow \mbox{lasi} \rightarrow \mbox{Neamt} \rightarrow \cdots \\ \mbox{Complete in finite space with repeated-state checking} \\ \underline{\mbox{Time} ??} \\ \end{array} }$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Informed Search strategies

> <u>Complete</u>?? No-can get stuck in loops, e.g., Start: lasi, Goal: Fagaras lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt $\rightarrow \cdots$ Complete in finite space with repeated-state checking <u>Time</u>?? $O(b^m)$, but a good heuristic can give dramatic improvement Space??

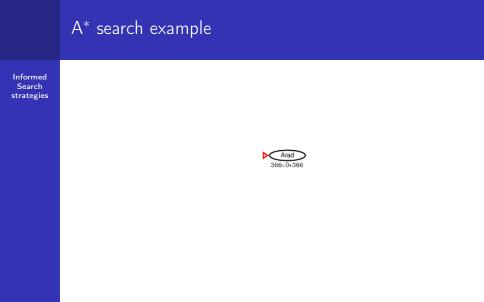
Informed Search strategies

> <u>Complete</u>?? No-can get stuck in loops, e.g., Start: lasi, Goal: Fagaras lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt $\rightarrow \cdots$ Complete in finite space with repeated-state checking <u>Time</u>?? $O(b^m)$, but a good heuristic can give dramatic improvement <u>Space</u>?? $O(b^m)$ —keeps all nodes in memory Optimal??

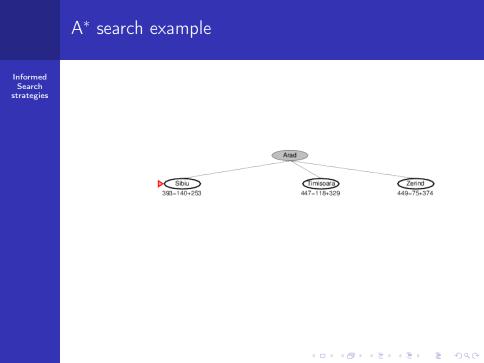
Informed Search strategies

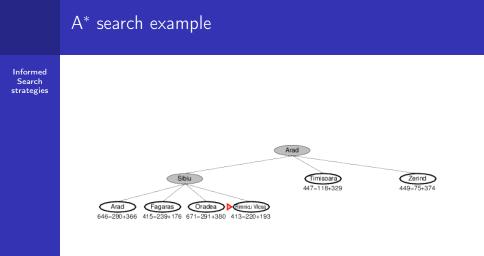
> <u>Complete</u>?? No-can get stuck in loops, e.g., Start: lasi, Goal: Fagaras lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt $\rightarrow \cdots$ Complete in finite space with repeated-state checking <u>Time</u>?? $O(b^m)$, but a good heuristic can give dramatic improvement <u>Space</u>?? $O(b^m)$ —keeps all nodes in memory Optimal?? No

Informed Search strategies

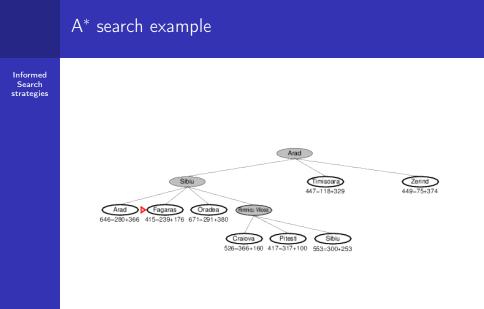

Idea: avoid expanding paths that are already expensive Evaluation function f(n) = g(n) + h(n)

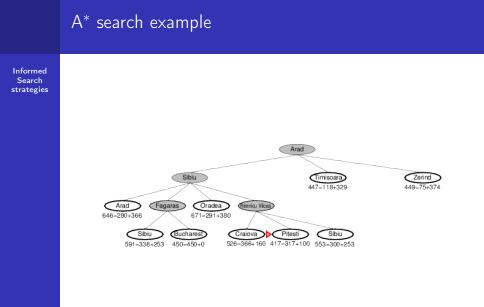
• g(n) = cost so far to reach n

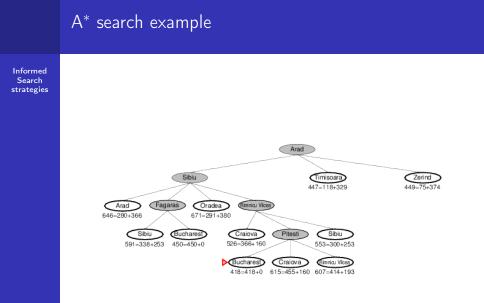

• h(n) = estimated cost to goal from n


• f(n) = estimated total cost of path through n to goal

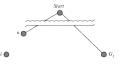
◊ A* search uses an admissible heuristic
i.e., h(n) ≤ h*(n) where h*(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)
◊ E.g., h_{SLD}(n) never overestimates the actual road distance
◊ Theorem: A* search is optimal




▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ● ●



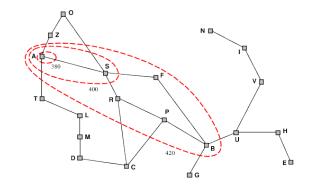
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで


▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

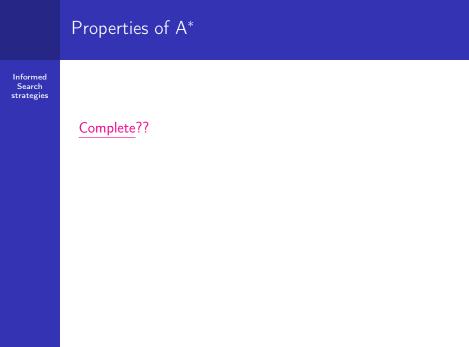
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

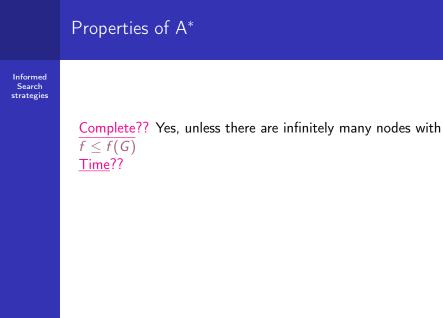
Optimality of A^* (standard proof)¹

Informed Search strategies Suppose some suboptimal goal G_2 has been generated and is in the queue. Let *n* be an unexpanded node on a shortest path to an optimal goal G_1 .


$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion ¹Tree-Search + Admissible Heuristic


Optimality of A* (more useful)


Informed Search strategies Lemma: A* expands nodes in order of increasing f value² Gradually adds "f-contours" of nodes (cf. breadth-first adds layers)

Contour *i* has all nodes with $f = f_i$, where $f_i < f_{i+1}$

²if heuristic is **consistent**

Properties of A*

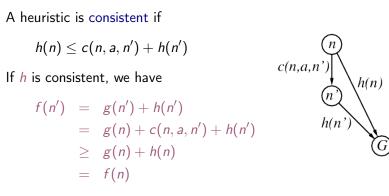
Informed Search strategies

> Complete?? Yes, unless there are infinitely many nodes with $f \le f(G)$ Time?? Exponential in [relative error in $h \times$ length of soln.] Space??

Properties of A*

Informed Search strategies

> Complete?? Yes, unless there are infinitely many nodes with $f \le f(G)$ Time?? Exponential in [relative error in $h \times$ length of soln.] Space?? Keeps all nodes in memory Optimal??


Properties of A*

Informed Search strategies

> Complete?? Yes, unless there are infinitely many nodes with $\overline{f \leq f(G)}$ Time?? Exponential in [relative error in $h \times$ length of soln.] Space?? Keeps all nodes in memory Optimal?? Yes—cannot expand f_{i+1} until f_i is finished $\overline{A^*}$ expands all nodes with $f(n) < C^*$ A^* expands some nodes with $f(n) = C^*$ A^* expands no nodes with $f(n) > C^* \rightarrow A^*$ is optimally efficient (for a given heuristic)

Proof of lemma: Consistency

Informed Search strategies

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

I.e., f(n) is nondecreasing along any path.

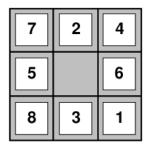
Admissible vs Consistent Heuristic

Informed Search strategies

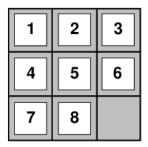
$\begin{array}{l} \textbf{consistency} \rightarrow \textbf{admissible} \\ \textbf{Can be proved by induction on the path to goal} \\ \textbf{admissible} \not\rightarrow \textbf{consistency} \\ \textbf{Find a counter example...} \end{array}$

Tree-Search + admissible Heuristic \rightarrow optimality of A^{*}

 $\mathsf{Graph}{-}\mathsf{Search} + \mathsf{admissible} \; \mathsf{Heuristic} \not \to \mathsf{optimality} \; \mathsf{of} \; \mathsf{A}^*$


■ Can discard the optimal path to a repeated node
Graph-Search + consistent Heuristic → optimality of A*

Admissible heuristics

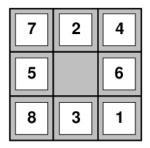

Informed Search strategies

- E.g., for the 8-puzzle:
- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance

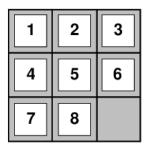
(i.e., no. of squares from desired location of each tile)

Goal State

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで


 $\frac{h_1(S) = ??}{h_2(S) = ??}$

Admissible heuristics


Informed Search strategies

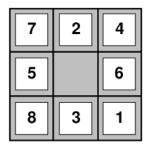
- E.g., for the 8-puzzle:
- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance

(i.e., no. of squares from desired location of each tile)

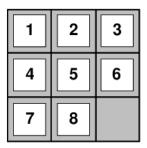
Start State

Goal State

・ロト・日本・ヨト・ヨト・日・ つへぐ


 $\frac{h_1(S) = ??}{h_2(S) = ??} 6$

Admissible heuristics


Informed Search strategies

- E.g., for the 8-puzzle:
- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

 $\frac{h_1(S)}{h_2(S)} = ?? 6$ $\frac{h_2(S)}{h_2(S)} = ?? 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14$

Dominance

Informed Search strategies

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search Typical search costs: d = 14 IDS = 3,473,941 nodes $A^{*}(h_{1}) = 539$ nodes $A^{*}(h_{2}) = 113$ nodes d = 24 IDS $\approx 54,000,000,000$ nodes $A^{*}(h_{1}) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes Given any admissible heuristics h_a , h_b ,

 $h(n) = \max(h_a(n), h_b(n))$

is also admissible and dominates h_a , h_b

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Relaxed problems

Informed Search strategies

> Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Summary

Informed Search strategies

- \diamondsuit Heuristic functions estimate costs of shortest paths
- \diamondsuit Good heuristics can dramatically reduce search cost
- \diamond Greedy best-first search expands lowest h
- incomplete and not always optimal
- \diamond A* search expands lowest g + h
 - complete and optimal

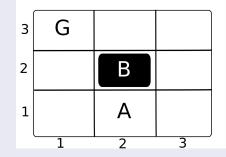
- also optimally efficient (up to tie-breaks, for forward search) Admissible heuristics can be derived from exact solution of relaxed problems

Exercise: Going from Lugoj to Bucharest

Informed Search strategies

From Lugoj to Bucharest

 \diamondsuit Trace the operation of A* search applied to the problem of going from Lugoj to Bucharest using the straight-line distance heuristic.


 \diamondsuit Trace the operation of greedy best-first search applied to the problem of going from Lugoj to Bucharest using the straight-line distance heuristic.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Exercise: Navigation

Informed Search strategies

Navigation with obstacles

The figure shows an artificial environment where an agent A is positioned in the square $(1, 2)^a$, the goal G is in (3, 1), and there is a block B in (2, 2). The agent can not pass through blocks and can move in the four directions (Up, Down, Left, Right).

^awhere the position is (row,column)

Exercise: Navigation II

Informed Search strategies

Navigation with obstacles II

Formalize the problem of reaching G as a state problem

- Describe the state space, the initial and final state.
- Describe the operators.
- Find an admissible heuristics for A*.
- Assume the operators have cost 1, draw the tree generated by A*.

Exercise: confusing problems for greedy best-first search

Informed Search strategies

confusing problems for greedy best-first search

When going from lasi to Fagaras the straight-line distance heuristic result in poor performance for greedy best-first search. But from Fagaras to lasi it is perfect. Are there problems for which the heuristic is misleading in both directions ?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○