
Informed
Search

strategies

Informed Search strategies
AIMA sections 3.5, 3.6

Informed
Search

strategies

Summary

♦ Greedy Best-First search
♦ A∗ search
♦ Heuristics

Informed
Search

strategies

Review: Tree search

function Tree-Search(problem, frontier) returns a solution, or
failure

frontier← Insert(Make-Node(problem.Initial-State))
loop do
if frontier is empty then return failure
node←Pop(frontier)
if problem.Goal-Test(node.State) then return node
frontier← InsertAll(Expand(node,problem))

end loop

A strategy is defined by picking the order of node expansion

Informed
Search

strategies

Best-First search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node
Implementation:
frontier is a queue sorted in decreasing order of desirability
Special cases:

greedy best-first search
A∗ search

Informed
Search

strategies

Romania with straight-line distances to Bucharest

Informed
Search

strategies

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest
Greedy search expands the node that appears to be closest to
goal

Informed
Search

strategies

Greedy search example

Informed
Search

strategies

Greedy search example

Informed
Search

strategies

Greedy search example

Informed
Search

strategies

Greedy search example

Informed
Search

strategies

Properties of greedy search

Complete??

No–can get stuck in loops, e.g.,
Start: Iasi, Goal: Fagaras
Iasi → Neamt → Iasi → Neamt → · · ·

Complete in finite space with repeated-state checking
Time?? O(bm), but a good heuristic can give dramatic
improvement
Space?? O(bm)—keeps all nodes in memory
Optimal?? No

Informed
Search

strategies

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Start: Iasi, Goal: Fagaras
Iasi → Neamt → Iasi → Neamt → · · ·

Complete in finite space with repeated-state checking
Time??

O(bm), but a good heuristic can give dramatic
improvement
Space?? O(bm)—keeps all nodes in memory
Optimal?? No

Informed
Search

strategies

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Start: Iasi, Goal: Fagaras
Iasi → Neamt → Iasi → Neamt → · · ·

Complete in finite space with repeated-state checking
Time?? O(bm), but a good heuristic can give dramatic
improvement
Space??

O(bm)—keeps all nodes in memory
Optimal?? No

Informed
Search

strategies

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Start: Iasi, Goal: Fagaras
Iasi → Neamt → Iasi → Neamt → · · ·

Complete in finite space with repeated-state checking
Time?? O(bm), but a good heuristic can give dramatic
improvement
Space?? O(bm)—keeps all nodes in memory
Optimal??

No

Informed
Search

strategies

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Start: Iasi, Goal: Fagaras
Iasi → Neamt → Iasi → Neamt → · · ·

Complete in finite space with repeated-state checking
Time?? O(bm), but a good heuristic can give dramatic
improvement
Space?? O(bm)—keeps all nodes in memory
Optimal?? No

Informed
Search

strategies

A∗ search

Idea: avoid expanding paths that are already expensive
Evaluation function f (n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost to goal from n

f (n) = estimated total cost of path through n to goal
♦ A∗ search uses an admissible heuristic

i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G .)

♦ E.g., hSLD(n) never overestimates the actual road distance
♦ Theorem: A∗ search is optimal

Informed
Search

strategies

A∗ search example

Informed
Search

strategies

A∗ search example

Informed
Search

strategies

A∗ search example

Informed
Search

strategies

A∗ search example

Informed
Search

strategies

A∗ search example

Informed
Search

strategies

A∗ search example

Informed
Search

strategies

Optimality of A∗ (standard proof)1

Suppose some suboptimal goal G2 has been generated and is in
the queue. Let n be an unexpanded node on a shortest path to
an optimal goal G1.

f (G2) = g(G2) since h(G2) = 0
> g(G1) since G2 is suboptimal
≥ f (n) since h is admissible

Since f (G2) > f (n), A∗ will never select G2 for expansion
1Tree-Search + Admissible Heuristic

Informed
Search

strategies

Optimality of A∗ (more useful)

Lemma: A∗ expands nodes in order of increasing f value2

Gradually adds “f -contours” of nodes (cf. breadth-first adds
layers)
Contour i has all nodes with f = fi , where fi < fi+1

2if heuristic is consistent

Informed
Search

strategies

Properties of A∗

Complete??

Yes, unless there are infinitely many nodes with
f ≤ f (G)
Time?? Exponential in [relative error in h × length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes—cannot expand fi+1 until fi is finished
A∗ expands all nodes with f (n) < C ∗

A∗ expands some nodes with f (n) = C ∗

A∗ expands no nodes with f (n) > C ∗ → A∗ is optimally
efficient (for a given heuristic)

Informed
Search

strategies

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with
f ≤ f (G)
Time??

Exponential in [relative error in h × length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes—cannot expand fi+1 until fi is finished
A∗ expands all nodes with f (n) < C ∗

A∗ expands some nodes with f (n) = C ∗

A∗ expands no nodes with f (n) > C ∗ → A∗ is optimally
efficient (for a given heuristic)

Informed
Search

strategies

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with
f ≤ f (G)
Time?? Exponential in [relative error in h × length of soln.]
Space??

Keeps all nodes in memory
Optimal?? Yes—cannot expand fi+1 until fi is finished
A∗ expands all nodes with f (n) < C ∗

A∗ expands some nodes with f (n) = C ∗

A∗ expands no nodes with f (n) > C ∗ → A∗ is optimally
efficient (for a given heuristic)

Informed
Search

strategies

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with
f ≤ f (G)
Time?? Exponential in [relative error in h × length of soln.]
Space?? Keeps all nodes in memory
Optimal??

Yes—cannot expand fi+1 until fi is finished
A∗ expands all nodes with f (n) < C ∗

A∗ expands some nodes with f (n) = C ∗

A∗ expands no nodes with f (n) > C ∗ → A∗ is optimally
efficient (for a given heuristic)

Informed
Search

strategies

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with
f ≤ f (G)
Time?? Exponential in [relative error in h × length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes—cannot expand fi+1 until fi is finished
A∗ expands all nodes with f (n) < C ∗

A∗ expands some nodes with f (n) = C ∗

A∗ expands no nodes with f (n) > C ∗ → A∗ is optimally
efficient (for a given heuristic)

Informed
Search

strategies

Proof of lemma: Consistency

A heuristic is consistent if

h(n) ≤ c(n, a, n′) + h(n′)

If h is consistent, we have

f (n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f (n)

I.e., f (n) is nondecreasing along any path.

Informed
Search

strategies

Admissible vs Consistent Heuristic

consistency → admissible
Can be proved by induction on the path to goal
admissible 6→ consistency
Find a counter example...

Tree-Search + admissible Heuristic → optimality of A∗

Graph-Search + admissible Heuristic 6→ optimality of A∗

Can discard the optimal path to a repeated node

Graph-Search + consistent Heuristic → optimality of A∗

Informed
Search

strategies

Admissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

h1(S) =??

6

h2(S) =??

4+0+3+3+1+0+2+1 = 14

Informed
Search

strategies

Admissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

h1(S) =?? 6
h2(S) =??

4+0+3+3+1+0+2+1 = 14

Informed
Search

strategies

Admissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

h1(S) =?? 6
h2(S) =?? 4+0+3+3+1+0+2+1 = 14

Informed
Search

strategies

Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search
Typical search costs:
d = 14 IDS = 3,473,941 nodes

A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb

Informed
Search

strategies

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem
If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution
If the rules are relaxed so that a tile can move to any adjacent
square, then h2(n) gives the shortest solution
Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Informed
Search

strategies

Summary

♦ Heuristic functions estimate costs of shortest paths
♦ Good heuristics can dramatically reduce search cost
♦ Greedy best-first search expands lowest h
– incomplete and not always optimal
♦ A∗ search expands lowest g + h
– complete and optimal
– also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of
relaxed problems

Informed
Search

strategies

Exercise: Going from Lugoj to Bucharest

From Lugoj to Bucharest
♦ Trace the operation of A∗ search applied to the problem of
going from Lugoj to Bucharest using the straight-line distance
heuristic.
♦ Trace the operation of greedy best-first search applied to the
problem of going from Lugoj to Bucharest using the straight-line
distance heuristic.

Informed
Search

strategies

Exercise: Navigation

Navigation with obstacles

The figure shows an artificial environment where an agent A is
positioned in the square (1, 2)a, the goal G is in (3, 1), and there
is a block B in (2, 2). The agent can not pass through blocks
and can move in the four directions (Up, Down, Left, Right).

awhere the position is (row,column)

Informed
Search

strategies

Exercise: Navigation II

Navigation with obstacles II
Formalize the problem of reaching G as a state problem

Describe the state space, the initial and final state.
Describe the operators.
Find an admissible heuristics for A∗.
Assume the operators have cost 1, draw the tree generated
by A∗.

Informed
Search

strategies

Exercise: confusing problems for greedy best-first
search

confusing problems for greedy best-first search
When going from Iasi to Fagaras the straight-line distance heuris-
tic result in poor performance for greedy best-first search. But
from Fagaras to Iasi it is perfect. Are there problems for which
the heuristic is misleading in both directions ?

