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Game	Theory

• a	branch	of	economics	that	deals	with	decision-making
in	environments	full	of	self-interested	entities

• provides	tools	for	the	strategic	considerations	of	
intelligent,	“rational”	agents
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Putting	Things	into	Perspective
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It’s not a brain...it’s a social 
network…part of the WWW…
or is it our collective brain?
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ü We	can	learn
ü We	can	form	opinions
ü We	can	do	computations	on	the	web



It’s not a brain...it’s a social 
network…part of the WWW…
or is it our collective brain?

People or Agents / Bots
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ü We	can	learn
ü We	can	form	opinions
ü We	can	do	computations	on	the	web
ü …
It	is	perhaps	our	collective brain…we	are	not	alone	in	it!



People or Agents / Bots
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It’s not a brain...it’s a social 
network…part of the WWW…
or is it our collective brain?
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Who are these agents?
•Rational	Agent

•Reactive
•Proactive
•Socially	able
•Acts	to	achieve	the	best	possible	outcome,	given	
facts/knowledge	+	informed	opinions/beliefs

•Combines	multiple	abilities	in	the	best	possible	manner

“We are social beings”  
Aristotle
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MAS in the 
Web of 
Tomorrow

§Man-Agents	collaboration	
mediated	by	digital	interaction	technologies

• combining	human	and	machine	intelligence
• exploiting	diverse	large-scale	collectives
•…to	solve	complex	problems

§Examples:	
• optimizing	the	transportation	system	of	a	city
•managing	patient	treatment	plans
• search	and	rescue	operations
• coordinating	communities	of

• activists;	
• Smart	Grid	consumers/producers

11
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Thus, it’s ok to not build the super-
human, omnipotent intelligent agent
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…as long as we get to 
get things done!...

• …to	ease	our	everyday	living…and	even	save	lives!

!
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In a multi-agent world, you need 
to take decisions and act…

•…hopefully	to	your	benefit,	i.e.,	in	a	rational	manner
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Rational Choice Theory

•Finite	set	of	actions	A for	a player,	
every a	in	A	à outcomes

•At	any	given	moment:	choose	some	a
from	a	subset	of Α

•How	would	a	rational	agent	choose	an	action?
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Example: Buying Oranges
•3	varieties	of	oranges…from
Sicily (S),	Calabria (C),	Puglia (P)

•Who	is	rational; Who	is	(definitely)	irrational?
•How	do	we	see	this	using	math?

S,	P P,	C S,	P,	C
Agent	1 S C C
Agent	2 P P S
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Preferences

• Choices	are	based	on	preferences
• Actions/results:	(a,	b)	

• You	either	prefer	a :	(a	> b),	or	b: (b	> a)

• Consistency:	
If (a	> b and b	> c)	then a	> c

a

b

c
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Consistent Preferences and 
Rationality

• Observation: If	preferences	are	consistent,	then	
for	every	set A	there	exists a in A so	that a > b	for	
every	b	in A \ {a}

• Question: given	this,	when	will	an	agent	be	
considered	rational?

18An	Introduction	to	Game	Theory



Consistent Preferences and 
Rationality

• Observation: If	preferences	are	consistent,	then	
for	every	set A	there	exists a in A	so	that a >	b	for	
every	b	in A \ {a}

•Definition: an	agent	is rational if	she	has
consistent	preferences > and	given	an	action	set	
A	the	agent	chooses a in	A so	that a > b	for	every
b in A \ {a}
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Buying Oranges ++
•3	varieties	of	oranges…from
Sicily (S),	Calabria (C),	Puglia (P)

•Agent	1’s	choices	are	compatible	with	the	consistent	
preference	relation C > S > P

•By	contrast,	agent	2’s	choices	are	incompatible	with	
any	consistent	preferences

• First	choice	suggests P > S, third	choice	suggests	S > P
20

S,	P P,	C S,	P,	C
Agent	1 S C C
Agent	2 P P S
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Weak Preferences
• The	agent	might	be	indifferent between	two	
actions/outcomes
a ~ b

•Non-strict/weak	preferences
•We	write	a ≥ b if a > b or a ~ b

•Consistency (or Transitivity):	a ≥ b and	b ≥ c implies
a ≥ c

•Rationality: given A,	the	agent	chooses	a s.t. a ≥ b	
for every b in S \ {a}

•Claim: with	weak	preferences	allowed,	we	can	no	
longer	ascertain	that	an	agent	is	irrational.
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Buying Oranges ++

•3	varieties	of	oranges…from
Sicily (S),	Calabria (C),	Puglia (P)

•Agent	2	might	simply	be	indifferent among	all	choices

22

S,	P P,	C S,	P,	C
Agent	1 S C C
Agent	2 P P S
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Preferences and Utilities

•u:	A	® R	maps	an	action	to	a	(real)	number	(utility	
function)

•u represents > if	the	following	holds:	
u(a)	> u(b) if-f	a	> b

•Note: a	given	preferences’	set	can	be	represented	
by	a	multitude	of	utility	functions
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Buying oranges ++

•3	varieties	of	oranges…from
Sicily (S),	Calabria (C),	Puglia (P)

•Agent	1’s	choices,		C > S > P ,	can	be	represented	as
{u(C)	=	3,	u(S)	=	2,	u(P)	=	1},	or	as
{u(C)	=	100,	u(S)	=	10,	u(P)	=	0},	or	as
{u(C)	=	3572,	u(S)	= 9,	u(P)	=	5}	etc.

24

S,	P P,	C S,	P,	C
Agent	1 S C C
Agent	2 P P S
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Preferences vs. Utilities
• With	the	addition	of	utilities, Rational	Choice	
Theory	is	turned	into Utility	Theory...
•Advantages?

•1st Preferences	represented	by	providing :	a	list	
of n numbers	instead	of	n(n-1)/2	pairs

•2ndMore	“intuitive”	representation, since	
preferences	might	be	influenced	or	determined	
by	“values”:
• The	prices	of	the	oranges	might	be	what	determines	
our	preferences	as	to	which	ones	to	buy
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Utilities++

•Where	else	does	the	need	for utilities	come	from?
•…uncertainty	/	action	stochasticity...
• ...	Actions	with	uncertain	outcomes	can	be	seen	as	
corresponding	to	lotteries	wirh possible	“prizes”
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Lotteries
•A	simple standard lottery	L	leads	to	prize	A with	
probability	p,	and	to	Β	with	1-p.

•More	generally:	L	=	{(p1,	X1)	,	(p2,	X2),	…,	(pn,	Xn)}
•…and	outcomes	Xi might	also	be	lotteries	themselves!
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Lotteries++ 
• Given	certain	“intuitive”	preference/	lotteries	–related	assumptions	
(e.g.	consistency,	monotonicity,	etc),	we	can	prove:

The Ramsey/	von	Neumann	&	Morgenstern	
Utility	Theorem

One	can	construct	a real-valued	utility	function U	which	
corresponds	to	the	expected	utility	of	a	lottery,	such	that:	

U(L1)	≥	U(L2)	if-f L1	≥ L2

where U(L)	=	Σ pi U(Xi)	
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Lotteries & Utilities ++

•Ok,	but...
• ...	A	lottery	corresponds	to	a	potential	action	with	
uncertain	outcomes ... thus:

• The	theorem	leads	to	the	Expected	Utility	
Maximization	Principle...
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Maximum Expected Utility Principle
•Always	choose	the	action	with	maximum	
expected	utility

•Why;	
•Because	it	corresponds	to	that	lottery	which	is	
the	most	preferable	among	all	lotteries!
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Rationality (again...)

•Thus,	rational	is	the	agent	who	acts	according	to	the	
Expected	Utility	Maximization	Principle

•Therefore,	yet	another	(3rd)	advantage	of	using	
utilities instead	of	preferences:	they	can	be	used	for	
decision	making	under	uncertainty

•With	the	addition	of	probabilities/	expectations,	
Utility	Theory	is	turned	into	Decision	Theory...	
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Rational Choice /Utility Theory 
vs. Game Theory
•Rational	Choice /	Utility Theory:	a	single	agent,	
preferences	wrt actions

•Game	Theory: many	agents,	preferences	wrt
strategy	profiles	(=	vectors	of	actions	of	all	players)
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Strategic Games

•A strategic	game	consists	of:
• a set	of	players
• for	each	player,	an	action	set
• for	each	player,	preferences regarding	the action	
profiles	=	vectors	of	all	players’	actions)

•Example:	
• Players	A and B
•Actions of	player A:	a1,	a2 . Actions	of B:	b1,	b2
• Preferences A: (a1,	b1)	> (a2,	b2) > (a1,	b2)	> (a2,	b1)

33An	Introduction	to	Game	Theory



Prisoner’s Dilemma

•Two	guys	arrested
•Enough evidence	for	a	1	year	conviction	for	each,	
but	only	indications	of	a	serious	crime (4	years)

•One confesses	à walks	free,	the	other	gets	4	years
•Both	confess	à 3	years	in	jail	each
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Normal Form (or Matrix) Representation

(-1,-1) (-4,	0)

(0,	-4) (-3,	-3)

“omertà” “snitching”

“omertà”

“snitching”

§ By convention: a	pair	(x,	y)	where	row i meets	
column j	means	that	the	row	player	who	chooses	i
gets	x,	while	the	“column”	player	who	chooses	j	
gets y

P1
P2
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Prisoner’s Dilemma: Preferences

(-1,-1) (-4,	0)

(0,	-4) (-3,	-3)

Cooperate Defect

Cooperate

Defect

P1(row):	(D,	C)	>	(C,	C)	>	(D,	D)	>	(C,	D)
P2	(column):	(C,	D)	>	(C,	C)	>	(D,	D)	>	(D,	C)	

P1
P2
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Interlude: 
Prisoner’s Dilemma: The dilemma

(-1,-1) (-4,	0)

(0,	-4) (-3,	-3)

Cooperate Defect

Cooperate

Defect

P1(row):	(D,	C)
P2	(column):(C,	D)

P1
P2

What	would	you	do?
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Is there always a dilemma?

• what	if	they	could	communicate?
•What	if	they	could	“sign	a	contract”?
Ø cooperative	game	theory

• what	if	the	game	was	to	be	repeated?
Ø for	a	finite	or	for	an	infinite	number	of	rounds?
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Common Project

(3,	3) (-5,	5)

(5,	-5) (0,	0)

Lavorare Giocare

Lavorare

Giocare

Two	students	per project.	At	least	one	worksàproject
suceeds.	Project	succeds-àeach	student	happy	(+5),	but	
each	student	would	rather	not	work	(lavorareà -2),	but	
(s)he	does	not	want	to	be	exploited	(if	lavorare while	the	

other	giocareà -8	for	him/her)

P1
P2
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Common Project vs. Prisoner’s Dilemma 

(3,	3) (-5,	5)
(5,	-5) (0,	0)

C D
C

D

§ “Common	project”,	column	player	preferences.				
(D,	C)	>	(C,	C)	>	(D,	D)	>	(C,	D) – exactly	like	PD

§ Two	games	are	equivalent if	they	imply	the	same	
preferences	wrt choices	profiles

(-1,	-1) (-4,	0)
(0,	-4) (-3,	-3)

C D
C

D
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Hawk – Dove (or “Chicken”)

(3,	3) (1,	4)

(4,	1) (0,	0)

Dove Hawk

Dove

Hawk

Is	this	game	equivalent	to	the	PD?

P1
P2
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Mozart or Mahler?

(2,	2) (0,	0)

(0,	0) (1,	1)

Mozart Mahler

Mozart

Mahler

No	coordination	à they	both	lose
Not	all	coordinated	outcomes	are	equally	good

P1
P2
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Identical	Interest	or	Coordination	Games

43

All	players	have	the	same	payoff	function
…which	is…
Possibly	stochastic

A B

A X,	X C,	C
B D,D	 M, M
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Battle of the Sexes 

(2,	1) (0,	0)

(0,	0) (1,	2)

Teatro Calcio

Teatro

Calcio

Will	we	ever	meet?	And	where?

P1
P2

44An	Introduction	to	Game	Theory



Matching Pennies 

(1,	-1) (-1,	1)

(-1,	1) (1,	-1)

Testa Croce

Testa

Croce

TT	o	CC	à P1	wins; otherwise	P2.	

P1
P2
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Matching Pennies 

A	strictly	competitive	game	

Zero-sum	games: ui(a) + uj(a) =	0
46An	Introduction	to	Game	Theory

(1,	-1) (-1,	1)

(-1,	1) (1,	-1)

Testa Croce

Testa

Croce

P1
P2



A beautiful mind

47

John	Forbes	
Nash,	Jr.

Nobel	Prize	for	Economics,	1994
4	Oscars,	2002

Characterized	rational	play	for	
non-zero	sum	strategic	games
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Nash equilibrium (informally)

Nash	equilibrium	states:	no	player	can	profit	by	
unilaterally switching	her	action,	given	other	

players’	actions.
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Nash equilibrium (informally)

...that	is,	assuming	rational	agent i plays ai ,	rational	
agent	j has	no	(rational)	choice	but	to	play aj

…
and,	assuming	rational	agent j plays aj	,	rational	
agent	i has	no	(rational)	choice	but	to	play ai
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Nash Equilibrium (formally)

•Given	a	strategic	game	with	n players…
• player i chooses	action	ai from	Ai ,	resulting	to	utility ui

• …an	action	profile	a =	(a1,..	ai ..,	an)=(ai ,	a –i) ,	
is	a Nash	equilibrium if:

for	every player	i =	1,	...,	n,	we	have
u i (a)	≥	u i (a -i ,	a’)	for	all	a’ in Ai
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Nash equilibrium visually

51

(		,		) (		,		) (x1,			) (		,		) (		,		)
(		,		) (		,		) (x2,			) (		,		) (		,		)
(		,		) (		,		) (x3,			) (		,		) (		,		)
(		,y1) (		,y2) (X,	Y) (		,y4) (		,y5)
(		,		) (		,		) (x5,			) (		,		) (		,		)

X	:	at	least	as	big	as	xi,	
Y : at	least	as	big	as	yj
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Nash equilibrium ++
•Obviously:		No	player	has	an	incentive	to	unilaterally	
move	from	a	Nash	equilibrium	state

• Sfortunamente:
• Solving	for	Nash	is	impossible	in	most	realistic	multiagent
settings	[Daskalakis 2008]

• Many	games	do	not	have	a	Nash	equilibrium	(in pure	
strategies	...)

• Many	games	have	more	than	one Nash	equilibrium
• Not	all	ΝΕ	are	created	equal	/	as	desirable!	
• Which	one	to	choose?

•Attenzione:	the	ΝΕ	does	not	imply	that	alternatives	are
worse,	but	simply	that	they	are	not	better	than	ΝΕ
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NE Examples
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Battle of the Sexes

(2,	1) (0,	0)

(0,	0) (1,	2)

T C

T

C

• Is	(T, C)	Νash	equilibrium? Why	yes/not;
• (T, T)	and	(C, C):	 Nash	equilibria
• P1	’s	most	preferred	action	profile	is	not	(C,	C),	but	
if	there,	no	incentive	to	switch:	if	he	switches	to	
Teatro,	they	play	(T,	C) and	he	gets	0		

54

P1
P2

T:	Teatro
C:	Calcio
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Battle of the Cinefils

(3,	3) (0,	0)

(0,	0) (1,	1)

Film 1 Film	2

Film 1

Film 2

• (F1,	F1)	:	Nash	equilibrium
• ...	(F2,	F2)	also!	Which	one	would	you	prefer?
• (F1,	F1)	:	higher	social	welfare	

(sum	of	players’	utilities)
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...another battle of cinefils

(1,	9) (0,	0)

(0,	0) (4,	4)

Horror

Horror

Social

• (H,	H)	και	(S,	S): Nash	equilibria
• Which	one	is	more	fair	in	your	opinion?

• (S,	S)	:	more	fair

Social
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Prisoners’ Dilemma: 
Nash Equilibrium  

(-1,	-1) (-4,	0)

(0,	-4) (-3,	-3)

C D

C

D

(D,	D)	is	a Nash equilibrium
§ u1(C,	D)	≤	u1(D,	D)
§ u2(D,	C)	≤	u2(D,	D)

• (C,	C)	not	a Nash	equilibrium:
P1	can	switch	to	D	à u1(D,	C)	>	u1(C,	C)

• (C,	D)	not	a Nash	equilibrium:
P1	can	switch	to	Dà u1(D,	D)	>	u1(C,	D)

Similarly, P2	can	switch	from (C,C),	(D,C)

P1
P2
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Best Response Functions

•Given	opponents’	action	vector	a -i,	
player	i has	some	actions	that	maximize	her	utility

•Best	response	“function”:
B i (a -i )	=	
{a	in	Ai |	u i (a -i ,	a)	≥	u i (a -i ,	a’)	for	all	a’	in Ai}

•B i (a -i ) is “multi-valued”
• If |B i (a -i )|	=	1 for	all	a -i ,	we	‘ll	write	b i (a -i ) for	i’s
unique	“best	response”	to	a -i
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Example

• B 1	(L)		=	{T,	M}
• B 1	(C)	=	{B}
• B 1	(R)	=	{T}

T
M
B

L C R

• B 2	(T)		=	{L}
• B 2	(M)	=	{L,	R}
• B 2	(B)	=	{L,	C}

*

*

*

*

*

* *

* *
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(	2 ,	5 ) (	3 ,	3 ) (	6 ,	3 )
(	2 ,	7		) (	4 , 5 ) (	2 , 7	 )
(	1 ,	4 ) (	5 ,	4 ) (	2 ,	1	 )
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Best Responses και Nash Equilibria

a =	(a1,	.....,	an) is	a Nash	equilibrium	if-f
u i (a)	≥	u i (a -i ,	a’)	
for	every	i and	for	all	a’ in Ai

•from Best	Responses	definition,	equivalently:

a =	(a1,	.....,	an) is	a Nash	equilibrium	if-f
a i belongs	to	B i (a -i)	for	every	i
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Therefore...

§ B1(L)		=	{T,	M},	B1(C)	=	{B},	B1(R)	=	{T}

(	2 ,	5 ) (	3 ,	3 ) (	6 ,	3 )
(	2 ,	7		) (	4 , 5 ) (	2 , 7	 )
(	1 ,	4 ) (	5 ,	4 ) (	2 ,	1	 )

T
M
B

L C R

§ B2(T)		=	{L},	B2(M)	=	{L,	R},	B2(B)	=	{L,	C}
§ {T,	L},	{M,	L}	and {B,	C}	are Nash	equilibria

*

*

*

*

*

* *

* *
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Dominance

• Some	times,	some	strategies	are	clearly	better	than	others…
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Strict Dominance

• P1 has	a	strong	preference	for	Teatro
• prefers T instead	of	C regardless	of	P2’s	choices

• P2	really	prefers	Calcio
• prefers C instead	of	T no	matter	what	P2 chooses

(5,	1) (4,	4)

(0,	0) (1,	5)

T C

T

C

63

P1
P2

An	Introduction	to	Game	Theory



Strict Dominance

Action	a strictly	dominates	an	action	b of i,	if	
i prefers	every	outcome	of	playing	a	when	
compared	to	any	outcome	of	playing	b
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Strict Dominance: Definition

•An	action	a of	i
strictly	dominates	an	action	b	(of	that	same	
player)	if

u i (a -i ,	a)	>	u i (a -i ,	b)
for	any	profile	a -i of	other	players’	actions.

• If b is strictly	dominated	by a,	player i cannot	
possibly	play	b in	a	Nash	equilibrium

• …since	she	can	unilaterally	deviate	profitably	to a	
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Use dominance to find Nash

• A	rational	agent	will	never	choose	a	strictly	dominated	strategy
• Thus	the	strictly	dominated	strategies	can	be	eliminated	from	the	game
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Strict Dominance and NE

• For	the	row	player,	T strictly	dominates	C
• For	the	column	player,	C strictly	dominates	T
• Thus,	(T,	C)	is	the	(unique)	ΝΕ

(5,	1) (4,	4)

(0,	0) (1,	5)

T C

T

C
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Π1
Π2
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Prisoner’s Dilemma

(-1,-1) (-4,	0)

(0,	-4) (-3,	-3)

C D

C

D

For	both	players,	
D	strictly	dominates	C

(D,	D)	is	the	unique	NE
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Iterated elimination of strictly 
dominated strategies

•By	this	elimination	process,	no	NE	is	lost
•Why?	“I	am	rational,	and	I	know	you	are	rational,	and	I	
know you	know	I	am rational,	and	you	know	that	I	know	
these,	...thus	we	will	never	use	these	strictly	dominated	
strategies”

• Thus,	we	use	this	process	to	find	NE	via	simplifying	the	
original	game
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Mixed strategy NE (Nash 
equilibrium in  mixed strategies)

•Mixed	strategies:
• Choose	an	action	based	on	a	probability	distribution
• pure	NE:	subset	of	a	game’s mixed	NE
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Mixed strategy NE (Nash 
equilibrium in  mixed strategies)

•Mixed	strategies:
• play	a1with	probability	p1

• play	a2with	probability	p2

• .	.	.
• play	akwith	probability	pk

s.t. p1 +	p2 +				+	pk =	1

•Νash	(1951):	all	finite	games	have	at	least	one	NE	
in	mixed	strategies
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Computing mixed NE
Matching	pennies
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(1,	-1) (-1,	1)

(-1,	1) (1,	-1)

Corona Lettere

Corona

Lettere

P1
P2
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Computing mixed NE ++

• P1	:	C with	probability	p
• P2 : C with	probability	q

If	P2	plays	mixed,
he	must	be	indifferent between C	/	L

(or	he	would	have	played	a	pure	strategy)

u2(C)	=	u2(L)
-p+(1-p)	=	p-(1-p)

p =	1/2
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Computing mixed NE ++

• Similarly,	P1	indifferent	between	C/	L	..
• ...thus,	p=1/2, and	q=1/2	
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Computing mixed NE ++

• If	all	players	are	indifferent	among	using	pure	
strategies,	probabilities	are	defined	for	others’	
mixes	so	they	each	play	a best	response	to	
others’	strategies
• ...if	any	other	mix	was	used,	opponents	could	have	
have	chosen	a	(pure)	strategy	that	would	have	
improved	her	payoff

• ...thus	agents	play	a	Nash	equilibrium	(vector	of	best	
responses)
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Computing mixed NE: The stag hunt game

Assume	P1	plays	“Deer”	with	probability	p,	P2	plays “Deer”	with	probability	q.

u2(“Deer”)	=	u2(“Rabbit”)
4p+1(1-p)	=	3p	+	3(1-p)

p	=	2/3

u1(“Deer”)	=	u1(“Rabbit”)
4q+(1-q)	=	3

q	=	2/3
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(4,	4) (1,	3)

(3,	1) (3,	3)

Deer Rabbit

Deer

Rabbit

P1
P2

This	holds	since	2	plays	a	BR	to	1’s	mixed	strategy…

...a	fact	that	fixes	a	p	for	1’s	BR,	given	which	1	is	indifferent:	
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The stag hunt: 
(expected) utilities at mixed NE

EU[1]	=	4pq+p(1-q)1+3(1-p)q	+	3(1-p)(1-q)
=	4x2/3x2/3	+	2/3x1/3+3x1/3x2/3+3x1/3x1/3

=	16/9	+	2/9	+	6/9	+	3/9	=	3

EU[2]	=	4pq+3p(1-q)+(1-p)q	+	3(1-p)(1-q)
=	4x2/3x2/3	+	3x2/3x1/3+1/3x2/3+3x1/3x1/3

=	16/9	+	6/9	+	2/9	+	3/9	=	3
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(3,	1) (3,	3)
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The stag hunt: 
(expected) utilities at mixed NE

EU[1]	=	4pq+p(1-q)1+3(1-p)q	+	3(1-p)(1-q)
=	4x2/3x2/3	+	2/3x1/3+3x1/3x2/3+3x1/3x1/3

=	16/9	+	2/9	+	6/9	+	3/9	=	3

EU[2]	=	4pq+3p(1-q)+(1-p)q	+	3(1-p)(1-q)
=	4x2/3x2/3	+	3x2/3x1/3+1/3x2/3+3x1/3x1/3

=	16/9	+	6/9	+	2/9	+	3/9	=	3
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(4,	4) (1,	3)

(3,	1) (3,	3)

Deer Rabbit

Deer

Rabbit

P1
P2

- In	NE	all	players	play	best	responses.	If	I	tell	you	that	
any	mixed	BR	has	an	EU	that	is	equal	to	that	of	the	pure	
strategies	in	the	mix	(it’s	true!),	can	you	think	of	an	

easier	way	to	calculate	these	quantities?



Computing mixed NE ++

•Note:	causing	“indifference”	to	others	is	not	the	agents’	goal
• They	just	try	to	maximize	their	payoff	(playing best	
responses)...

• ...but	”indifference	among	pure	stategies”	is	a	requirement	
for	mixed	ΝΕ
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Justifying mixed strategy NE

• attempt	to	insert	randomization	in	play
• attempt	to	include	a	statistical	reasoning	
about	others	behaviour
•ΝΕ	as	a steady	state in	a	stochastic	game

• models	dependence	on	“outside”/	
unknown	factors

• models	player	strategies	with	unstable	or	
varying	preferences
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NE is not always the appropriate rationality concept

81

Finite	games	in	extensive	form:	Subgame-Perfect	Equilibrium

(example:	negotiations	with	multiple	rounds)	
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Extensive form games: “empty” threats

Both	(pure) ΝΕ,	but	(Out,	F)	corresponds	to	
a non-credible	threat:	“I”	will	never	choose

“Fight” if Ε	plays “In”
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Subgames in extensive form games with
perfect information

83

Subgame:	A	game	subset	that	includes	an
“initial”	node	which	the	game	has	reached,	
and	all	nodes-children	of	that	node, as	well	

as	their	descendents.

The	game	here	has	two	subgames!

With	“imperfect	information”,	the	definition	is	a	bit	different	and	
includes	“information	sets”.
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Subgame-Perfect Equilibrium
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Subgame-perfect	equilibrium:	
Nash	equilibrium	in	every	subgame!

(Out,	F):	equilibrium	in	the	
”big”subgame (whole	game),	but	

not	the subgame		after	“In”
With backward	induction:	given

“Accommodate”, E	cannot	but	play	
“In”	in	the	big	subgame!	



Careful: in extensive form games, we need 
complete plans of action

F	corresponds	to “F	if	E	plays	In”,		and
A	to “A	if	E	plays	In”
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Dividere l’anguria

Οk|Α and	Ok|B Οk|A and	No|B No|A and	Ok|B No|Α and	Νο|Β

A 1.5,	0.5 1.5,	0.5 0,	0 0,0

B 1,	1 0,	0 1,	1 0,	0

Player 1

Player 2

You	have	to	
have	a	
complete	
action	plan!
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Backward induction

87

starting	by	the	last	round	(of	a	game	in	
extensive	form),	define	inductively	the	

sequence	of	optimal	actions
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Suggested	Readings
§K.	Leyton-Brown	&	Y.	Shoham:	“Essentials	of	Game	
theory:	A	concise	multidisciplinary	introduction”:	
https://doi.org/10.2200/S00108ED1V01Y200802AIM003
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Additional	Slides
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Repeated Prisoner’s Dilemma

• If	you	know	you	are	going	to	face	the	dilemma	over	and	over	again,	then	
snitching	is	probably	not	a	good	idea...:

Infinitely	repeated	PD:	cooperation is	the	rational	choice
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...but,	in	the	real	world,	nothing	lasts	for	ever...L



...thus …with finite horizon…
• If	known	number	of	repetitions	n	
•…then	at	n round	you	have	an	incentive	to	defect...
•Both	“snitch”	on	the	other	at	n…
•…making n-1 the	last	“real”	round...

• Thus,	incentive	to	snitch	at	n-1
• ...with	backward	induction	we	can	prove	that

In	finitely	repeated PD:	
to	defect	is	the	rational	choice	(again)
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…unless	you	are	not	sure	of	the	value	of	n	...	J



Repeated	Games

Game	Theory:	Key	Paradigms	and	Solution	Concepts 92

• Repeated	execution	of	a stage	game:

• In	each	repetition,	players	move	simultaneously, observe	others’	moves	
after	the	round	is	over

• Players’	payoff	functions	are	additive	

ι,κ λ,μ

ο,	π ν,	ξ

s t

q

p

Repeat“stage	game”



Taking	Decisions	over	Time:	
Stochastic	or Markov	games

93

• Beyond	repeated	games:

α,β γ,δ

η,θ ε,	ζ

ι,κ λ,μ

ο,	π ν,	ξ

ρ,σ φ,χ

τ,υ ψ,	ω

ξ,ζ γ,γ

ι,ο δ,	θ

ρ,β ρ,δ

ο,κ ε,	ζ

α,δ λ,κ

θ,ζ ε,	τ

a

b d

c

x z

s t

q

p

m

n

k l

b c

u v

w h

x

k

j

m

<a,z>,	0.8

<a,z>,	0.2

else,	1

<q,s>,	0.3

<q,t>,	0.3

<q,s>,	0.7

…

…

…

…

…

…



Symmetric games

• Can	players	swap	IDs	without	a	need	to	change	strategies	
(swapped	players’	strategies	result	to	same	payoffs)?

• Then	the	games	are	symmetric
• Lavoro: Check	to	see	which	of	the	aforementioned	games	are	
symmetric!

94

(a,	a) (b,	c)

(c,	b) (d,	d)
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Two algorithms to identify NE                
in 2-player games

1. For	every	cell,	check	if	NE,	that	is	check	whether
(1)	P1	can	benefit	by	switching
(2) P1	can	benefit	by	switching

2. (1)	for	every	P2’s	action,	compute	P1’s	best	
responses
(2)	for	every	P1’s	action,	compute	P2’s	best	
responses
(3)	display	the	cells	where	best	responses meet

•Which	one	is	the	most	efficient	computationally?

95An	Introduction	to	Game	Theory



Algorithm 1

• 2-player	n-by-n	game	(every	player	has	n actions)
• For	every	cell,	check	if	NE,	that	is	check	whether:

• (1)	P1	can	benefit	by	switching:	n checks
(2) P2	can	benefit	by	switching:	n	checks

• n2 cells,	thus (n+n)	x	n2 =	2n3 computational	cost

(	 ,	 ) (	?	,	 ) (	 ,	 )
(	 ,	 ?	) (	x , y ) (	 , ?	 )
(	 ,	 ) ( ?	,	 ) (	 ,	 )
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Algorithm 2

1. for	every	action	(column)	of	P2,	compute	the	best	responses	of	P1:	
• Scan	column	to	identify	P1’s	max	payoff	at	every	column
• Scan	column	again	to	mark	cells	max	payoff
• Each	scan: requires n	checks,	thus 2n	x	n	checks	in	total	for	this	part

2. same	for	P1’s	actions
3. Scan	matrix	to	identify	
Cells	with	two	labels:	n2

In	total:
• 2n2 +2n2 +	n2 =	

5n2 checks
• for	large	n,	5n2 <	2n3

(?	,?		) (? ,?		) (? , ?		)
(? ,?		) (? ,?		) (? , ?		)
(? ,?		) (? ,?		) (? , ?	)

*

*

* *

*

*
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Best Response Functions:
Continuous Action Spaces

•Two	programmers	work	together	in	a	project
•Workload/effort	of	each player:	a	number	in	[0,	1]
• If	1	allocates x	units	of	effort,	and

2	allocates	y	units	of	effort,	
and	1’s utility	is x(c+y-x),	
while	2’s	is	 y(c+x-y)

•best	response of 1 to y: (c+y)/2
•best	response of 2 to x: (c+x)/2	

u 1	(x,	y0)

x(c	+	y0)/2
1
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Common project in continuous 
spaces, algebraic solution

•best	response of 1 to y: (c+y)/2
•best	response of 2 to x: (c+x)/2
• (x,	y)	is Nash	equilibrium if

• x best	response	of	player	1	στο y
•y best	response	of	player	2 στο x

• x	=	(c+y)/2,	y	=	(c+x)/2
•2y	=	c+(c+y)/2				=>				4y	=	3c+y	
•Thus:	y	=	c,	x	=	c
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•That	is,	we	start	by	differentiating the	utility	
functions	(to	define best	response	functions,	which	
return	actions	that	maximize	utility	as	a	function	of	
opponent	actions),	and	then	solve	simultaneously	
the	equations	that	describe	the	best	responses of	
players	to	opponent	actions...
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Common project in continuous 
spaces, algebraic solution ++
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