Distributed Constraint Optimisation Problems

Distributed Constraint Optimisation Problems

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Distributed Constraint Optimisation Problems

Multi-Agent Systems

- Distributed COP
- Complete solution technique: DPOP

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Multi-Agent Systems

Distributed Constraint Optimisation Problems

MAS

- Systems composed of multiple computational units (Agents) that can interact among them
- \blacksquare Agent \rightarrow hard to define precisely, main features
 - Relevant degree of autonomy
 - Reactivity
 - Pro-activeness
 - Social Ability ⇒ Multi-Agent Systems

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivations

Distributed Constraint Optimisation Problems

Evolution in CS

- Ubiquity
- Connectivity
- Autonomy and Delegation
- High level programming

all this components favor the use of MAS technology

Applications

Distributed Constraint Optimisation Problems

Applications for MAS

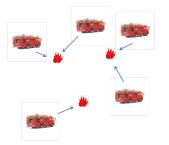
- Distributed Problem Solving (GRATE*, CALO, Electric Elves)
 - e-Elves http://www.isi.edu/e-elves/index.html
- Energy management on Smart Grids (IDEaS, ORCHID)
 - IDEaS http://www.ideasproject.info/
- Cooperative Information Gathering (GlacsWeb, Adaptive Energy-Aware Sensor Networks)
 - AEASN
 - http:
 - //www.ecs.soton.ac.uk/research/projects/AEASN
 - demo

http://profs.sci.univr.it/~farinelli/ WASWebPage/WAS-demo.html

- E-commerce (Trading Agent Competition)
- Security (DeFACTO, ARMOR) ...

Coordination in MAS

Distributed Constraint Optimisation Problems



 \diamondsuit Coordination: choose agent's individual actions so to maximize a system-wide objective

- Individual actions: which fire to tackle
- system-wide objective: minimize total extinguish time
- solution: a joint action

Decentralized Coordination

Distributed Constraint Optimisation Problems

 \diamondsuit **Decentralized Coordination**: local decisions with local information

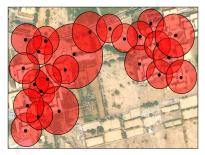
 \diamond Why Decentralized Coordination ?

- No benefit for computation or solution quality
- But:
 - Robustness (single point of failure)
 - Scalability (bandwidth to share info)
- Decompose the problem
 - Each agent cares only of local neighbours

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Example of Decentralized coordination: Wide area Surveillance Problem

Distributed Constraint Optimisation Problems

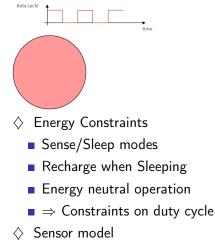


♦ Sensors detect vehicles on a Road Network

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

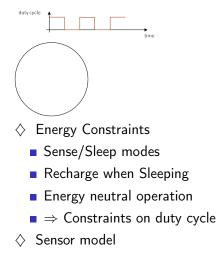
- ♦ Sensors have different sensing ranges
- ♦ Roads have different traffic loads

Distributed Constraint Optimisation Problems



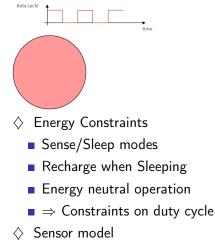
• activity detected by single sensor \Rightarrow coordination

Distributed Constraint Optimisation Problems



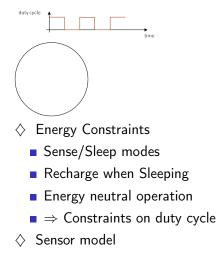
• activity detected by single sensor \Rightarrow coordination

Distributed Constraint Optimisation Problems

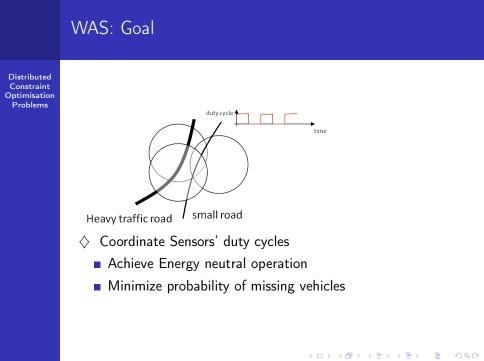


• activity detected by single sensor \Rightarrow coordination

Distributed Constraint Optimisation Problems



• activity detected by single sensor \Rightarrow coordination

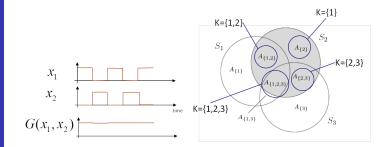


WAS: System Wide Utility

Distributed Constraint Optimisation Problems

 \diamondsuit Weighted Probability of event detection for each possible joint schedule

$$U(\vec{x}) = \sum_{\vec{k} \subset S} A_{\vec{k}} \times P(detection|\lambda_d, G(\vec{x}_{\vec{k}}))$$



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

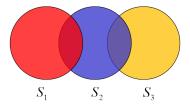
WAS: Interactions among sensors

Distributed Constraint Optimisation Problems

 \diamondsuit System wide utility decomposition in individual utilities (avoiding double counting), for example:

 $U(x_1, x_2, x_3) = U_1(x_1, x_2) + U_2(x_2, x_3) + U_3(x_3)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

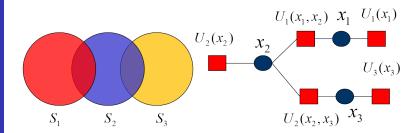


WAS: Factor Graph

Distributed Constraint Optimisation Problems

$\diamond~$ Factor Graph representation

$$U(x_1, x_2, x_3) = U_1^1(x_1) + U_1^2(x_1, x_2) + U_2^1(x_2) + U_2^2(x_2, x_3) + U_3^1(x_3)$$



WAS: Loopy Factor Graph Distributed Constraint Optimisation Problems Tipically Graph will contains loops \diamond $U_{2}(x_{2})$ S_2 $U_2(x_2, x_3)$ $U_1(x_1, x_2)$ $U_1(x_1) \quad \mathbf{X}_1$ x_3 $U_{3}(x_{3})$ S_1 S_3 $U_1(x_1, x_4) \mid U_3(x_3, x_4)$ S_4 $U_4(x_4)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Distributed COP

Distributed Constraint Optimisation Problems

DCOPs

DCOP: Cost network + Agents

- DCOP is a tuple $\langle \mathcal{A}, \mathcal{X}, \mathcal{D}, \mathcal{C}_h, \mathcal{C}_s \rangle$
- $\mathcal{A} = \{A_1, \dots, A_k\}$ is a set of agents
- $\mathcal{X} = \{X_1, \dots, X_n\}$ is a set of variables, $\mathcal{D} = \{D_1, \cdots, D_n\}$ is a set of variable domains

• C_h and C_s represent hard and soft constraints

- $C_s = \mathcal{F} = \{F_1, \dots, F_m\}$ is a set of constraint functions
- Each function $F_i : D_{i_1} \times \cdots \times D_{i_{r_i}} \to \Re$ depends on a set of variable $X_i \subseteq \mathcal{X}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Usual Assumptions and Objectives

Distributed Constraint Optimisation Problems

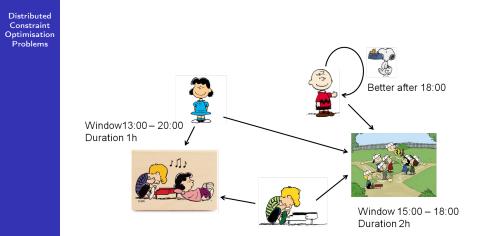
Assumptions and Objective

- Each variable X_i is owned by exactly one agent A_i
- An agent can potentially own more than one variable
- The agent A_i is responsible for assigning values to the variables it owns
- Objective: find the variable assignment such that all hard constraints are satisfied and the sum of all constraint functions is maximised:

$$ar{x}^* = rg\max_{ar{x}} \sum_i F_i(ar{x}_i)$$

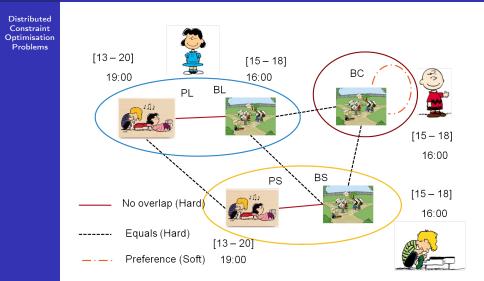
うして ふゆう ふほう ふほう うらつ

Example of Meeting Scheduling: Problem



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example of Meeting Scheduling: DCOP



Example: Meeting Scheduling

Distributed Constraint Optimisation Problems

Example (DCOP for MS)

A set of PDA agents must set up a set of meetings that PDA owners have to attend

- Agents: PDA of people that must participate to the meeting
- Variables: Meeting time (one variable for each meeting and each agent)
- Domains: slots during work hours (e.g. 8am,...,4pm)
- Constraints: hard and soft
 - Equality between meeting variables that represent same meeting across agents (Hard Constraint)
 - Inequality between meeting variables that represent different meetings within one agent (Hard Constraint)
 - Preference that people have on meeting time (Soft Constraint)

Evaluating DCOP solution techniques

Distributed Constraint Optimisation Problems

Measures

- Solution quality
- Optimality guarantees
- <u>Coordination overhead</u>
 - Amount of computation each agent execute

- Number of messages
- Message size

Solution Techniques for DCOPs

Distributed Constraint Optimisation Problems

Solution Techniques

- Complete approaches
 - Guarantee to provide optimal solution

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Exponential coordination overhead
- ADOPT, DPOP, OptAPO
- Approximate approaches
 - Low coordination overhead
 - No guarantees on optimality
 - DSA, MGM, Max-Sum

Complete Solution Techniques

Distributed Constraint Optimisation Problems

Solution Techniques

ADOPT

- Distributed branch and bound (Search)
- Partial order based on a DFS search
- Asynchronous, optimality guarantees
- Number of messages exponential in the DFS tree height

OptAPO

- Based on mediator agents that compute solutions for part of the problem
- Low communication overhead (size, number)
- Computation of mediator agents grow exponentially with the size of their partial problem

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Dynamic Programming vs. Search

Distributed Constraint Optimisation Problems

DP vs. Search in MAS

Search:

- linear size messages
- message number is exponential (number of agents)
- Dynamic Programming:
 - linear number of messages
 - message size is exponential (width of DFS tree)
- Usually width is smaller than depth (specially for sparse problems)
- Messages can have large overhead (packet, e-mail, etc.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dynamic Programming Optimisation Protocol

Distributed Constraint Optimisation Problems

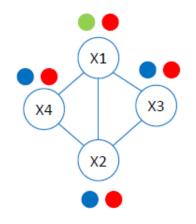
DPOP

- Distributed
- Dynamic Programming
- Complete (Optimality guarantee)
- Three Phases:
 - Pseudo-tree building with a DFS
 - Utility messages from leaves to root (Util propagation)
 - Value messages from root to leaves (Value propagation)
- Each phase: linear number of message
- Util propagation phase produces messages of exponential size

DPOP running Example

Distributed Constraint Optimisation Problems

Value of Each Constraint same color -1 different colors 0



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Pseudotrees: basic concepts

Distributed Constraint Optimisation Problems

Pseudotree arrangement of a graph G

- **1** A rooted tree with same node as G
- 2 Adjacent nodes in *G* falls in the same branch of the Pseudotree

Thanks to 2 once a subset of nodes (separator) are instantiated different subtrees are completely independent

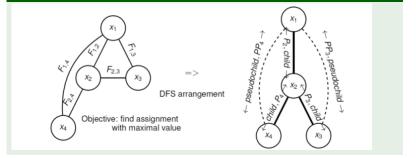
- Tree edges: form a spanning tree of the original graph
- Back edges: represent constraints that are not part of the spanning tree

ション ふゆ く 山 マ チャット しょうくしゃ

Example: Pseudotree

Distributed Constraint Optimisation Problems

Example (Pseudotree)



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

DFS arrangement and Pseudotrees

Distributed Constraint Optimisation Problems

DFS and Pseudotree

- DFS traversal of a graph generates a pseudotree
- DFS trees are subclass of Pseudotree
- Using DFS trees only neighbouring agents need to communicate
- DFS trees can be easily built using distributed algorithm

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

DFS traversal and psudotree building

Distributed Constraint Optimisation Problems

DFS traversal

- Traverse the graph using a recursive procedure.
- Each time we reach a node X_i from a node X_j we mark X_i as visited and establish a parent/child relationship between X_i and X_i

• $P_i = X_j$ and $C_j = C_j \cup X_i$

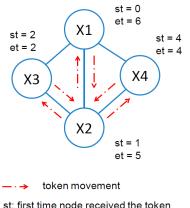
When a node X_i has a visited neighbour X_j which is not its parent we establish a pseudo-parent/pseudo-child relationship between X_i and X_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

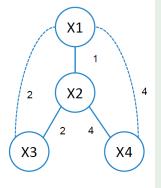
•
$$PP_i = PP_i \cup X_j$$
 and $PC_j = PC_j \cup X_i$

Distributed Constraint Optimisation Problems

Example (Pseudo tree with DFS traversal)



et: last time node sent the token



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Basic concepts for DFS trees

Distributed Constraint Optimisation Problems

basic concepts

- Children C_i / Parent P_i of node X_i: descendants / ancestor of X_i through tree edges
- Pseudo-Children PC_i / Pseudo-Parents PP_i of X_i: descendants / ancestor of X_i through back edges
- Sep_i separator of node X_i: all ancestors (though tree and back edges) which are connected with X_i and with any descendant of X_i
- Sep_i minimal set of ancestors that, if removed, completely disconnects the subtree rooted at node X_i from the rest of the problem
- $\blacksquare Sep_i = \bigcup_{X_j \in C_i} Sep_j \cup P_i \cup PP_i \setminus X_i$

DPOP: Util propagation

Distributed Constraint Optimisation Problems

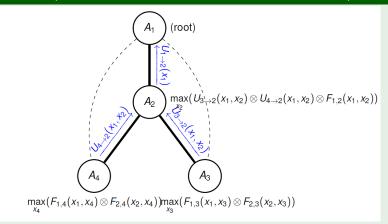
Util Propagation

- Start from leaves and goes up the tree
- Each agent computes messages for its parent based on messages received from children and relevant constraints.
- Agent A_i controlling variable X_i with children C_i parent P_i = X_j and pseudoparents PP_i
- $M_{i \rightarrow j}(Sep_i) = \max_{X_i} \left(\sum_{X_k \in C_i} M_{k \rightarrow i} + \sum_{X_p \in P_i \cup PP_i} F_i^p \right)$
- Each message projects out X_i (by maximisation) and aggregates (by summation) functions received from children and all constraints with ancestors (parents and pseudoparents)
- The size and computation of each message is exponential in the size of the separator

Example: Util propagation

Distributed Constraint Optimisation Problems

Example (message computation for util propagation phase)



DPOP: Value propagation

Distributed Constraint Optimisation Problems

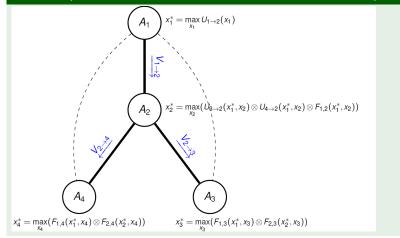
Value Propagation

- Proceeds from root to leaves
- Root agent A_r computes x_r^{*} which is the argument that maximises the sum of messages received by all children (plus all unary relations it is involved in).
- It sends a message V_{r→c} = {X_r = x_r^{*}} containing this value to all children C_r
- The generic agent A_i computes $x_i^* = \arg \max_{X_i} (\sum_{X_k \in C_i} M_{k \to i}[\bar{x}_p^*] + \sum_{X_p \in P_i \cup PP_i} F_i^p(X_i, \bar{x}_p^*))$, where x_p^* are the optimal values received from the parent.
- The generic agent A_i sends a message to each child A_j $V_{i \rightarrow j} = \{X_s = x_s^*\} \cup X_i = x_i^*$, where $X_s \in Sep_i \cap Sep_j$

Example: Value propagation

Distributed Constraint Optimisation Problems

Example (message computation for value propagation phase)



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Pseudotree and induced width

Distributed Constraint Optimisation Problems

Separator size and Induced Width

The induced width of a graph G along a given DFS arrangement equals the size of the largest separator of any node in the DFS arrangement

- ordering o orders of the DFS traversal
- process the nodes in reverse connecting all ancestors of each node
- width of a node: number of induced ancestors
- recursively connecting ancestors ⇒ propagating parents and pseudoparents
- the number of induced ancestors is exactly the size of the separator

Bucket Elimination and DPOP

Distributed Constraint Optimisation Problems

BE and DPOP

- Util phase of DPOP performs the same computation as BE when using the depth first order related to the DFS tree
- Depth first order related to the DFS tree: linear sequence of nodes visited by the DFS
- DPOP computes the same cost functions and sends it to the same variable as BE
- Message size (and computation) is exponential in the induced width (= max separator size) for both techniques
- \blacksquare Since depth first order is a specific ordering \rightarrow DPOP is part of BE

DFS tree and efficiency

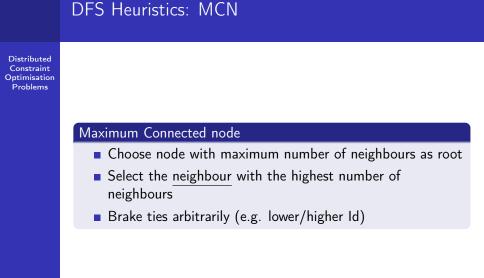
Distributed Constraint Optimisation Problems

DFS ordering and efficiency

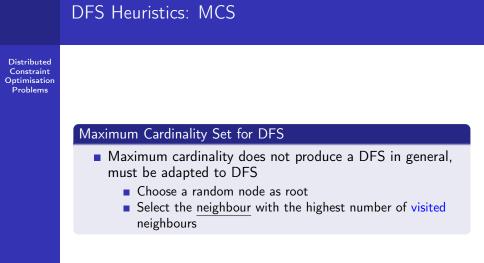
- Depth first order is crucial for DPOP efficiency
- Coordination overhead is exponential in the induced width
- Heuristics to guide the DFS search:
 - Maximum Connected Node MCN
 - Maximum Cardinality Set (for DFS) MCS
- DFS induces only a specific set of orderings thus we might loose good orderings to keep local computation

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Trade off depends on application settings



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●