Distributed
Constraint
Optimisation
Problems

Distributed Constraint Optimisation Problems

Summary

Distributed
Constraint
Optimisation
Problems

m Multi-Agent Systems
m Distributed COP
m Complete solution technique: DPOP

Multi-Agent Systems

Distributed
Constraint
Optimisation
Problems

MAS

m Systems composed of multiple computational units
(Agents) that can interact among them

m Agent — hard to define precisely, main features

Relevant degree of autonomy

Reactivity

[
m Pro-activeness
m Social Ability = Multi-Agent Systems

Motivations

Distributed
Constraint
Optimisation
Problems

Evolution in CS

m Ubiquity
m Connectivity
m Autonomy and Delegation

m High level programming

all this components favor the use of MAS technology

Applications

pistributed [l Applications for MAS

Constraint

Optimisation m Distributed Problem Solving (GRATE*, CALO, Electric
Elves)

m e-Elves http://www.isi.edu/e-elves/index.html
m Energy management on Smart Grids (IDEaS, ORCHID)
m IDEaS http://www.ideasproject.info/

Cooperative Information Gathering (GlacsWeb, Adaptive
Energy-Aware Sensor Networks)

m AEASN
http:
//wuw.ecs.soton.ac.uk/research/projects/AEASN
m demo
http://profs.sci.univr.it/ farinelli/
WASWebPage/WAS-demo . html

E-commerce (Trading Agent Competition)
Security (DeFACTO, ARMOR) ...

http://www.isi.edu/e-elves/index.html
http://www.ideasproject.info/
http://www.ecs.soton.ac.uk/research/projects/AEASN
http://www.ecs.soton.ac.uk/research/projects/AEASN
http://profs.sci.univr.it/~farinelli/WASWebPage/WAS-demo.html
http://profs.sci.univr.it/~farinelli/WASWebPage/WAS-demo.html

Coordination in MAS

Distributed
Constraint
Optimisation

Problems H

\
s S

¢ Coordination: choose agent's individual actions so to
maximize a system-wide objective

m Individual actions: which fire to tackle

m system-wide objective: minimize total extinguish time

m solution: a joint action

Decentralized Coordination

Distributed
Constraint
Optimisation
Problems

{ Decentralized Coordination: local decisions with local
information
< Why Decentralized Coordination 7

m No benefit for computation or solution quality
m But:

m Robustness (single point of failure)
m Scalability (bandwidth to share info)

m Decompose the problem
m Each agent cares only of local neighbours

Example of Decentralized coordination: Wide area
Surveillance Problem

Distributed
Constraint
Optimisation
Problems

{ Sensors detect vehicles on a Road Network
{ Sensors have different sensing ranges
{> Roads have different traffic loads

WAS: model

Distributed duty cycle

Constraint h m ’7

Optimisation
Problems

time

{ Energy Constraints

Sense/Sleep modes

]
m Recharge when Sleeping
m Energy neutral operation
]

= Constraints on duty cycle

{ Sensor model

m activity detected by single sensor = coordination

WAS: model

Distributed duty cycle

Constraint h m ’7

Optimisation
Problems

time

{ Energy Constraints

Sense/Sleep modes

]
m Recharge when Sleeping
m Energy neutral operation
]

= Constraints on duty cycle

{ Sensor model

m activity detected by single sensor = coordination

WAS: model

Distributed duty cycle

Constraint h m ’7

Optimisation
Problems

time

{ Energy Constraints

Sense/Sleep modes

]
m Recharge when Sleeping
m Energy neutral operation
]

= Constraints on duty cycle

{ Sensor model

m activity detected by single sensor = coordination

WAS: model

Distributed duty cycle

Constraint h m ’7

Optimisation
Problems

time

{ Energy Constraints

Sense/Sleep modes

]
m Recharge when Sleeping
m Energy neutral operation
]

= Constraints on duty cycle

{ Sensor model

m activity detected by single sensor = coordination

WAS: Goal

Distributed
Constraint
Optimisation
Problems

duty cvc\etl I:I I:

time

Heavy trafficroad | smallroad

& Coordinate Sensors’ duty cycles
m Achieve Energy neutral operation

m Minimize probability of missing vehicles

WAS: System Wide Utility

Distributed
Constraint

Qi ¢ Weighted Probability of event detection for each possible
joint schedule

U(R) = Z AE x P(detection| Ay, G(}E))
kcs

WAS: Interactions among sensors

Distributed
Constraint
Optimisation
Problems

< System wide utility decomposition in individual utilities
(avoiding double counting), for example:

U(x1, x2, x3) = Ur(x1, x2) + Ua(x2, x3) + Us(x3)

WAS: Factor Graph

Distributed
Constraint
Optimisation
Problems

{ Factor Graph representation

U(x1, %2, x3) = Uj (x1)+UZ (x1, x2)+ U3 (x2)+ U3 (x2, x3)+ U3 (x3)

UI(XI,XZ) xl Ul(x1)
U,(x,) X,

Us(x3)

U,(x,,x,) X3

WAS: Loopy Factor Graph

Distributed
Constraint
Optimisation
Problems

& Tipically Graph will contains loops

Distributed COP

Distributed
Constraint
Optimisation
Problems

DCOPs

DCOP: Cost network + Agents
m DCOP is a tuple (A, X, D, Cp,Cs)
m A={Ai, ..., A} is a set of agents

B X ={Xy,..., Xy} is a set of variables, D = {Dy,--- , Dy}
is a set of variable domains

m Cj, and C represent hard and soft constraints
m Cs=F={F,...,Fn} is a set of constraint functions

m Each function F; : Dy x --- X D;,’, — R depends on a set
of variable X; C X

Usual Assumptions and Objectives

Distributed
Constraint

Optimisation
sl Assumptions and Objective

m Each variable X; is owned by exactly one agent A;

m An agent can potentially own more than one variable
m The agent A; is responsible for assigning values to the
variables it owns

m Objective: find the variable assignment such that all hard
constraints are satisfied and the sum of all constraint
functions is maximised:

X* = arg m)_?xz Fi(xi)
!

Example of Meeting Scheduling: Problem

Distributed
Constraint
Optimisation
Problems

Window13:00- 20:00
Duration 1h

Window 15:00 — 18:00
Duration 2h

Example of Meeting Scheduling: DCOP

Distributed
Constraint
Optimisation
Problems

[13-20]

[15-18]

[15-18]
16:00

[16—-18]
16:00

........ Equals (Hard)

— . —. Preference (Soft)

Example: Meeting Scheduling

Distributed Example (DCOP for MS)

Constraint
Optimisation

Predte A set of PDA agents must set up a set of meetings that PDA
owners have to attend

m Agents: PDA of people that must participate to the
meeting

m Variables: Meeting time (one variable for each meeting and
each agent)

m Domains: slots during work hours (e.g. 8am,...,4pm)

m Constraints: hard and soft
m Equality between meeting variables that represent same
meeting across agents (Hard Constraint)
m Inequality between meeting variables that represent
different meetings within one agent (Hard Constraint)
m Preference that people have on meeting time (Soft
Constraint)

Evaluating DCOP solution techniques

Distributed
Constraint
Optimisation
Problems

Measures

m Solution quality

m Optimality guarantees
m Coordination overhead

m Amount of computation each agent execute
m Number of messages
B Message size

Solution Techniques for DCOPs

Distributed
Constraint
Optimisation
Problems

Solution Techniques

m Complete approaches

m Guarantee to provide optimal solution
m Exponential coordination overhead
m ADOPT, DPOP, OptAPO

m Approximate approaches

m Low coordination overhead
m No guarantees on optimality
m DSA, MGM, Max-Sum

Complete Solution Techniques

Distributed
Constraint

Optimisation
Problems Solution Techniques
m ADOPT
m Distributed branch and bound (Search)
m Partial order based on a DFS search

m Asynchronous, optimality guarantees
m Number of messages exponential in the DFS tree height

m OptAPO
m Based on mediator agents that compute solutions for part

of the problem

m Low communication overhead (size, number)

m Computation of mediator agents grow exponentially with
the size of their partial problem

Dynamic Programming vs. Search

Distributed
Constraint
Optimisation

Frosiems DP vs. Search in MAS

m Search:

m linear size messages
m message number is exponential (number of agents)

m Dynamic Programming;:

m linear number of messages
m message size is exponential (width of DFS tree)

m Usually width is smaller than depth (specially for sparse
problems)

m Messages can have large overhead (packet, e-mail, etc.)

Dynamic Programming Optimisation Protocol

Distributed
Constraint

Optimisation
Problems D PO P

Distributed
Dynamic Programming

]
m Complete (Optimality guarantee)
m Three Phases:

m Pseudo-tree building with a DFS
m Utility messages from leaves to root (Util propagation)
m Value messages from root to leaves (Value propagation)

Each phase: linear number of message

Util propagation phase produces messages of exponential
size

DPOP running Example

Distributed Value of Each Constraint
Constraint

Optimisation same C0|Or -1
Probl .
revems different colors 0

(x1)
”\/ | /\E;\I

X4)

ey

AN

Pseudotrees: basic concepts

Distributed
Constraint
Optimisation
Problems

Pseudotree arrangement of a graph G

A rooted tree with same node as G

Adjacent nodes in G falls in the same branch of the
Pseudotree

Thanks to 2 once a subset of nodes (separator) are instantiated
different subtrees are completely independent
m Tree edges: form a spanning tree of the original graph

m Back edges: represent constraints that are not part of the
spanning tree

Example: Pseudotree

Distributed
Constraint
Optimisation
Problems

e, Pp

DFS arrangement

“—

Il
.DSQUGOC i

Objective: find assignment
with maximal value

DFS arrangement and Pseudotrees

Distributed
Constraint
Optimisation
Problems

DFS and Pseudotree

m DFS traversal of a graph generates a pseudotree
m DFS trees are subclass of Pseudotree

m Using DFS trees only neighbouring agents need to
communicate
m DFS trees can be easily built using distributed algorithm

DFS traversal and psudotree building

Distributed
Constraint
Optimisation
Problems

DFS traversal

m Traverse the graph using a recursive procedure.

m Each time we reach a node X; from a node X; we mark X;
as visited and establish a parent/child relationship between
X; and X;

mPi=Xjand =G UX;

m When a node X; has a visited neighbour X; which is not its
parent we establish a pseudo-parent/pseudo-child
relationship between X; and X;

m PP; = PP;UX; and PC; = PC; U X;

Distributed o

Constraint Example (Pseudo tree with DFS traversal)
Optimisation

Problems

et=5

— .- token movement

bt = .
st: first time node received the token time each time token moves

et: last time node sent the token

Basic concepts for DFS trees

Distributed

Constraint "

m Children C;/ Parent P; of node X;: descendants / ancestor
of X; through tree edges

m Pseudo-Children PC; / Pseudo-Parents PP; of X;:
descendants / ancestor of X; through back edges

m Sep; separator of node X;: all ancestors (though tree and
back edges) which are connected with X; and with any
descendant of X;

m Sep; minimal set of ancestors that, if removed, completely
disconnects the subtree rooted at node X; from the rest of
the problem

m Sep; = UXieC,Sepj U P; U PPI\Xi

DPOP: Util propagation

Distributed

Constraint 1 1
oonetraint Util Propagation

Problems

m Start from leaves and goes up the tree

m Each agent computes messages for its parent based on
messages received from children and relevant constraints.

m Agent A; controlling variable X; with children C; parent
P; = X; and pseudoparents PP;

m Mij(Sepi) = maxx;(3ox, e, Mk—si + Xx,epupp, FF)

m Each message projects out X; (by maximisation) and
aggregates (by summation) functions received from
children and all constraints with ancestors (parents and
pseudoparents)

m The size and computation of each message is exponential
in the size of the separator

Example: Util propagation

Distributed
Constraint

Optimisation W Fyample (message computation for util propagation phase)

Problems

mX?X(Fm()ﬁ JX4) ® F2A4(Xz.X4))mX§X(F1A3(X1 . X3) ® Fa.3(X2,X3))

DPOP: Value propagation

Distributed

Constraint o
Optimisation Value Propagatlon
Problems

m Proceeds from root to leaves

m Root agent A, computes x; which is the argument that
maximises the sum of messages received by all children
(plus all unary relations it is involved in).

m It sends a message V,_,. = {X, = x} containing this
value to all children C,

m The generic agent A; computes x* =
ok

arg maXXi(ZXkeC,- Mkﬁ\i[)_(;] + ZXPEP,-UPP,- F,'p(Xi Xp)),

where x; are the optimal values received from the parent.

m The generic agent A; sends a message to each child A;
Vij = {Xs = x}} U X; = x', where X € Sep; N Sep;

Example: Value propagation

Distributed
Constraint

optimisation il Example (message computation for value propagation phase)

Problems

Xf= max Usa(x1)
1

X3 = rf}glx(Uaaz(Xsz)‘X‘ Us—2(X7,X2) @ Fr2(x{, Xx2))
\

\
\
\
|
|
|
1
1

1

X;= n](?x(FL,;(X,*.X,;) @ Fo4(X3,X4)) X3 = n}(e;x(FLg(x;‘.xa) ® F23(x3,X3))

Pseudotree and induced width

Distributed

Constraint

Optimisation Wl Separator size and Induced Width

The induced width of a graph G along a given DFS arrangement
equals the size of the largest separator of any node in the DFS
arrangement

m ordering o orders of the DFS traversal

m process the nodes in reverse connecting all ancestors of
each node

m width of a node: number of induced ancestors

m recursively connecting ancestors = propagating parents
and pseudoparents

m the number of induced ancestors is exactly the size of the
separator

Bucket Elimination and DPOP

Distributed
Constraint

Froviems I BE and DPOP
m Util phase of DPOP performs the same computation as BE
when using the depth first order related to the DFS tree

m Depth first order related to the DFS tree: linear sequence
of nodes visited by the DFS

m DPOP computes the same cost functions and sends it to
the same variable as BE

m Message size (and computation) is exponential in the
induced width (= max separator size) for both techniques

m Since depth first order is a specific ordering — DPOP is
part of BE

DFS tree and efficiency

Distributed
Constraint
Optimisation
Problems

DFS ordering and efficiency

m Depth first order is crucial for DPOP efficiency

m Coordination overhead is exponential in the induced width
m Heuristics to guide the DFS search:

m Maximum Connected Node MCN
m Maximum Cardinality Set (for DFS) MCS

m DFS induces only a specific set of orderings thus we might
loose good orderings to keep local computation

m Trade off depends on application settings

DFS Heuristics: MCN

Distributed
Constraint
Optimisation
Problems

Maximum Connected node

m Choose node with maximum number of neighbours as root

m Select the neighbour with the highest number of
neighbours

m Brake ties arbitrarily (e.g. lower/higher Id)

DFS Heuristics: MCS

Distributed
Constraint
Optimisation
Problems

Maximum Cardinality Set for DFS

m Maximum cardinality does not produce a DFS in general,
must be adapted to DFS
m Choose a random node as root
m Select the neighbour with the highest number of visited
neighbours

	Multi-Agent Systems
	Distributed Constraint Optimisation
	Solution Techniques for DCOPs
	Dynamic Programming Optimisation Protocol

