
Distributed
Constraint

Optimisation
Problems

Distributed Constraint Optimisation Problems



Distributed
Constraint

Optimisation
Problems

Summary

Multi-Agent Systems
Distributed COP
Complete solution technique: DPOP



Distributed
Constraint

Optimisation
Problems

Multi-Agent Systems

MAS
Systems composed of multiple computational units
(Agents) that can interact among them
Agent → hard to define precisely, main features

Relevant degree of autonomy
Reactivity
Pro-activeness
Social Ability ⇒ Multi-Agent Systems



Distributed
Constraint

Optimisation
Problems

Motivations

Evolution in CS
Ubiquity
Connectivity
Autonomy and Delegation
High level programming

all this components favor the use of MAS technology



Distributed
Constraint

Optimisation
Problems

Applications

Applications for MAS

Distributed Problem Solving (GRATE*, CALO, Electric
Elves)

e-Elves http://www.isi.edu/e-elves/index.html
Energy management on Smart Grids (IDEaS, ORCHID)

IDEaS http://www.ideasproject.info/

Cooperative Information Gathering (GlacsWeb, Adaptive
Energy-Aware Sensor Networks)

AEASN
http:
//www.ecs.soton.ac.uk/research/projects/AEASN
demo
http://profs.sci.univr.it/~farinelli/
WASWebPage/WAS-demo.html

E-commerce (Trading Agent Competition)
Security (DeFACTO, ARMOR) ...

http://www.isi.edu/e-elves/index.html
http://www.ideasproject.info/
http://www.ecs.soton.ac.uk/research/projects/AEASN
http://www.ecs.soton.ac.uk/research/projects/AEASN
http://profs.sci.univr.it/~farinelli/WASWebPage/WAS-demo.html
http://profs.sci.univr.it/~farinelli/WASWebPage/WAS-demo.html


Distributed
Constraint

Optimisation
Problems

Coordination in MAS

♦ Coordination: choose agent’s individual actions so to
maximize a system-wide objective

Individual actions: which fire to tackle
system-wide objective: minimize total extinguish time
solution: a joint action



Distributed
Constraint

Optimisation
Problems

Decentralized Coordination

♦ Decentralized Coordination: local decisions with local
information
♦ Why Decentralized Coordination ?

No benefit for computation or solution quality
But:

Robustness (single point of failure)
Scalability (bandwidth to share info)

Decompose the problem
Each agent cares only of local neighbours



Distributed
Constraint

Optimisation
Problems

Example of Decentralized coordination: Wide area
Surveillance Problem

♦ Sensors detect vehicles on a Road Network
♦ Sensors have different sensing ranges
♦ Roads have different traffic loads



Distributed
Constraint

Optimisation
Problems

WAS: model

♦ Energy Constraints
Sense/Sleep modes
Recharge when Sleeping
Energy neutral operation
⇒ Constraints on duty cycle

♦ Sensor model

activity detected by single sensor ⇒ coordination



Distributed
Constraint

Optimisation
Problems

WAS: model

♦ Energy Constraints
Sense/Sleep modes
Recharge when Sleeping
Energy neutral operation
⇒ Constraints on duty cycle

♦ Sensor model

activity detected by single sensor ⇒ coordination



Distributed
Constraint

Optimisation
Problems

WAS: model

♦ Energy Constraints
Sense/Sleep modes
Recharge when Sleeping
Energy neutral operation
⇒ Constraints on duty cycle

♦ Sensor model

activity detected by single sensor ⇒ coordination



Distributed
Constraint

Optimisation
Problems

WAS: model

♦ Energy Constraints
Sense/Sleep modes
Recharge when Sleeping
Energy neutral operation
⇒ Constraints on duty cycle

♦ Sensor model

activity detected by single sensor ⇒ coordination



Distributed
Constraint

Optimisation
Problems

WAS: Goal

♦ Coordinate Sensors’ duty cycles
Achieve Energy neutral operation
Minimize probability of missing vehicles



Distributed
Constraint

Optimisation
Problems

WAS: System Wide Utility

♦ Weighted Probability of event detection for each possible
joint schedule

U(~x) =
∑
~k⊂S

A~k × P(detection|λd ,G (~x~k))



Distributed
Constraint

Optimisation
Problems

WAS: Interactions among sensors

♦ System wide utility decomposition in individual utilities
(avoiding double counting), for example:

U(x1, x2, x3) = U1(x1, x2) + U2(x2, x3) + U3(x3)



Distributed
Constraint

Optimisation
Problems

WAS: Factor Graph

♦ Factor Graph representation

U(x1, x2, x3) = U1
1 (x1)+U2

1 (x1, x2)+U1
2 (x2)+U2

2 (x2, x3)+U1
3 (x3)



Distributed
Constraint

Optimisation
Problems

WAS: Loopy Factor Graph

♦ Tipically Graph will contains loops



Distributed
Constraint

Optimisation
Problems

Distributed COP

DCOPs
DCOP: Cost network + Agents

DCOP is a tuple 〈A,X ,D, Ch, Cs〉
A = {A1, . . . ,Ak} is a set of agents
X = {X1, . . . ,Xn} is a set of variables, D = {D1, · · · ,Dn}
is a set of variable domains
Ch and Cs represent hard and soft constraints
Cs = F = {F1, . . . ,Fm} is a set of constraint functions
Each function Fi : Di1 × · · · × Diri → < depends on a set
of variable Xi ⊆ X



Distributed
Constraint

Optimisation
Problems

Usual Assumptions and Objectives

Assumptions and Objective
Each variable Xi is owned by exactly one agent Ai

An agent can potentially own more than one variable
The agent Ai is responsible for assigning values to the
variables it owns
Objective: find the variable assignment such that all hard
constraints are satisfied and the sum of all constraint
functions is maximised:

x̄∗ = argmax
x̄

∑
i

Fi (x̄i )



Distributed
Constraint

Optimisation
Problems

Example of Meeting Scheduling: Problem



Distributed
Constraint

Optimisation
Problems

Example of Meeting Scheduling: DCOP



Distributed
Constraint

Optimisation
Problems

Example: Meeting Scheduling

Example (DCOP for MS)

A set of PDA agents must set up a set of meetings that PDA
owners have to attend

Agents: PDA of people that must participate to the
meeting
Variables: Meeting time (one variable for each meeting and
each agent)
Domains: slots during work hours (e.g. 8am,...,4pm)
Constraints: hard and soft

Equality between meeting variables that represent same
meeting across agents (Hard Constraint)
Inequality between meeting variables that represent
different meetings within one agent (Hard Constraint)
Preference that people have on meeting time (Soft
Constraint)



Distributed
Constraint

Optimisation
Problems

Evaluating DCOP solution techniques

Measures
Solution quality
Optimality guarantees
Coordination overhead

Amount of computation each agent execute
Number of messages
Message size



Distributed
Constraint

Optimisation
Problems

Solution Techniques for DCOPs

Solution Techniques
Complete approaches

Guarantee to provide optimal solution
Exponential coordination overhead
ADOPT, DPOP, OptAPO

Approximate approaches
Low coordination overhead
No guarantees on optimality
DSA, MGM, Max-Sum



Distributed
Constraint

Optimisation
Problems

Complete Solution Techniques

Solution Techniques
ADOPT

Distributed branch and bound (Search)
Partial order based on a DFS search
Asynchronous, optimality guarantees
Number of messages exponential in the DFS tree height

OptAPO
Based on mediator agents that compute solutions for part
of the problem
Low communication overhead (size, number)
Computation of mediator agents grow exponentially with
the size of their partial problem



Distributed
Constraint

Optimisation
Problems

Dynamic Programming vs. Search

DP vs. Search in MAS
Search:

linear size messages
message number is exponential (number of agents)

Dynamic Programming:
linear number of messages
message size is exponential (width of DFS tree)

Usually width is smaller than depth (specially for sparse
problems)
Messages can have large overhead (packet, e-mail, etc.)



Distributed
Constraint

Optimisation
Problems

Dynamic Programming Optimisation Protocol

DPOP
Distributed
Dynamic Programming
Complete (Optimality guarantee)
Three Phases:

Pseudo-tree building with a DFS
Utility messages from leaves to root (Util propagation)
Value messages from root to leaves (Value propagation)

Each phase: linear number of message
Util propagation phase produces messages of exponential
size



Distributed
Constraint

Optimisation
Problems

DPOP running Example

Value of Each Constraint
same color -1
different colors 0



Distributed
Constraint

Optimisation
Problems

Pseudotrees: basic concepts

Pseudotree arrangement of a graph G
1 A rooted tree with same node as G
2 Adjacent nodes in G falls in the same branch of the

Pseudotree

Thanks to 2 once a subset of nodes (separator) are instantiated
different subtrees are completely independent

Tree edges: form a spanning tree of the original graph
Back edges: represent constraints that are not part of the
spanning tree



Distributed
Constraint

Optimisation
Problems

Example: Pseudotree

Example (Pseudotree)



Distributed
Constraint

Optimisation
Problems

DFS arrangement and Pseudotrees

DFS and Pseudotree
DFS traversal of a graph generates a pseudotree
DFS trees are subclass of Pseudotree
Using DFS trees only neighbouring agents need to
communicate
DFS trees can be easily built using distributed algorithm



Distributed
Constraint

Optimisation
Problems

DFS traversal and psudotree building

DFS traversal
Traverse the graph using a recursive procedure.
Each time we reach a node Xi from a node Xj we mark Xi
as visited and establish a parent/child relationship between
Xj and Xi

Pi = Xj and Cj = Cj ∪ Xi

When a node Xi has a visited neighbour Xj which is not its
parent we establish a pseudo-parent/pseudo-child
relationship between Xj and Xi

PPi = PPi ∪ Xj and PCj = PCj ∪ Xi



Distributed
Constraint

Optimisation
Problems

Example (Pseudo tree with DFS traversal)



Distributed
Constraint

Optimisation
Problems

Basic concepts for DFS trees

basic concepts

Children Ci/ Parent Pi of node Xi : descendants / ancestor
of Xi through tree edges
Pseudo-Children PCi / Pseudo-Parents PPi of Xi :
descendants / ancestor of Xi through back edges
Sepi separator of node Xi : all ancestors (though tree and
back edges) which are connected with Xi and with any
descendant of Xi

Sepi minimal set of ancestors that, if removed, completely
disconnects the subtree rooted at node Xi from the rest of
the problem
Sepi = ∪Xj∈Ci Sepj ∪ Pi ∪ PPi \ Xi



Distributed
Constraint

Optimisation
Problems

DPOP: Util propagation

Util Propagation
Start from leaves and goes up the tree
Each agent computes messages for its parent based on
messages received from children and relevant constraints.
Agent Ai controlling variable Xi with children Ci parent
Pi = Xj and pseudoparents PPi

Mi→j(Sepi ) = maxXi (
∑

Xk∈Ci
Mk→i +

∑
Xp∈Pi∪PPi

F p
i )

Each message projects out Xi (by maximisation) and
aggregates (by summation) functions received from
children and all constraints with ancestors (parents and
pseudoparents)
The size and computation of each message is exponential
in the size of the separator



Distributed
Constraint

Optimisation
Problems

Example: Util propagation

Example (message computation for util propagation phase)



Distributed
Constraint

Optimisation
Problems

DPOP: Value propagation

Value Propagation
Proceeds from root to leaves
Root agent Ar computes x∗r which is the argument that
maximises the sum of messages received by all children
(plus all unary relations it is involved in).
It sends a message Vr→c = {Xr = x∗r } containing this
value to all children Cr

The generic agent Ai computes x∗i =
argmaxXi (

∑
Xk∈Ci

Mk→i [x̄∗p ] +
∑

Xp∈Pi∪PPi
F p

i (Xi , x̄∗p )),
where x∗p are the optimal values received from the parent.
The generic agent Ai sends a message to each child Aj
Vi→j = {Xs = x∗s } ∪ Xi = x∗i , where Xs ∈ Sepi ∩ Sepj



Distributed
Constraint

Optimisation
Problems

Example: Value propagation

Example (message computation for value propagation phase)



Distributed
Constraint

Optimisation
Problems

Pseudotree and induced width

Separator size and Induced Width
The induced width of a graph G along a given DFS arrangement
equals the size of the largest separator of any node in the DFS
arrangement

ordering o orders of the DFS traversal
process the nodes in reverse connecting all ancestors of
each node
width of a node: number of induced ancestors
recursively connecting ancestors ⇒ propagating parents
and pseudoparents
the number of induced ancestors is exactly the size of the
separator



Distributed
Constraint

Optimisation
Problems

Bucket Elimination and DPOP

BE and DPOP
Util phase of DPOP performs the same computation as BE
when using the depth first order related to the DFS tree
Depth first order related to the DFS tree: linear sequence
of nodes visited by the DFS
DPOP computes the same cost functions and sends it to
the same variable as BE
Message size (and computation) is exponential in the
induced width (= max separator size) for both techniques
Since depth first order is a specific ordering → DPOP is
part of BE



Distributed
Constraint

Optimisation
Problems

DFS tree and efficiency

DFS ordering and efficiency
Depth first order is crucial for DPOP efficiency
Coordination overhead is exponential in the induced width
Heuristics to guide the DFS search:

Maximum Connected Node MCN
Maximum Cardinality Set (for DFS) MCS

DFS induces only a specific set of orderings thus we might
loose good orderings to keep local computation
Trade off depends on application settings



Distributed
Constraint

Optimisation
Problems

DFS Heuristics: MCN

Maximum Connected node
Choose node with maximum number of neighbours as root
Select the neighbour with the highest number of
neighbours
Brake ties arbitrarily (e.g. lower/higher Id)



Distributed
Constraint

Optimisation
Problems

DFS Heuristics: MCS

Maximum Cardinality Set for DFS
Maximum cardinality does not produce a DFS in general,
must be adapted to DFS

Choose a random node as root
Select the neighbour with the highest number of visited
neighbours


	Multi-Agent Systems
	Distributed Constraint Optimisation
	Solution Techniques for DCOPs
	Dynamic Programming Optimisation Protocol

