Artificial Intelligence

Artificial Intelligence Course Presentation

Summary

- Motivations
- Course Plan
- Resources
- Exam Methods

Motivations

Artificial Intelligence

Artificial Intelligence:

Machines that think and act like humans do

Voight-Kampff test in blade-runner

Motivations

Artificial Intelligence

Artificial Intelligence:

Machines that solve complex problems

Google Self Driving car

Related areas

Artificial Intelligence

Al highly interdisciplinary

- Probability and Statistics
- Robotics
- Logics
- Algorithms
- Game Theory
- Pattern Recognition and Machine Learning

Key distinctive element: Interaction with the environment

Practical applications: Overview

- Agile manufacturing
- Service Robots
- Environmental monitoring
- Games, entertainment and education
- Medical Diagnosis
- Hardware/Software Verification
- Search and Rescue operations
- Smart Transportation
- Smart energy Management
- ...

Agile Manufacturing: The Kiva robots

Artificial Intelligence

Coordinate movements of a large number of robots for indoor logistic operations

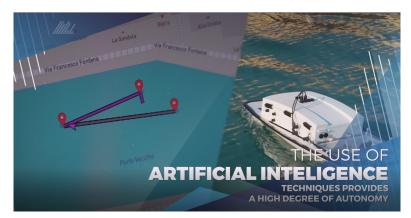
Service Robots: Cleaning robots

Artificial Intelligence

Robots that can help for daily activities

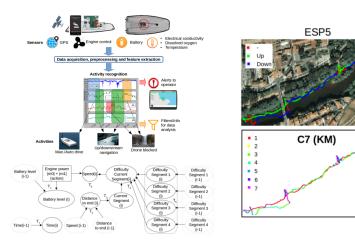
Service robots: robot companions

Artificial Intelligence


Robot that can interact with humans and assist them in various tasks

Environmental Monitoring: Water Monitoring

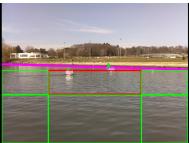
Artificial Intelligence


Autonomous drones for water quality monitoring

Planning and situation awareness for drones

Artificial Intelligence

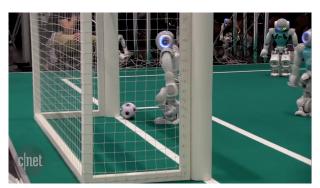
Analyse data coming from sensors to understand the situation and decide what is the best possible action



Water Monitoring: perception for autonomous behaviors

Artificial Intelligence

Use computer vision to detect relevant features and situations



Entertainement, Games and education: robocup

Artificial Intelligence

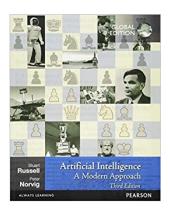
Robots that play football autonomously

The long and winding road to Al...

Artificial Intelligence

...is full of epic failures!

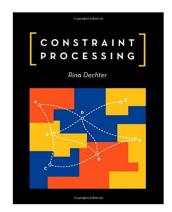
Course Plan I


- Problem Solving: Search (about 6 lessons)
 - Uninformed search (Breadth first, Depth First, Iterative Deepening, etc.)
 - Informed Search (A*, Heuristics, Local Search and Optimization)
- Constraint Processing (CSP, COP) (about 6 lessons)
 - Contraint Satisfaction Problems, Constraint Network and Graphical models
 - Basic techniques for CSP (Consistency enforcing, Local Search)
 - Tree-Decomposition (Dynamic Programming)
 - Constraint Optimisation Problems

Course Plan II

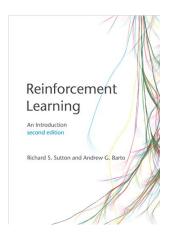
- Probabilistic Reasoning (about 8 lessons)
 - background on Probability
 - Markov Decision Processes
 - Reinforcement Learning
 - Deep Reinforcement Learning
- Programming laboratory (about 6 lessons)
 - Implement state-space search techniques
 - Implement solution techniques for Markov Decision Processes
 - Implement solution techniques for Reinforcement Learning and Deep Reinforcement Learning

Text books: Main Reference


Artificial Intelligence

Artificial Intelligence: a modern approach (3rd Editon); Stuart Russel and Peter Norvig (English edition)

Text books: Constraint Processing


Artificial Intelligence

Constraint Processing; Rina Dechter

Text books: Reinforcement Learning

Artificial Intelligence

Reinforcement Learning: an introduction (2nd Edition); Richard S. Satto and Andrew G. Barto

Resources: other material

Artificial Intelligence

- Scientific Papers, Slides, etc.
- Will be available on moodle and on course web site

Web Page link

Exam modalities

- Oral test
 - oral test on topics studied during the course (including the programming lab);
 - exercises and questions to evaluate the level of comprehension of the topics covered during the course.
 - oral test on a specific project assigned by the teacher (and on the programming lab).
 - presentation of the project (see next slides) plus questions.
- Programming lab: questions to assess the level of understanding of the delivered software (see next slides).

Projects

Artificial Intelligence

Project

- Instructor will propose a set of projects;
- Students can: choose among the set of proposed projects or propose other projects;
- Projects proposed by students must be validated by the instructor;
- Projects usually involve a programming part (in the language most appropriate for the project);
- Students will present the project during the oral test and deliver the developed code;
- Possible Project Ideas
- Ask for more info if interested.

Programming Lab

- Goal: hands on exercise for key topics (state space search, MDPs, RL, DRL);
- Based on a public available platform to develop Al projects (OpenAl);
- Instructor will describe the exercises, student will implement the software;
- Tutor will help students to develop the code;
- Questions during oral test to assess level of comprehension of the delivered code.