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Outline

♦ Syntax
♦ Semantics
♦ Exact inference by enumeration
♦ Exact inference by variable elimination
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Bayesian Networks

A simple, graphical notation for conditional independence
assertions and hence for compact specification of full joint
distributions
Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:
P(Xi |Parents(Xi))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values
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Example

Topology of network encodes conditional independence
assertions:

Weather is independent of the other variables
Toothache and Catch are conditionally independent given
Cavity
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn’t call. Sometimes it’s set off by minor
earthquakes. Is there a burglar?
Variables: Burglar , Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:
– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call
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Example contd.



Bayesian
Network

Compactness

A CPT for Boolean Xi with k Boolean parents has 2k rows for
the combinations of parent values.
Each row requires one number p for Xi = true
(the number for Xi = false is just 1 − p).
If each variable has no more than k parents,
the complete network requires O(n · 2k ) numbers.
I.e., grows linearly with n, vs. O(2n) for the full joint distribution
For burglary net, 1 + 1 + 4 + 2 + 2= 10 numbers
(vs. 25 − 1 = 31)
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Global semantics

Global semantics defines the full joint distribution as the
product of the local conditional distributions:

P(x1, . . . , xn) =Π
n

i = 1P(xi |parents(Xi))

e.g., P(j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P(j|a)P(m|a)P(a |¬b ,¬e)P(¬b)P(¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998

≈ 0.00063
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Local semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics ⇔ global semantics



Bayesian
Network

Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Answering queries on conditional dependencies

♦ Q: are X and Y conditionally independent given evidence
variables {Z} ?
♦ Can write this as: X y Y | {Z}
♦ We can analyze the undirected graph defined by the BN:

X y Y | {Z} is true if X and Y are separated by {Z}

consider all (undirected) paths between X and Y

If no active paths⇒ independence

active path if each triple is active

triplet: specific configurations of three variables.
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Active and Inactive triples

♦ A triple is active if:
Causal Chain: A → B → C where B is not observed (both
directions)
Common Cause: A ← B → C where B is not observed
Common Effect: A → B ← C where B (or one of its
descendents) is observed

ACTIVE

Common 
Cause

Common 
Effect

Chain

INACTIVE

Common 
Cause

Common 
EffectChain
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Reachability (or D-separation)

♦ Given a query X y Y | {Z}
♦ Highlight all evidence variables ({Z})
♦ For all undirected paths between X and Y

if a path is active→ X y Y | {Z} is not guaranteed

♦ If no undirected path is active→ X y Y | {Z} is guaranteed
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Constructing Bayesian networks

Need a method such that a series of locally testable assertions
of conditional independence guarantees the required global
semantics
1. Choose an ordering of variables X1, . . . ,Xn

2. For i = 1 to n
add Xi to the network
select parents from X1, . . . ,Xi−1 such that

P(Xi |Parents(Xi)) = P(Xi |X1, . . . , Xi−1)
This choice of parents guarantees the global semantics:

P(X1, . . . ,Xn) = Π
n

i = 1P(Xi |X1, . . . , Xi−1) (chain rule)

= Π
n

i = 1P(Xi |Parents(Xi)) (by construction)
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Example

Suppose we choose the ordering M, J, A , B, E

P(J|M) = P(J)?

No
P(A |J,M) = P(A |J)? P(A |J,M) = P(A)?

No
P(B |A , J,M) = P(B |A)? Yes
P(B |A , J,M) = P(B)? No
P(E |B ,A , J,M) = P(E |A)? No
P(E |B ,A , J,M) = P(E |A ,B)? Yes
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Example contd.

♦ Deciding conditional independence is hard in noncausal
directions (Causal models and conditional independence seem
hardwired for humans!)
♦ Assessing conditional probabilities is hard in noncausal
directions
♦ Network is less compact: 1 + 2 + 4 + 2 + 4= 13 numbers
needed
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Example: Car diagnosis

Initial evidence: car won’t start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce
parameters
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Example: energy usage

Course Project by Ambrosini and Scapin Conditional
dependence for sensors in a facility room (coffee room)
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Example: energy usage

Model learning using BNT
Joint Distribution of data based on sensor readings
(log-likelihood)
Red Squares = fake readings artificially inserted
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Compact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child
Solution: canonical distributions that are defined compactly
Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican ⇔ Canadian ∨ US ∨Mexican

E.g., numerical relationships among continuous variables

∂Level
∂t

= inflow + precipitation - outflow - evaporation
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Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes
1) Parents U1 . . .Uk include all causes (can add leak node)
2) Independent failure probability qi for each cause alone

=⇒ P(X |U1 . . .Uj ,¬Uj+1 . . .¬Uk ) = 1 −Π
j

i = 1qi

Cold Flu Malaria P(Fever) P(¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2 × 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6 × 0.1
T T F 0.88 0.12 = 0.6 × 0.2
T T T 0.988 0.012 = 0.6 × 0.2 × 0.1

Number of parameters linear in number of parents
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Inference tasks

Simple queries: compute posterior marginal P(Xi |E= e)
e.g., P(NoGas|Gauge = empty, Lights = on,Starts = false)

Conjunctive queries:
P(Xi ,Xj |E= e) = P(Xi |E= e)P(Xj |Xi ,E= e)
Optimal decisions: decision networks include utility information;

probabilistic inference required for
P(outcome|action, evidence)
Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?
Explanation: why do I need a new starter motor?
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint
without actually constructing its explicit representation

Simple query on the burglary network:
P(B |j,m)
= P(B , j,m)/P(j,m)
= αP(B , j,m)

= α
∑

e
∑

a P(B , e, a, j,m)

Rewrite full joint entries using product of CPT entries:
P(B |j,m)
= α

∑
e
∑

a P(B)P(e)P(a |B , e)P(j|a)P(m|a)

= αP(B)
∑

e P(e)
∑

a P(a |B , e)P(j|a)P(m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Enumeration algorithm

function Enumeration-Ask(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X)← a distribution over X, initially empty
˛for each value xi of X ˛do

extend e with value xi for X
Q(xi)←Enumerate-All(Vars[bn], e)

˛return Normalize(Q(X))

function Enumerate-All(vars, e) returns a real number
įf Empty?(vars) ˛then return 1.0
Y←First(vars)
įf Y has value y in e

˛then return P(y | Pa(Y)) × Enumerate-All(Rest(vars), e)
˛else return
∑

y P(y | Pa(Y)) × Enumerate-All(Rest(vars), ey )
where ey is e extended with Y = y



Bayesian
Network

Evaluation tree

Enumeration is inefficient: repeated computation
e.g., computes P(j|a)P(m|a) for each value of e
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation
P(B |j,m)

= α P(B)︸︷︷︸
B

∑
e P(e)︸︷︷︸

E

∑
a P(a |B , e)︸     ︷︷     ︸

A

P(j|a)︸︷︷︸
J

P(m|a)︸  ︷︷  ︸
M

= αP(B)
∑

e P(e)
∑

a P(a |B , e)P(j|a)fM(a)
= αP(B)

∑
e P(e)

∑
a P(a |B , e)fJ(a)fM(a)

= αP(B)
∑

e P(e)
∑

a fA (a, b , e)fJ(a)fM(a)
= αP(B)

∑
e P(e)fĀJM(b , e) (sum out A )

= αP(B)fĒĀJM(b) (sum out E)
= αfB(b)× fĒĀJM(b)
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Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors∑
x f1 × · · · × fk = f1 × · · · × fi

∑
x fi+1 × · · · × fk =

f1 × · · · × fi × fX̄
assuming f1, . . . , fi do not depend on X
Pointwise product of factors f1 and f2:
f1(x1, . . . , xj , y1, . . . , yk )× f2(y1, . . . , yk , z1, . . . , zl)
= f(x1, . . . , xj , y1, . . . , yk , z1, . . . , zl)

E.g., f1(a, b)× f2(b , c) = f(a, b , c)
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Complexity of exact inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected)

path
– time and space cost of variable elimination are O(dk n)

Multiply connected networks:
– can reduce 3SAT to exact inference =⇒ NP-hard
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Approximate Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution
2) Compute an approximate posterior probability P̂
3) Show this converges to the true probability P

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with

evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from
a stochastic process whose stationary distribution
is the true posterior
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Summary

♦ Bayes nets provide a natural representation for (causally
induced)
conditional independence
♦ Topology + CPTs = compact representation of joint
distribution
♦ Exact Inference can exploit this compact representation
♦ In general exact inference is hard


