
AI Lab - Session 1
Uninformed Search

Riccardo Sartea

University of Verona
Department of Computer Science

March 15th 2019



The OpenAI Gym Framework

What is it

Gym is a toolkit for developing and comparing reinforcement learn-
ing algorithms. It supports teaching agents everything from walk-
ing to playing games like Pong or Pinball

What is it for

An open-source collection of environments that can be used for
benchmarks

A standardized set of tools to define and to work with environments

Where to find it

https://gym.openai.com

AI Lab - Session 1 OpenAI Gym 2/8



Installation Process

Install the Anaconda package manager for Python 3.7 from
https://www.anaconda.com/distribution/

On linux use "sh Anaconda...version.sh" to install and add the
bin folder to PATH when asked
On linux reload bashrc with ”source ∼/.bashrc”
Use the following snippet of code to download an create the Python
source code and environment

Listing 1: Installation
sudo apt-get install git (may be required)
git clone https://github.com/SaricVr/ai-lab
cd ai-lab
conda env create -f ai-lab-environment.yml

Then to start the environment and work on your assignments:

Listing 2: Spin up
conda activate ai-lab
jupyter notebook

The last command will open your browser for you to start working
AI Lab - Session 1 Installation 3/8

https://www.anaconda.com/distribution/


Tutorial

To open the tutorial navigate with your browser to:
session1/session1 tutorial.ipynb

AI Lab - Session 1 Tutorial 4/8



Assignments

Your assignments for this session are at: session1/session1.ipynb

AI Lab - Session 1 Tutorial 5/8



Algorithms

In the following you can find pseudocode of the algorithms are required to
implement in this session

AI Lab - Session 1 6/8



Breadth-First Search (BFS)

Input: problem
Output: solution
1: node← a node with State = problem.Initial-State
2: if problem.Goal-Test(node.State) then return Solution(node)

3: fringe← Queue, with node as the only element
4: closed← ∅
5: loop
6: if Is-Empty(fringe) then return Failure

7: node← Pop(fringe) . Remove node from frontier
8: closed← closed ∪ node
9: for each action in problem.Actions(node.State) do

10: child← Child-Node(problem, node, action)
11: if child.State not in fringe and child.State not in closed then
12: if problem.Goal-Test(child.State) then return Solution(child)

13: fringe← Insert(child, fringe)

Note: this is a graph search version

AI Lab - Session 1 Uninformed Search 7/8



Iterative Deepening Search (IDS)

1: function Iterative-Deepening-Search(problem)
2: for depth← 0 to ∞ do
3: result← Depth-Limited-Search(problem, depth)
4: if result 6= Cutoff then return result

5: function Depth-Limited-Search(problem, limit)
6: return Recursive-DLS(Make-Node(problem.Initial-State), problem, limit)

7: function Recursive-DLS(node, problem, limit)
8: if problem.Goal-Test(node.State) then return Solution(node)

9: if limit = 0 then return Cutoff
10: cutoff occurred← False
11: for each action in problem.Actions(node.State) do
12: child← Child-Node(problem, node, action)
13: result← Recursive-DLS(child, problem, limit− 1)
14: if result = Cutoff then cutoff occurred← True
15: else if result 6= Failure then return result

16: if cutoff occurred then return Cutoff

17: return Failure

Note: this is a tree search version

AI Lab - Session 1 Uninformed Search 8/8


	Introduction
	OpenAI Gym
	Installation
	Tutorial

	Algorithms
	Uninformed Search


