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Summary

Games

Perfect play
� minimax decisions
� α�β pruning

Resource limits and approximate evaluation

Games of chance

Games of imperfect information
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Games vs. search problems

�Unpredictable� opponent ⇒ solution is a strategy
specifying a move for every possible opponent reply
Time limits ⇒ unlikely to �nd goal, must approximate
Plan of attack:

Computer considers possible lines of play (Babbage, 1846)

Algorithm for perfect play (Zermelo, 1912; Von Neumann,
1944)

Finite horizon, approximate evaluation (Zuse, 1945;
Wiener, 1948;
Shannon, 1950)

First chess program (Turing, 1951)

Machine learning to improve evaluation accuracy (Samuel,
1952�57)

Pruning to allow deeper search (McCarthy, 1956)
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Types of games

Turn-Taking � Asynchronous

Two-Players � Multiple-Players

Zero-Sum � Non-Zero-Sum



Adversarial

Search

Game tree (2-player, deterministic, turns)
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Minimax

Perfect play for deterministic, perfect-information games
Idea: choose move to position with highest minimax value

= best achievable payo� against best play
E.g., 2-ply game:
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Minimax algorithm

function Minimax-Decision(state) returns an action

inputs: state, current state in game

return the a in Actions(state) maximizing
Min-Value(Result(a, state))

function Max-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)
v←−∞
for a, s in Successors(state) do v←Max(v, Min-Value(s))
return v

function Min-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)
v←∞
for a, s in Successors(state) do v←Min(v, Max-Value(s))
return v
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Properties of minimax

Complete?? Yes, if tree is �nite (chess has speci�c rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity?? O(bm)
Space complexity?? O(bm) (depth-�rst exploration)
For chess, b ≈ 35, m ≈ 100 for �reasonable� games
⇒ exact solution completely infeasible

But do we need to explore every path?
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Why is it called α�β?

α is the best value (to max) found so far o� the current path
If V is worse than α, max will avoid it ⇒ prune that branch
De�ne β similarly for min
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Properties of α�β

Pruning does not a�ect �nal result
Good move ordering improves e�ectiveness of pruning
With �perfect ordering,� time complexity = O(bm/2)
⇒ doubles solvable depth

A simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)
Unfortunately, 3550 is still impossible!
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Resource limits

Standard approach:

Use Cuto�-Test instead of Terminal-Test
e.g., depth limit.

Use Eval instead of Utility
i.e., evaluation function that estimates desirability of

position

Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move ≈ 358/2

⇒ α�β reaches depth 8 ⇒ pretty good chess program
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Resource Limits

Cut-o�

Depth limit easy to implement, but problematic when value can
change dramatically in few moves.
Quiescence Search: avoid cut-o� in such states

Evaluation function

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) � (number of black queens),
etc.
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Digression: Exact values don't matter

Behaviour is preserved under any monotonic transformation of
Eval
Only the order matters:

payo� in deterministic games acts as an ordinal utility
function
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Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world
champion Marion Tinsley in 1994. Used an endgame database
de�ning perfect play for all positions involving 8 or fewer pieces
on the board, a total of 443,748,401,247 positions.
Chess: Deep Blue defeated human world champion Gary
Kasparov in a six-game match in 1997. Deep Blue searches 200
million positions per second, uses very sophisticated evaluation,
and undisclosed methods for extending some lines of search up
to 40 ply.
Othello: human champions refuse to compete against
computers, who are too good.
Go: b > 300, so extremely challenging for computers. AlphaGo
from Google recently defeated one of the world's best player.
AlphaGo is based on deep learning and Monte Carlo Tree
Search.
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Nondeterministic games: backgammon
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Nondeterministic games in general

In nondeterministic games, chance introduced by dice,
card-shu�ing
Simpli�ed example with coin-�ipping:
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Algorithm for nondeterministic games

Expectiminimax gives perfect play
Just like Minimax, except we must also handle chance nodes:
. . .
if state is a Max node then
return the highest ExpectiMinimax-Value of

Successors(state)
if state is a Min node then
return the lowest ExpectiMinimax-Value of Successors(state)

if state is a chance node then
return average of ExpectiMinimax-Value of Successors(state)

. . .
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Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20× (21× 20)3 ≈ 1.2× 109

As depth increases, probability of reaching a given node shrinks
⇒ value of lookahead is diminished

α�β pruning is much less e�ective
TDGammon uses depth-2 search + very good Eval
≈ world-champion level
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Digression: Exact values DO matter

Behaviour is preserved only by positive linear transformation of
Eval
Hence Eval should be proportional to the expected payo�
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Games of imperfect information

E.g., card games, where opponent's initial cards are unknown
Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the
game∗

Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all

deals∗

Special case: if an action is optimal for all deals, it's optimal.∗

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average
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Four-card bridge/whist/hearts hand, Max to play �rst
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Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you'll �nd a mound of jewels;
take the right fork and you'll be run over by a bus.
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Road B leads to a fork:

take the left fork and you'll be run over by a bus;
take the right fork and you'll �nd a mound of jewels.

Road A leads to a small heap of gold pieces
Road B leads to a fork:

guess correctly and you'll �nd a mound of jewels;
guess incorrectly and you'll be run over by a bus.
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Proper analysis

* Intuition that the value of an action is the average of its values
in all actual states is WRONG

With partial observability, value of an action depends on the
information state or belief state the agent is in
Can generate and search a tree of information states
Leads to rational behaviors such as
♦ Acting to obtain information
♦ Signalling to one's partner
♦ Acting randomly to minimize information disclosure
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Summary

Games are fun to work on! (and dangerous)
They illustrate several important points about AI
♦ perfection is unattainable ⇒ must approximate
♦ good idea to think about what to think about
♦ uncertainty constrains the assignment of values to states
♦ optimal decisions depend on information state, not real state
Games are to AI as grand prix racing is to automobile design


