Probabilistic Approaches for
Sequential Decision Making

Motion Planning and State Estimation in
robotics

Alessandro Farinelli

Outline

* Markov Decision Processes

— Application: path planning for mobile robots
* State estimation based on Bayesian filters

— Application: Localization for mobile robots

* Acknowledgment: material based on slides from

— Russel and Norvig; Artificial Intelligence: a Modern
Approach

— Thrun, Burgard, Fox; Probabilistic Robotics

Mobile robots

Sensors

Range finders: sonar (land, underwater), laser range finder, radar (aircraft),
tactile sensors, GPS

Imaging sensors: cameras (visual, infrared)
Proprioceptive sensors: shaft decoders (joints, wheels), inertial sensors,
force sensors, torque sensors

Motion Planning for Mobile Robots

Plan for motion in free configuration space (not workspace)

workspace configuration space

Configuration Space Planning

Convert free configuration space in finite state space

mF

Cell decomposition Skeletonization (PRM)

Planning the motion

Given finite state space representing free configuration
space

Find a sequence of states from start to goal

Several approaches:
Rapidly-exploring Random Trees (RRT)
Potential Fields
Markov Decision Processes
(i.e. building a navigation function)

Markov Decision Process

* Mathematical model to plan sequences of actions in
face of uncertainty

Search

axpiicit actions uncertainty
and subgoals and utiity
Markov decision

Planning problems (MDPs) —= -

axplicht actions uncsnain Y (belef states)

neartaint
:nd u.‘r'x'r'fy‘y and subgoals sansing]
/
Decision-theoretic Partlal% observable -
planning MDPs (POMDPs)

Example MDP

1 START

States s € S, actions a € A
Model T(s,a,s’) = P(s'|s,a) = probability that a in s leads to

S!

Reward function R(s) (or R(s,a), R(s,a,s’))
_ { —0.04 (small penalty) for nonterminal states

+1 for terminal states

Solving MDPs

In MDPs, aim is to find an optimal policy 7(s)
I.e., best action for every possible state s
(because can’t predict where one will end up)
The optimal policy maximizes (say) the expected sum of
rewards
Optimal policy when state penalty R(s) is —0.04:

Risk and Reward

r= [-0.0480 : -00274] r=[-0.0218 : 0.0000]

Utility of State Sequences

Need to understand preferences between sequences of states
Typically consider stationary preferences on reward sequences

[f,fu,rl,fz,...]%[f,f[';,f{,fé,...] g [f[],fl,rz,...]}'[fé,f{,fé,...]

Theorem: there are only two ways to combine rewards over

time.
1) Additive utility function:
U([SO? 51,5, ..]) — R(Sﬂ) + R(Sl) + R(52) + -
2) Discounted utility function:
U([so,s1: %2, --]) = R(s0) + yR(s1) + 7*R(s2) + -+
where v is the discount factor

Utility of States

Utility of a state (a.k.a. its value) is defined to be

U(s) =
expected (discounted) sum of rewards (until termination)
assuming optimal actions
Given the utilities of the states, choosing the best action is just
MEU:

maximize the expected utility of the immediate successors

3 0.812 0.868 0.912 3 — — —

2 0.762

0.660 E 2 ?

1 0.705 0.655 0.611 0.388 |1 ? —— - -

Utilities contd.

Problem: infinite lifetimes == additive utilities are infinite
1) Finite horizon: termination at a fixed time T

— nonstationary policy: m(s) depends on time left

(e.g., state (1.3) with T = 3)
2) Absorbing state(s): w/ prob. 1, agent eventually “dies” for
any m

— expected utility of every state is finite
3) Discounting: assuming v < 1, R(s) < Ruux,

U([so, - - -sx0]) = Z-‘fzﬂ?"tﬁ(-gr) < Ruax/(1 —7)

Smaller v = shorter horizon

4) Maximize system gain = average reward per time step
Theorem: optimal policy has constant gain after initial transient
E.g., taxi driver’'s daily scheme cruising for passengers

Dynamic Programming: The
Bellman equation

Definition of utility of states leads to a simple relationship
among utilities of neighboring states:
expected sum of rewards

= current reward
+ ~ x expected sum of rewards after taking best action
Bellman equation (1957):

U(s)=R(s)+~ max ZsrU(s’) T(s.a.s")

U(1,1) = —0.04

+ v max{0.8U(1,2) +0.1U(2,1) +0.1U(1,1), up
090U(1.1)+0.1U(1,2) left
0.9U(1.1) +0.1U(2.1) down
0.8U(2,1)+0.1U(1,2)+0.1U(1,1)} right

One equation per state = n nonlinear equations in n unknowns

Value Iteration algorithm

|dea: Start with arbitrary utility values
Update to make them locally consistent with Bellman eqgn.

Everywhere locally consistent = global optimality
Repeat for every s simultaneously until “no change”

U(s) < R(s) 4+ v max ZErU(s")T(s, a,s’) for all s
d

Utility estimates

1

0.8 1
0.6 1
04 1
0.2 1

0 -
-0.2 -

(4.3)

-

————————————— (3.3)

T (L1)
3.1

- 4,1)

5 10 15 20 25 30
Number of iterations

Policy Iteration

Howard, 1960: search for optimal policy and utility values
simultaneously
Algorithm:
7 < an arbitrary initial policy
repeat until no change in 7
compute utilities given
update as if utilities were correct (i.e., local MEU)
To compute utilities given a fixed 7 (value determination):

U(s)=R(s)+~ ZsrU(s") T(s.m(s),s") for all s

i.e., n simultaneous linear equations in n unknowns, solve in

O(n?)

MDP for robot navigation

Partial Observability

POMDP has an observation model O(s, e) defining the
probability that the agent obtains evidence e when in state s
Agent does not know which state it is in

—> makes no sense to talk about policy m(s)!!
Theorem (Astrom, 1965): the optimal policy in a POMDP is a
function

m(b) where b is the belief state (probability distribution over
states)
Can convert a POMDP into an MDP in belief-state space,

where
T(b.a,b") is the probability that the new belief state is b’

given that the current belief state is b and the agent does a.

Solving POMDPs

Solutions automatically include information-gathering behavior
If there are n states, b is an n-dimensional real-valued vector

— solving POMDPs is very (actually, PSPACE-) hard!
The real world is a POMDP (with initially unknown T and O)

Coastal Navigation

State Estimation for Mobile Robots

Suppose a robot obtains measurement z
What is P(open|z)?

-

Causal vs. Diaghostic Reasoning

P(open|z) is diagnostic
P(z|open) is causal

ften causal knowledge is easier to obtain
Bayes rule allows us to use causal knowledge:

P(z |open)P(open)

d (Ope’% P(z)

count frequencies!

Example

P(z|open) = 0.6 P(z|—open) = 0.3
P(open) = P(—open) = 0.5
P(z | open)P(open)

P(open|z) =
P(z|open)p(open) + P(z | —open) p(—open)
0.6 -0.5 2

P(open| z) = =— =0.67
(open|) 0.6-0.5+0.3:0.5 3

z raises the probability that the door is open.

Combining Evidence

Suppose our robot obtains another observation z2.
How can we integrate this new information?

More generally, how can we estimate P(x| z1...zn)?

Recursive Bayesian Updating

P(zn| x, z1,..., zn-1) P(x| zy,..., Zn-1)

P(x|z,..., Zn) =
(x]) P(zn|z1,...,2n-1)

Markov assumption: z_independent of z,...,z_, if we know x

P(zn| x) P(x| z1,...,2n- 1)

P(Zn|Z1,...,Zn-1)

=1 P(zn| x) P(x| z1,...,2Zn-1)
=1, | | Pz %) P(x)

i=l...n

P(x|zy,...,zn) =

Example: Second Measurement

P(z2|open) = 0.5 P(z2|—open) =0.6
P(open|z1)=2/3

P(z, | open) P(open| z,)

P(open|z,,z,) =
(open|z,, z,) P(z, |open) P(open|z,)+ P(z, | ~open) P(—open| z,)

12
_ 23 _ 0 _
“T2.31 g %%
2 3 53

z, lowers the probability that the door is open.

Actions

Often the world is dynamic
— actions carried out by the robot,
— actions carried out by other agents,
— time passing by

How can we incorporate such actions?

Typical Actions

The robot moves
The robot moves objects
People move around the robot

Actions are never carried out with absolute certainty.

In contrast to measurements, actions generally increase
the uncertainty.

Modeling Actions

To incorporate the outcome of an action u into the
current “belief”, we use conditional pdf

P(x|u,x’)

This term specifies the pdf that executing u changes the
state from x’ to x.

30

Example: Closing the door

-

State Transitions

* P(x|u,x’) for u = “close door”:

9 \‘
] Open m

0

* If the door is open, the action “close door” succeeds
in 90% of all cases.

Integrating the Outcome of Actions

Continuous case:

P(x|u) = IP(X lu, x'")P(x")dx'

Discrete case:

P(x|u) =) P(x|u,x")P(x')

Example: The Resulting Belief

P(closed |u) :Z P(closed |u, x")P(x")
=P(closed | u,open)P(open)
+ P(closed |u,closed)P(closed)
_9 5 1 3_15

10 8 1 8 16
P(open|u) ZZ P(open|u,x")P(x")
=P(open|u,open)P(open)
+ P(open|u,closed)P(closed)
1 *5 N 0*3 1

=1- P(closed |u)

Bayes Filters: Framework

* Given:
— Stream of observations z and action data u:
d ={u,z,...,u,z
— Sensor model P(z|x)
— Action model P(x|u,x’)
— Prior probability of the system state P(x)
e Compute:

— Estimate of the state X of a dynamical system
— The posterior of the state is also called Belief:

Bel(x,) =P(x, |u,z,...,u,,z,

Markov Assumption

Underlying Assumptions

* Static world (no one else changes the world)
* Independent noise (over time)

* Perfect model, no approximation errors

Bayes Filters

Z = observation

Bel(x) =P(x, |u,,z, ...,u,z, Lo
Bayes =n P(z,|x,u,z,...,u) P(x |u,z,...,u,)
Markov =n P(z, | x) P(x, |u,,z,...,u,)

Total prob. =1 P(z, | x,) fP(xt U,Z,...,U,X,_)

P(Xt-l upzp ""ut) dxt-l
Markov =1 P(Zt | Xt) fP(Xt | utaxt-l) P(Xt-l | Uy,2,.. °3ut) dxt-l

Markov :77P(Zt | Xt) fP(Xt |ut’ Xt-l)P(Xt-l | u13Z19 "°3Zt-1) dxt-l

=n P(z,|x) [P(x |u,x,,) Bel(x.,) dx,,

Bayes Filter Algorithm

1. Algorithm Bayes_filter(Bel(x),d):

2. n=0

3. If d is a perceptual data item z then
4, For all x do

>. Bel'(x) =P(z| x)Bel(x)
6. 1n =n + Bel'(x)

7. For all x do

8. Bel'(x) =n"'Bel'(x)

9. Else if d is an action data item u then
10. For all x do

11.

Bel'(x) = fP(x |u, x') Bel(x') dx'
12. Return Bel’(x)

Bel(Xt) :T] P(Zt |Xt) fP(Xt |upxt-1) Bel(xt-l) dxt-l

Bayes Filters are Familiar!

Bel(x) =n P(z |x) |P(x |u,x._,) Bel(x_,) dx.
t t t t t t-1 t-1 t-1

Kalman filters

Particle filters

Hidden Markov models
Dynamic Bayesian networks

Partially Observable Markov Decision Processes
(POMDPs)

Bayesian filters for localization

How do | know whether | am in front of the door ?

Localization as a state estimation process (filtering)

State update Sensor Reading

Kalman Filter for Localization

landmark

Gaussian pdf for belief
* Pros: closed form representation, very fast update
* Cons:

Works only for linear action and sensor models (can
use EKF to overcome this)

Works well only for unimodal beliefs

Particle filters

Particles to represent the belief

Pros: no assumption on belief, action and sensor
models

Cons: update can be computationally demanding

Particle Filters:

Robot pdSif?

. IR
-
So 370, oenr

Particle Filters: bimodal belief

Robot position .

(b)

Particle Filters: Unimodal beliefs

Robot position

(c)

Mapping and SLAM

Localization: given map and observations, update pose
estimation

Mapping: given pose and observation, update map

SLAM: given observations, update map and pose
New observations increase uncertainty

Loop closures reduce uncertainty

SLAM in action

Courtesy of Sebastian Thrun and
Dirk Haehnel (link for the video)

http://robots.stanford.edu/movies/fastslam-dmb-fastslam.avi

Summary

* Probability: powerful tool to model uncertainty
* Localization:
— State estimation
— Bayesian filters
* Motion Planning:
— Planning problem in finite state space (C-free)
— MDPs powerful techniques to build navigation functions

References and Further Readings

Material for the slides

* Russel and Norvig; Artificial Intelligence a Modern Approach
(Chapter 25)

* Thrun, Burgard, Fox; Probabilistic Robotics (Chapter 2, 14 and
15)

Further readings

* Latombe; Robot Motion Planning

* La Valle, Kuffner; Randomized Kinodynamic Planning

* Thrun,Fox,Burgard; A probabilistic approach to concurrent
mapping and localization for mobile robots

Summary

* Bayes rule allows us to compute probabilities that are
hard to assess otherwise.

* Under the Markov assumption, recursive Bayesian
updating can be used to efficiently combine evidence.

* Bayes filters are a probabilistic tool for estimating the
state of dynamic systemes.

50

