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Outline

• Markov Decision Processes
– Application: path planning for mobile robots 

• State estimation based on Bayesian filters

–  Application: Localization for mobile robots

• Acknowledgment: material based on slides from 
– Russel and Norvig; Artificial Intelligence: a Modern 

Approach
– Thrun, Burgard, Fox; Probabilistic Robotics



Mobile robots



Sensors



Motion Planning for Mobile Robots

Plan for motion in free configuration space (not workspace)

configuration spaceworkspace



Configuration Space Planning
Convert free configuration space in finite state space

Cell decomposition Skeletonization (PRM)



Planning the motion

Given finite state space representing free configuration 
space

Find a sequence of states from start to goal
Several approaches:

Rapidly-exploring Random Trees (RRT)
Potential Fields 
Markov Decision Processes 

(i.e. building a navigation function)



Markov Decision Process

• Mathematical model to plan sequences of actions in 
face of uncertainty



Example MDP



Solving MDPs



Risk and Reward



Utility of State Sequences



Utility of States



Utilities contd.



Dynamic Programming: The 
Bellman equation



Value Iteration algorithm



Policy Iteration



MDP for robot navigation



Partial Observability



Solving POMDPs



Coastal Navigation



State Estimation for Mobile Robots
Suppose a robot obtains measurement z
What is P(open|z)?



Causal vs. Diagnostic Reasoning

P(open|z) is diagnostic
P(z|open) is causal
Often causal knowledge is easier to obtain
Bayes rule allows us to use causal knowledge:
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Example

P(z|open) = 0.6 P(z|open) = 0.3
P(open) = P(open) = 0.5
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z raises the probability that the door is open.



Combining Evidence

Suppose our robot obtains another observation z2.

How can we integrate this new information?

More generally, how can we estimate P(x| z1...zn )?



Recursive Bayesian Updating
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Markov assumption: zn independent of z1,...,zn-1 if we know x
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Example: Second Measurement 

P(z2|open) = 0.5 P(z2|open) = 0.6
P(open|z1)=2/3
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z2 lowers the probability that the door is open.



Actions

Often the world is dynamic
– actions carried out by the robot,
– actions carried out by other agents,
– time passing by

How can we incorporate such actions?



Typical Actions

The robot moves
The robot moves objects
People move around the robot

Actions are never carried out with absolute certainty.
In contrast to measurements, actions generally increase 

the uncertainty. 



Modeling Actions

To incorporate the outcome of an action u into the 
current “belief”, we use conditional pdf 

P(x|u,x’)

This term specifies the pdf that executing u changes the 
state from x’ to x.
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Example: Closing the door



State Transitions

• P(x|u,x’) for u = “close door”:

• If the door is open, the action “close door” succeeds 
in 90% of all cases.

open closed0.1 1

0.9

0



Integrating the Outcome of Actions
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Continuous case:

Discrete case:



Example: The Resulting Belief
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Bayes Filters: Framework

• Given:
– Stream of observations z and action data u:

– Sensor model P(z|x)
– Action model P(x|u,x’)
– Prior probability of the system state P(x)

• Compute: 
– Estimate of the state X of a dynamical system
– The posterior of the state is also called Belief:

),,,|()( 11 tttt zuzuxPxBel 

},,,{ 11 ttt zuzud 



Markov Assumption

Underlying Assumptions
• Static world (no one else changes the world)
• Independent noise (over time)
• Perfect model, no approximation errors
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Bayes Filters
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Bayes Filter Algorithm 
1.  Algorithm Bayes_filter( Bel(x),d ):
2.  0

3.  If d is a perceptual data item z then
4.      For all x do
5.  
6.  
7.      For all x do
8.  

9.  Else if d is an action data item u then
10.      For all x do
11.  

12.  Return Bel’(x)      
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Bayes Filters are Familiar!

Kalman filters
Particle filters
Hidden Markov models
Dynamic Bayesian networks
Partially Observable Markov Decision Processes 

(POMDPs)
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Bayesian filters for localization
How do I know whether I am in front of the door ?

Localization as a state estimation process (filtering)

State update Sensor Reading



Kalman Filter for Localization

Gaussian pdf for belief
• Pros: closed form representation, very fast update
• Cons: 

Works only for linear action and sensor models (can 
use EKF to overcome this)

Works well only for unimodal beliefs



Particle filters

Particles to represent the belief
Pros: no assumption on belief, action and sensor 

models
Cons: update can be computationally demanding



Particle Filters: prior



Particle Filters: bimodal belief



Particle Filters: Unimodal beliefs



Mapping and SLAM 

Localization: given map and observations, update pose 
estimation

Mapping: given pose and observation, update map
SLAM: given observations, update map and pose

New observations increase uncertainty
Loop closures reduce uncertainty

 



SLAM in action

Courtesy of Sebastian Thrun and 
Dirk Haehnel ( link for the video)

http://robots.stanford.edu/movies/fastslam-dmb-fastslam.avi


Summary
• Probability: powerful tool to model uncertainty
• Localization:

– State estimation
– Bayesian filters 

• Motion Planning:
– Planning problem in finite state space (C-free)
– MDPs powerful techniques to build navigation functions



References and Further Readings
Material for the slides
• Russel and Norvig; Artificial Intelligence a Modern Approach 

(Chapter 25)
• Thrun, Burgard, Fox; Probabilistic Robotics  (Chapter 2, 14 and 

15)
Further readings
• Latombe; Robot Motion Planning
• La Valle, Kuffner; Randomized Kinodynamic Planning
• Thrun,Fox,Burgard; A probabilistic approach to concurrent 

mapping and localization for mobile robots
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Summary
• Bayes rule allows us to compute probabilities that are 

hard to assess otherwise.

• Under the Markov assumption, recursive Bayesian 
updating can be used to efficiently combine evidence.

• Bayes filters are a probabilistic tool for estimating the 
state of dynamic systems.


