
A Machine Learning Approach for Energy
Efficiency in Buildings

Flavio Ambrosi and Enrico Scapin
{vr352229, vr353597}@studenti.univr.it

1 Introduction
We present a machine learning approach to model a wireless sensor network used
to gather data in the coffe room of our university. Basically, we have extracted
data from a network composed of sensor. We have modeled a Bayesian Network
to model the dependencies among sensor.

In this way, it is possible to learn the likelihood of specific sensor readings,
given those related to the other sensors.

Our aim is provide a method to build a fault detection system similar in
[3]. Although our network doesn’t model time, we are able to provide a sim-
ple method to detect possible faults of appliances that impact on the energy
consumption.

2 Preliminaries
A Bayesian Network is a graphical model composed of a set of nodes that rep-
resent random variables, and arcs between nodes represent conditional depen-
dence assumptions between random variables. Hence they provide a compact
representation of joint probability distributions.

In more details a Bayesian network is a directed graph in which each node
corresponds to a random variable, which may be discrete or continuous. A set
of directed links or arrows connects pairs of nodes: if there is an arrow from
node X to node Y , X is said to be a parent of Y . The graph has no directed
cycles i.e., it is a directed acyclic graph. Each node Xi has also a conditional
probability distribution (CPD) P(Xi|Parents(Xi)) that quantifies the effect of
the parents on the node.

We note that if the variables are discrete, the CPDs can be represented as
a Conditional Probability Tables (CPTs), which lists the probability that the
child node takes on each of its different values for each combination of values of
its parents.

2.1 Learning
The topology (structure) and the parameters of each CPD can be both learned
from data. However, since learning structure is much harder than learning
parameters, we have designed the topology of the network according to our
intuition and the method given in Chapter 14.2 of Russell and Norvig [2].

1



On the contrary, we used Maximum-Likelihood Estimation to learn the
CPDs of our nodes. It is worth noting that maximum-parameter learning on
discrete models simply becomes a ratio: the probability that an event of a ran-
dom variable occurs, conditioned to the particular set of events for the random
variables of its parents, is the ratio between the number of times this event occur
and the number of times the events of its parents occur.

P(X = x|Y1 = y1, . . . , Yn = yn) =
N(X = x, Y1 = y1, . . . , Yn = yn)

N(Y1 = y1, . . . , Yn = yn)

where N(Z1 = z1, . . . , Zk = zk) is the number of times the random variables
Z1, . . . , Zk assume the values z1, . . . , zn.

Furthermore, we can also model hidden nodes i.e., random variables whose
values are not known, but their CPTs must be inferred from the other nodes in
the network. In that case, we have to use a different method to calculate the
parameter estimation ı.e., the EM (Expectation-Maximization) algorithm. The
explanation of this algorithm is beyond the scope of this paper, we refer the
reader to Chapter 20.3 of Russell and Norvig [2].

2.2 Inference
Bayesian Networks offer an efficient formalism to make probabilistic inference
in many practical situations, such as computing the full joint distribution of the
network or the posterior probability distribution of some variables.

The full joint distribution states how much the model is consistent with the
data and it is defined as the product of the local conditional distributions:

P(x1, . . . , xn) =

n∏
i=1

P (x1|parents(Xi)) (1)

where X1, . . . , Xn are the random variables involved in the network, x1, . . . , xn
the respective possible events, and parents(Xi) the values of Parents(Xi).

On the other hand, we can also employ the Bayesian Network to compute
the probability of a random variable, given some observed events.

P(X|e1, . . . , en) = αP(X, e1, . . . , en) = α
∑
y

P(X, e1, . . . , en,y) (2)

where X denotes the query variable; E the set of evidence variables E1, . . . , Em

and e1, . . . , en the observed events; finally Y denotes the hidden variables
Y1, . . . , Yl.

3 Description of the system

3.1 Environment and Bayesian Network
The environment which models the Bayesian network is the coffee room of our
university.

2



Window Sensor

Humidity/Temper
ature

Movement/Tempe
rature

Door

Window

Water 
Dispenser

Kettle
Microwave

Z-PLUG

Figure 1: Environment and Network Sensors

As Picture 3.1 shows there is one door to access the room and, on the
opposite side, a window; in the right corner there are three electrical appliances:
a microwave oven, a kettle and a water dispenser.

We used data acquired from 6 sensors:

• opening sensor placed on the windows,

• temperature and humidity sensor near the window,

• temperature and movement sensor near the door

• energy consumption sensor, called Z-Plug, to which all the electrical ap-
pliances are plugged.

These sensors communicate with a central unit through ZigBee protocol
(wireless) and the data collected are saved in a SQLite database1.

The aim of our Bayesian Network is to model the environment by the data
gathered from the whole sensors. Therefore there are six observable nodes that
model the output of each sensor and one hidden node that models the possible
presence of a person inside the room.

1http://www.sqlite.org/

3

http://www.sqlite.org/


Number Name Modelled data

1 MovementSensor Motion detection
2 Presence (Hidden) Presence inside the room
3 Window Opening and closing of the window
4 Z-Plug Energy consumption [Watt]
5 TemperatureDoor Temperature near the door
6 Humidity Room humidity
7 TemperatureWindow Temperature near the window

The picture below shows the structure of our Bayesian Network

Window01

Humidity TemperatureWindowTemperatureDoor

Presence (HN)

MovementSensor

Z-Plug

3.2 Data acquisition and Learning in BNT ToolBox
The tool we used to work with the Bayesian networks is the Bayesian Network
Toolbox2 (BNT) based on the Matlab environment. It has been developed by
Kevin Murphy and it allows to work with both static and dynamic Bayesian
network, performing learning and inference.

3.2.1 Data array generation for learning function

In order to work on a Bayesian network it is necessary to define the network
and perform learning on data we had.

The learning function of BNT Toolbox needs a matrix with the samples of
collected data. Each row of the matrix represents a node, whereas each column
a sample gathered from every sensor in a given time instant.

The sensors in the room provied data in various format and with different
temporal cadence hence to collect data in a coherent way we performed the
following steps:

1. We have defined a timeline, based on the rate sampling of the temperature
sensor close to the door: 3 minutes. The choice of sensor is arbitrary: it
is important to fix the timeline and to adapt other sensors’ samples to it.

2http://code.google.com/p/bnt/

4

http://code.google.com/p/bnt/


2. Through SQL queries, for each temperature value we have extracted the
reading of both the humidity and other temperature sensors that have
timestamp closest to values of timeline. Namely, given the timeline value,
referenceV alue, and the tuples timestamp T , the closest reading can be
computed as

∀x ∈ T min(abs(x− referenceV alue))

3. Regarding the window and movement sensors, we use a binary domain
indicating, whether the sensor was activated during the last 3 minutes
time interval.

4. We have finally queried the database in order to extract the Z-Plug energy
consumption values.

Once all values have been extracted in the correct way we have aggregated
them in the matrix data, which input for the learning function.

We note that we have treated temperature, humidity and power data as
discrete random variables, even if they describe continuous physical quantities.
In that way the “movement” and “window” variables’ domain is binary, while
the cardinality of the Z-plug, temperature and humidity domain is the range
between the minimum and the maximum detection of the correspondent dis-
cretized values. In order to avoid huge discrete domains we have chosen to
approximate values to the first decimal number.

Finally, we have left empty the matrix row relative to the hidden node as
required by the learning function.

3.2.2 Bayesian Network Generation and Learning

Using the data in the data matrix [#nodes×#samples], we have created the
Bayesian Network and generated the CPT. In particular, the network is rep-
resented by a struct created by the function mk_bnet, mainly containing an
adjacency-matrix, the domain cardinality of each node and the index of observ-
able nodes (the others are treated as hidden).

We have hence built the CPT for each node. Since our network has all
discrete nodes and TemperatureDoor, TemperatureWindow, Humidity and Z-
plug have not binary domain, we have chosen to model CPD with a Dirichlet
Distribution, that guarantees a better precision in multinomial distributions [1].

The functions createDataBnet, createDataZplug perform query on the
database, set up the timeline and process data to create the matrix for the
learning function.

The function calculateCPT creates the network and calls the learning func-
tion learn_params_em which populate the node’s CPT.

3.3 Inference in BNT Toolbox
Once the CPT of each node has been defined we can make inference by using
either exact or approximate inference algorithms. Inference is based on a BNT
engine, which is software object that allows to compute marginal probability.
Every engine use a different inference algorithm each of which is a different
trade-offs between speed, accuracy, complexity and generality. We have chosen

5



Junction Tree engine i.e., an exact inference algorithm typically efficient when
working discrete nodes. To make inference we need to:

• set up the engine with our network. (jtree_inf_engine),

• set up evidence nodes and theirs values. (enter_evidence),

• make inference calling marginal_nodes on query variables.

4 Testing

4.1 Accuracy of Bayesian Network Model
In order to test the accuracy of the model we calculated its probability with
this formula:

P(X) = αP(X|parents(X))P(parents(X))

For example for the TemperatureDoor node we calculated:

P(TemperatureDoor) =

P(TemperatureDoor|Window = close)P(Window = close)

+P(TemperatureDoor|Window = open)P(Window = open)

We created a histogram with the result and we compare it with the Golden
Model. The Golden Model represent the real probability, we computed it using
classic probability formula:

P(X) ≈ nx
nt

where nt is the total number of trials and nx is the number of trials where the
event occurred. In the TemperatureDoor node for every value of temperature
collected we calculated this probability and we create a histogram. We have
done this for all nodes. As you see in Figure 2, this test confirms the correctnes
of our implementation, since the Golden Model and Bayesian Network Model
give the very similar.

4.2 Fault Detection
Finally, we have exploited our Bayesian Network as a fault-detection system of
the energy consumption.

First of all, we have trained the system for 22 days from the 26th of June
to 17th of July, 2012. In that way, we have obtained the CPT of each network
node. Hence, we have used the data gathered from 18th to 27th of July, 2012 to
simulate an unexpected energy consumption during periods without movement
detection: we selected the range where the movement sensor remains off for at
least 30 minutes so that we could assume there is no person inside. In this range
we have hence injected a fault value into the Z-plug data, distinguishing three
different faults:

1. fault-injection of all data inside all ranges;

2. fault-injection of all data inside some ranges, selected randomly;

6



30 35 40 45 50 55 60
0

0.005

0.01

0.015

0.02

0.025

Domain % Humidity (h)

P
(H

um
=

h)

Golden Model of P(Hum)

(a) G.M. Humidity

30 35 40 45 50 55 60
0

0.005

0.01

0.015

0.02

0.025

Domain % Humidity (h)

P
(H

um
=

h)

Estimation of P(Hum)

(b) B.N. Model Humidity

23 24 25 26 27 28 29 30 31 32
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Domain Temperature Window (t)

P
(T

em
p=

t)

Golden Model of P(TempWin)

(c) G.M. TemperatureWindow

23 24 25 26 27 28 29 30 31 32
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Domain Temperature Window (t)

P
(T

em
p=

t)

Estimation of P(TempWin)

(d) B.N. Model TemperatureWindow

20 21 22 23 24 25 26 27 28 29 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Domain Temperature Door (t)

P
(T

em
p=

t)

Golden Model of P(TempDoor)

(e) G.M. TemperatureDoor

18 20 22 24 26 28 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Domain Temperature Door (t)

P
(T

em
p=

t)

Estimation of P(TempDoor)

(f) B.N. Model TemperatureDoor

Figure 2: Golden Model versus Bayesian Network Model

7



17−Jul 18−Jul 19−Jul 20−Jul 21−Jul 22−Jul 23−Jul 24−Jul 25−Jul 26−Jul 27−Jul
10

−24

10
−22

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

time

lo
g
(l
ik

e
lih

o
o
d
)

Figure 3: Full Joint Distribution in case 1

3. fault-injection of one datum inside all ranges.

17−Jul 18−Jul 19−Jul 20−Jul 21−Jul 22−Jul 23−Jul 24−Jul 25−Jul 26−Jul 27−Jul
10

−24

10
−22

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

time

lo
g
(l
ik

e
lih

o
o
d
)

Figure 4: Full Joint Distribution in case 2

The result of these tests are shown in Figure 3, 4 and 5. The x-axis of graph
shows time and the y-axis is the log likelihood of the combined probability
over the whole network - i.e., the full joint probability distribution over U =
{X1, X2, . . . , Xk} where X is the variable expressed by the node of the network
(see formula 1) – with the lower the likelihood, the higher the likelihood that a
fault is occurring.

8



17−Jul 18−Jul 19−Jul 20−Jul 21−Jul 22−Jul 23−Jul 24−Jul 25−Jul 26−Jul 27−Jul
10

−22

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

time

lo
g
(l
ik

e
lih

o
o
d
)

Figure 5: Full Joint Distribution in case 3

As can be seen, fault values (in red square) have a less log likelihood i.e.,
around 10−15, respect to the others i.e., around 10−10. Hence it is possible to
detect a fault in the Z-Plug every time the log likelihood has a lowering in a not
negligible time interval (such as at least three detections).

Furthermore, the three different tests show that the log-likelihood is tempo-
ral independent i.e, inserting a fault does not affect the likelihood of the next
samples. That is because we modeled a static Bayesian Network and hence,
after learning, each sample is independent from the others.

Although there are some false positive about faults, we can suggest a method
to create a fault alarm of that system: namely, it is enough to compute the
full joint distribution of each data sample and to alert if the last n full joint
distributions are all around 10−15. Obviously, the exact value of n will be
regulated through several tests in the real environment.

5 Conclusion
In this paper we presented a Bayesian Network data-structure, a well-developed
representation for uncertain knowledge. Through this data-structure we are
able to learn the Conditional Probability Distribution of the network random
variables through statistical method such as Maximum-Likelihood Estimation
and Expectation-Maximization. We hence used this model for detecting faults
on the energy consuming, by developing a simple method based on the full joint
distribution of the whole network.

References
[1] Kevin Murphy. How to use the Bayes Net Toolbox. 2007. url: http://

bnt.googlecode.com/svn/trunk/docs/usage.html (cit. on p. 5).

[2] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
3rd. Prentice Hall, 2009 (cit. on pp. 1, 2).

9

http://bnt.googlecode.com/svn/trunk/docs/usage.html
http://bnt.googlecode.com/svn/trunk/docs/usage.html


[3] J. Li S. West Y. Guo J. Wall. “A Machine Learning Approach for Fault De-
tection in Multi-variable Systems”. In: Proceedings of ATES in conjunction
with Tenth Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS). 2011, pp. 217–298 (cit. on p. 1).

10


	Introduction
	Preliminaries
	Learning
	Inference

	Description of the system
	Environment and Bayesian Network
	Data acquisition and Learning in BNT ToolBox
	Data array generation for learning function
	Bayesian Network Generation and Learning

	Inference in BNT Toolbox

	Testing
	Accuracy of Bayesian Network Model
	Fault Detection

	Conclusion
	References

