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Reference

This lecture is based on the following book

Sebastian Thrun, Wolfram Burgard and Dieter Fox, “Probabilistic
Robotics”, MIT Press, 2005

Several pictures from this book have been copied and pasted here
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Introduction
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Bayer recursive algorithm

Algorithm 1 bel(xt) =BayerFilter(bel(xt−1), ut , zt)

1: forall xt ∈ Sx do
2: bel(xt) =

∫
Sx

p(xt |ut , xt−1)bel(xt−1)dxt−1

3: bel(xt) = ηp(zt |xt)bel(xt)
4: end
5: return bel(xt)

I Line 2: prediction bel(xt) computed using the old bel(xt−1) and the
current controls ut

I Line 3: update bel(xt) computed using bel(xt) and the new
measurements zt
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Kalman filter

Algorithm 2 [x̂k+1|k+1,Pk+1|k+1] =KalmanFilter(x̂k|k ,Pk|k , uk , yk+1)

1: x̂k+1|k = Ax̂k|k + Buk
2: Pk+1|k = APk|kA

T + Q
3: x̂k+1|k+1 = x̂k+1|k + Kk+1(yk+1 − Cx̂k+1|k)

4: Pk+1|k+1 = Pk+1|k−Pk+1|kC
T (CPk+1|kC

T +R)−1CPk+1|k
5: return x̂k+1|k+1,Pk+1|k+1

I Line 1-2: prediction bel(xk+1) computed using the old bel(xk) and
the current controls uk

I Line 3-4: update bel(xk+1) computed using bel(xk+1) and the new
measurements zk+1

With linear Gaussian models

I bel(xt) is fully described by the mean x̂k+1|k and the variance Pk+1|k

I bel(xt) is fully described by the mean x̂k|k and the variance Pk|k
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Kalman filter

The Kalman filter/predictor
is extremely efficient be-
cause it is based on two
strong assumptions:

1. the state equation
and the measurement
equation are linear

2. the random variables
are Gaussian
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Kalman filter

What’s happen when the assumption
“ the state equation and the measurement equation are linear ”
is not true?
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Extended Kalman filter
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Extended Kalman filter

With arbitrary nonlinear functions f and h,

xt+1 = f (xt , ut) + wt

yt = h(xt) + vt

the belief is no longer Gaussian and there is not a closed-form solution.

The extended Kalman filter (EKF) calculates an approximation to the
true belief by a Gaussian. In particular, the belief bel(xt) at time t is
represented by a mean and a covariance
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Extended Kalman filter

Linearization of y = g(x) via Taylor expansion around µ

g(x) = g(µ) +
∂g

∂x

∣∣∣∣
x=µ

(x − µ) + higher orders
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Extended Kalman filter

Algorithm 3 [x̂k+1|k+1,Pk+1|k+1] =EKF(x̂k|k ,Pk|k , uk , yk+1)

1: x̂k+1|k = f (x̂k|k , uk)

2: Ak = ∂f (x ,u)
∂x

∣∣∣
x=x̂k|k ,u=uk

3: Pk+1|k = AkPk|kA
T
k + Q

4: Ck = ∂h(x)
∂x

∣∣∣
x=x̂k+1|k

5: Kk+1 = Pk+1|kC
T
k

(
CkPk+1|kC

T
k + R

)−1
6: x̂k+1|k+1 = x̂k+1|k + Kk+1(yk+1 − h(x̂k+1|k))

7: Pk+1|k+1 = Pk+1|k − Pk+1|kC
T
k (CkPk+1|kC

T
k +

R)−1CkPk+1|k
8: return x̂k+1|k+1,Pk+1|k+1
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Extended Kalman filter

When the EKF works well:

1. f and h are approximately linear

2. the statistical description is not multi-modal

Observation: the less certain is the knowledge (i.e. high variance), the

wider the Gaussian belief
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Extended Kalman filter

good approximation bad approximation
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Non parametric filtering: the
Histogram filter and the Particle filter
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Non parametric filtering

What’s happen when also the assumption
“ the random variables are Gaussian ”
is not true?

We have to resort to nonparametric filters: filters that do not rely on a
fixed functional form of the posterior (e.g. Gaussian)

Q. How do they work? A. the probability are approximated by a finite
number of values properly selected (each value corresponds to a region in
state space)

The quality of the approximation depends on the number of parameters
used to represent the probability!

ADVANTAGE nonparametric filters are well-suited to represent complex
multimodal beliefs

DRAWBACK increased computational complexity
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The Histogram Filter

Histogram filters decom-
pose a continuous state
space with support St into
finitely many regions (K )

xt ∈ {ξ1,t , ξ2,t , . . . , ξK ,t}

where

K⋃
k=1

ξk,t = St

ξi,t ∩ ξj,t = ∅,∀i 6= j

Continuous random variable −→ Discrete random variable
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The Histogram Filter

Through the granularity of the decomposition, we can trade off accuracy
and computational efficiency. Fine-grained decompositions infer smaller
approximation errors than coarse ones, but at the expense of increased
computational complexity.

Each region ξk,t has a probability assigned pk,t , then

xt ∈ ξk,t ⇒ p(xt) =
pk,t
|ξk,t |

What happens to the PDFs

p(xt |ut , xt−1) −→ p(ξk,t |ut , ξi,t−1) =???

p(zt |xt) −→ p(zt |ξk,t) =???
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The Histogram Filter

Educated Guess: the densities in each region ξk,t is approximated by the
density of a particular element within that region, e.g. the mean

x̄k,t = |ξk,t |−1
∫
ξk,t

xtdt

Then we have

p(xt |ut , xt−1) −→ p(ξk,t |ut , ξi,t−1) ' η

|ξk,t |
p(x̄k,t |ut , x̄i,t−1)

p(zt |xt) −→ p(zt |ξk,t) ' p(zt |x̄k,t)
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The Histogram Filter

Algorithm 4 {pk,t}K1 =HF({pk,t−1}K1 , ut , zt)
1: for k = 1 to K do
2: pk,t =

∑K
i=1 p(Xt = x̄k |Xt−1 = x̄i , ut)pi ,t−1

3: pk,t = ηp(zt |Xt = x̄k)pk,t
4: end
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Particle Filter

Also particle filters approximate the posterior by a finite number of
parameters but the parameters representing the posterior bel(xt) are a

set of random state samples drawn from the previous posterior

Like histogram filters, particle filters can represent a much broader space

of distributions than Gaussian
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Particle Filter

The samples x
[i ]
t , i =

1, . . . ,M of a posterior
distribution are called
particles

Xt = {x [1]t , x
[2]
t , . . . , x

[M]
t }

The likelihood that a state
hypothesis xt belongs to Xt

should be proportional to
the Bayes filter posterior
bel(xt)

x
[m]
t ∼ p(xt |z1:t , u1:t)
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Particle Filter

Algorithm 5 Xt =ParticleFilter(Xt−1, ut , zt)

1: X̄t = Xt = ∅
2: for m = 1 to M do
3: sample x

[m]
t ∼ p(xt |x [m]

t−1, ut)

4: w
[m]
t = p(zt |x [m]

t )

5: X̄t = X̄t ∪ 〈x [m]
t ,w

[m]
t 〉

6: end
7: for m = 1 to M do
8: draw i with probability ∝ w

[i ]
t

9: add x
[i ]
t to Xt

10: end
11: return Xt
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Particle Filter

Algorithm 6 Xt =ParticleFilter(Xt−1, ut , zt)

1: X̄t = Xt = ∅
2: for m = 1 to M do

3: sample x
[m]
t ∼ p(xt |x [m]

t−1, ut)

4: w
[m]
t = p(zt |x [m]

t )

5: X̄t = X̄t ∪ 〈x [m]
t ,w

[m]
t 〉

6: end
7: for m = 1 to M do
8: draw i with probability ∝ w

[i ]
t

9: add x
[i ]
t to Xt

10: end
11: return Xt

Generation of new M samples x
[m]
t using the state transition distribution

p(xt |xt−1, ut) based on particles in Xt−1 and the current control ut
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Particle Filter

Algorithm 7 Xt =ParticleFilter(Xt−1, ut , zt)

1: X̄t = Xt = ∅
2: for m = 1 to M do
3: sample x

[m]
t ∼ p(xt |x [m]

t−1, ut)

4: w
[m]
t = p(zt |x [m]

t )

5: X̄t = X̄t ∪ 〈x [m]
t ,w

[m]
t 〉

6: end
7: for m = 1 to M do
8: draw i with probability ∝ w

[i ]
t

9: add x
[i ]
t to Xt

10: end
11: return Xt

For each particle x
[m]
t , compute the importance factor w

[m]
t based on the

measurement probability p(zt |xt) and the new measurement zt
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Particle Filter

Algorithm 8 Xt =ParticleFilter(Xt−1, ut , zt)

1: X̄t = Xt = ∅
2: for m = 1 to M do
3: sample x

[m]
t ∼ p(xt |x [m]

t−1, ut)

4: w
[m]
t = p(zt |x [m]

t )

5: X̄t = X̄t ∪ 〈x [m]
t ,w

[m]
t 〉

6: end
7: for m = 1 to M do

8: draw i with probability ∝ w
[i ]
t

9: add x
[i ]
t to Xt

10: end
11: return Xt

Resampling step: replace X̄t with another set of the same
dimension M, Xt
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Particle Filter

Algorithm 9 Xt =ParticleFilter(Xt−1, ut , zt)

1: X̄t = Xt = ∅
2: for m = 1 to M do

3: sample x
[m]
t ∼ p(xt |x [m]

t−1, ut)

4: w
[m]
t = p(zt |x [m]

t )

5: X̄t = X̄t ∪ 〈x [m]
t ,w

[m]
t 〉

6: end
7: for m = 1 to M do
8: draw i with probability ∝ w

[i ]
t

9: add x
[i ]
t to Xt

10: end
11: return Xt

X̄t represents bel(xt)
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Particle Filter

Algorithm 10 Xt =ParticleFilter(Xt−1, ut , zt)

1: X̄t = Xt = ∅
2: for m = 1 to M do
3: sample x

[m]
t ∼ p(xt |x [m]

t−1, ut)

4: w
[m]
t = p(zt |x [m]

t )

5: X̄t = X̄t ∪ 〈x [m]
t ,w

[m]
t 〉

6: end
7: for m = 1 to M do

8: draw i with probability ∝ w
[i ]
t

9: add x
[i ]
t to Xt

10: end
11: return Xt

Xt represents bel(xt) = ηp(zt |x [m]
t )bel(xt)
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