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Reference

This lecture is based on the following book

& *Probabilistic

ROBOTICS

Sebastian Thrun, Wolfram Burgard and Dieter Fox, “Probabilistic
Robotics”, MIT Press, 2005

Several pictures from this book have been copied and pasted here
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Bayer recursive algorithm

Algorithm 1 bel(x;) =BayerFilter(bel(xt—1), ut, zt)
1: forall x; € S, do
2. bel(xt) = [g p(xe|ue, xe—1)bel(xe—1)dxe—1
3. bel(xt) = np(z¢|x:)bel(xt)
4: end
5: return bel(x;)

» Line 2: prediction bel(x;) computed using the old bel(x;_1) and the
current controls uy

» Line 3: update bel(x;) computed using bel(x;) and the new
measurements z;
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Kalman filter

Algorithm 2 [&k+l|k+17 'Dk+l|k+l] :KalmanFiIter(f(kM, ’Dk|k7 Uy, yk+1)

1: )?k-i-l\k = Af(k|k + Buy
_ T
2: Pk-‘,—l\k = APk‘kA + Q
3 Kigik+1 = Xugik + K1 (Ve — CRigage)

_ T T, py-1
4: Prsajksr = Prgijk = Prg1e € (CPiyan €' +R) ™ CPaic
5. return X111, Peotjkr

» Line 1-2: prediction bel(x; 1) computed using the old bel(xy) and
the current controls uy

» Line 3-4: update bel(xx11) computed using bel(xx;1) and the new
measurements zx1
With linear Gaussian models
> bel(x;) is fully described by the mean %1/« and the variance Py 1«

> bel(x;) is fully described by the mean %, and the variance Py,
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The Kalman filter/predictor — ety

is extremely efficient be-

cause it is based on two

strong assumptions: ~ 3
1. the state equation

y=g(x)

and the measurement
equation are linear

p(y)
2. the random variables

are Gaussian x_Mean of pix)

p(x)
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What's happen when the assumption
" the state equation and the measurement equation are linear "

is not true?
Ply) —— Function g(x)
Gaussian of p(y) x Meanp
—— Mean of p(y) o ol
=0
> -]
IS
ply) x

p(x}
x Meanp

px)
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Extended Kalman filter

9/30



UNIVERSITA
ONA

Extended Kalman filter

With arbitrary nonlinear functions f and h,

Xt+1 = f(Xt, Ut) + Wt
Yt h(x:) + vt

the belief is no longer Gaussian and there is not a closed-form solution.

The extended Kalman filter (EKF) calculates an approximation to the
true belief by a Gaussian. In particular, the belief bel(x;) at time t is
represented by a mean and a covariance
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Extended Kalman filter
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Linearization of y = g(x) via Taylor expansion around p

g =g + &

5 (x — u) + higher orders
X |yt
P(y) ‘\ — Function g(x)
— Gaussian of p(y) h% - - - Taylor approx.
\ | — Mean of p(y) AN x Meanp
*,| = -+ EKF Gaussian N o g
- - - Mean of EKF

y=9(x)

p(y)

p(x)
x Meanp

p(X)
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Extended Kalman filter

Algorithm 3 [Xy 14115 Prg1jit1] =EKF(Rkjk> Pk Uks Yo+1)

L Rit1ik = F(Ruier Uk)
2: Ak = Lfg;u)

X=Rp |k, U=Uk
T
3: Pk+1\k:AkPk\kAk + Q

4: Ck = Lg(xx)

X=R 41|k

-1
Kir1 = Peiae G (CkPriae G + R)
Ri1lk41 = Rtk + Kirr (Vo1 — h(Reqaii)

Peviksr = Prsik — Prran Gl (CePryain G +
R) ™! CiPrsajk

8: return X1kt 1, Prr1jkrt

o
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Extended Kalman filter

When the EKF works well:

1. f and h are approximately linear

2. the statistical description is not multi-modal

Observation: the less certain is the knowledge (i.e. high variance), the
wider the Gaussian belief
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Extended Kalman filter

ply) AN — Function g(x)
— Gaussian of p(y) . - - - Taylor approx.
— Mean of p(y) . x Meanp

EKF Gaussian . o gl

Mean of EKF .

¥=g(x)

py)
| — Gaussian of p(y)

y=9(x)

Py) X

p(x)

good approximation

PIY)

p(x)

bad approximation
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Non parametric filtering: the
Histogram filter and the Particle filter
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Non parametric filtering

What's happen when also the assumption
" the random variables are Gaussian "
is not true?

We have to resort to nonparametric filters: filters that do not rely on a
fixed functional form of the posterior (e.g. Gaussian)

Q. How do they work? A. the probability are approximated by a finite
number of values properly selected (each value corresponds to a region in
state space)

The quality of the approximation depends on the number of parameters
used to represent the probability!

ADVANTAGE nonparametric filters are well-suited to represent complex
multimodal beliefs

DRAWBACK increased computational complexity
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The Histogram Filter

o Histogram fll.ters decom-
L] Histogram pose a continuous state
space with support S; into
_ finitely many regions (K)
B xe € {616,626, Kt}
where
K
P(y) x
ng,t = St

—rd

[ Histogram k=1

m EeN&e = OVisj

X

P

Continuous random variable — Discrete random variable
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The Histogram Filter

Through the granularity of the decomposition, we can trade off accuracy
and computational efficiency. Fine-grained decompositions infer smaller
approximation errors than coarse ones, but at the expense of increased
computational complexity.

Each region &+ has a probability assigned py ;, then

Pk,
xt €&k = plxe) = :

L&kl

What happens to the PDFs

p(xelue, xe—1)  —  p(&k,elue, &ie—1) =777
p(zelx:) —  p(ze|ék,e) =777
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The Histogram Filter

Educated Guess: the densities in each region £ ; is approximated by the
density of a particular element within that region, e.g. the mean

Xpt = |§k7t|*1/ X dt
Skt

Then we have
P(Xt|utvxt—1) — P(fk,t|ut,§i,t—1) ~ %p(ik,t“]h)_{i,t—l)
Jt

p(Zt|Xt) — P(Zt|fk,t)’ip(zt|)_<k,t)
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The Histogram Filter oI VERONA —

Algorithm 4 {Pk,t}f :HF({pk,t_l}f, Ut, Zt)
1: for k=1 to K do
Pit = S p(Xe = X Xe1 = Xi, ue)pie1
Pt = nP(2¢e| Xt = X )Pi ¢
end

2 e
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Also particle filters approximate the posterior by a finite number of
parameters but the parameters representing the posterior bel(x;) are a
set of random state samples drawn from the previous posterior

Like histogram filters, particle filters can represent a much broader space
of distributions than Gaussian
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Particle Filter —A

The samples X,_[i],i =

1,...,M of a posterior
—— Samples . . .
distribution are  called

particles

The likelihood that a state
hypothesis x; belongs to &
should be proportional to

the Bayes filter posterior

E m bel(x;)

Xl[m] ~ P(Xt|21:t7 Ul:t)

y
y=9(x)

ply) x
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Particle Filter

Algorithm 5 X; =ParticleFilter(X;_1, ut, z;)

Xe=X =0

for m=1to M do
sample x{™ ~ p(x|x[™}. ue)

[m] = p(z ’X[m])

P (™ i

end

for m=1to M do
draw i with probability oc wy
add x,[] to Xt

end

(7]

. return X;
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Particle Filter

Algorithm 6 X; =ParticleFilter(X;_1, ut, z;)

1:
2:

w

10:
11:

e ° N a

X=X =0

for m=1 to M do
sample x™ ~ p(xe|x\"}, ue)

wi™ = p(z:|x™)

Xt .)C' U< [m] [m]>

end

for m=1to M do .
draw 7/ with probability o Wt[']
add x to X,

end

return X

[m]

Generation of new M samples x;  using the state transition distribution
p(x¢|x¢—1, u) based on particles in X;_; and the current control u;
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Particle Filter

Algorithm 7 X; =ParticleFilter(X;:_1, ut, z¢)
1: .)Et = Xt = @
2. for m=1to M do
[m]

3: sample x; ' ~ p(xt|xt['ﬂ, ut)

ol = (ol

=

= p(zelxi
X = X U <x£m], Wt[m]>

end

for m=1to M do .
draw 7/ with probability o Wt[']
add XEI] to X,

© ° NG

10: end
11: return X}

For each particle le], compute the importance factor Wt[m] based on the

measurement probability p(z:|x;) and the new measurement z;
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Algorithm 8 X; =ParticleFilter(X;_1, ut, z;)
1: .X_‘t - Xt - @
: formzlt()[l}/ldo

m
sample x;

]

2

3 ~ p(xe ™), u)
& w = plzelx™)

5: Xt == Xt U <Xt[m], Wt[m]>
6: end

7: for m=1to M do

8

draw i with probability o w!!
o: add x,y] to X;

10: end
11: return X;

Resampling step: replace X; with another set of the same
dimension M, X;
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Algorithm 9 X; =ParticleFilter(X;_1, ut, z;)
L X =X=0
2: for m=1to M do

3: sample x[ ml p(xt|xt[T]1, ue)
4: W[m] = p(z: |le])

5 X=X U™ wlm™

6: end

7: for m=1to M do

8: draw 7 with probability W[]
0: add xt[] to Xt

10: end

11: return X;

X, represents bel(x;)
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Algorithm 10 X; =ParticleFilter(X;_1, ut, zt)
1: .)Et = Xt - @
: for m=1to M do
: sample le] ~ p(xt|xt[T]1, uz)

2
3
6 w™ = p(z|x™)
5
6
7

: A?t = ‘X_t U <Xt[m], Wt[m]>
- end
for m=1to M do
8: draw i with probability o W,_[i]
o: add xy] to X;

10: end
11: return X;

X; represents bel(x;) = np(z:|x'™)bel(x;)
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