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Linear Methods for Regression
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probability

Supervised learning: use the inputs (i.e. predictors, independent
variables, features) to predict the values of the outputs (i.e. responses,
dependent variables)

This distinction in output type has led to a naming convention for the
prediction tasks: regression when we predict quantitative outputs, and
classification when we predict qualitative outputs.

Notation:

I x ∈ Rm random variable (xi ∈ R is its i-th component)

I x ∈ Rm an observation of the random variable x ∈ Rm (xi ∈ R is its
i-th component)

I X ∈ Rm×N a collection of N observations (XT
i ∈ Rm is its i-th row)

We will focus on the regression problem: this means that input and

output vectors consist of qualitative measurements
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Linear Models

Input: x ∈ Rm, x ∈ Rm,X ∈ RN×m

Output: y ∈ Rp, y ∈ Rp,Y ∈ RN×p

Prediction: ŷ ∈ Rp, ŷ ∈ Rp, Ŷ ∈ Rp×N

Linear Model: ( from now on p = 1 )

y = f (x) = xTβ

where β ∈ Rm

Prediction

ŷ = xT β̂

where β̂ ∈ Rm is the matrix of coefficients that we have to determine

Remark. If p = 1, the gradient f ′(x) = ∇x f (x) = β is a vector pointing

in the steepest uphill direction
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Least Squares

Let X ∈ RN×m and Y ∈ RN a training set of data (collection of N pairs
(x , y))
How to choice β?
First of all we have to introduce an index as a function of β.

Let RSS(β) be the residual sum of squares

RSS(β) :=
N∑

i=1

(Yi − Xiβ)T (Yi − Xiβ) = (Y − Xβ)T (Y − Xβ)

We search for

β̂ := arg min
β

RSS(β)

Computing the first and second derivative we get the normal equations

∇βRSS(β) = −2XT (Y − Xβ)

∇2
ββRSS(β) = 2XTX
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Least Squares

If XTX is nonsingular (i.e. X has full column rank), the unique solution
is given by the normal equations

∇βRSS(β) = 0 ⇔ XT (Y − Xβ) = 0

i.e.

β̂ = (XTX )−1XTY

and the prediction of y given a new value x is

ŷ = xT β̂

Observations:

I We assume that the underlying model is linear

I Statistics of x and y do not play any role (it seems ...)
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Least Squares p > 1

Linear model

Y = XB + E

where X ∈ RN×m, Y ∈ RN×p, E ∈ RN×p and B ∈ Rm×p

The RSS takes the form

RSS(B) := trace{(Y − XB)T (Y − XB)}

and the least square estimation of B is written in the same way

B̂ = (XTX )−1XTY

Multiple outputs do not affect one another’s least squares estimates

If the component of the vector r.v e are correlated, i.e. e ∼ N (0,Σ),
then we can define a weighted RSS

RSS(B,Σ) :=
N∑

i=1

(Yi − XiB)T Σ−1(Yi − XiB)
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Geometric interpretation

The normal equations

XT (Y − Xβ) = 0

means the estimation Ŷ = X β̂ = X (XTX )−1XTY is the orthogonal

projection of Y into the subspace X

10 / 66



Statistical interpretation

We now consider the r.v. x and y as input and output, respectively, and
we seek a function f (x) for predicting y.

The criterion should be now deal with stochastic quantities: we introduce
the expected squared prediction error EPE (strictly related with the mean
squared error MSE)

EPE (f ) := E
[
(y − f (x))T (y− f (x))

]
=

∫
Sx ,Sy

(y − f (x))T (y − f (x))p(x , y)dxdy

where we implicitly assumed that x and y have a joint PDF. EPE (f ) is a
L2 loss function

Conditioning on x we can re-write EPE (f ) as

EPE (f ) := Ex

[
Ey |x

[
(y − f (x))T (y− f (x))|x

] ]
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Statistical interpretation

We can determine f (·) pointwise

f (x) = arg min
c

Ey |x
[
(y − c)T (y− c)|x = x

]
which means that

f (x) = E [y|x = x ]

i.e. the best f (x) is the conditional mean (according to the EPE
criterion).

Beautiful but, given the data X ,Y how can we compute the conditional

expectation?!?
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Statistical interpretation

Let us assume again

f (x) = xTβ

then

EPE (f ) := E
[
(y − xTβ)T (y− xTβ)

]
Differentiating w.r.t. β we end up with

β =
(
E[xxT ]

)−1 E[xT y]

Computing the auto- and cross-correlation (i.e. using real numbers!)

E[xxT ]
N→∞−→ Sxx :=

1

N

N∑
i=1

XT
i Xi =

1

N
XTX

E[xT y]
N→∞−→ Sxy :=

1

N

N∑
i=1

XiY
T
i =

1

N
XY T
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Statistical interpretation

Then we get

β̂ =

(
1

N
XTX

)−1
1

N
XY T

=
(
XTX

)−1
XY T

Again the normal equations !!!

But now we can provide a statistical interpretation of β̂. Let y = xTβ+ e,
e ∼ N (0, σ2) be our model (p = 1), then β̂ is a Gaussian variable

β̂ ∼ N (β, (XTX )−1σ2)

In fact, since β̂ =
(
XTX

)−1
Xy −

(
XTX

)−1
Xe

ŷ = xT β̂ + e
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Gauss-Markov theorem

Given the linear model

y = xTβ, Y = Xβ

the least squares estimator φ̂(x0) = xT
0 β̂ of φ(x0) = xT

0 β is unbiased
because

E[xT
0 β̂] = xT

0 β

Theorem
If φ̄(x0) is any other unbiased estimation (E[φ̄(x0)] = xT

0 β) then

Var(φ̂(x0)) ≤ Var(φ̄(x0))

Remark. Mean square error of a generic estimator φ̄ (p = 1)

MSE (φ̄) = E[(φ̄− φ)2]
(∗)
= Var(φ̄)︸ ︷︷ ︸

variance

+ (E[φ̄]− φ)2︸ ︷︷ ︸
bias

(*) = sum and subtract E[φ̄].
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Gauss-Markov theorem

Given the stochastic linear model

y = xTβ + e, e ∼ N (0, σ2)

and let φ̄(x0) be the estimator for y0 = φ(x0) + e0, φ(x0) = xT
0 β.

The expected prediction error (EPE) of φ̄(x0) is

EPE (φ̄(x0)) = E[(y0 − φ̄(x0))2]

= σ2 + E[(xT
0 β − φ̄(x0))2]

= σ2 + Var(φ̄) + (E[φ̄]− φ)2︸ ︷︷ ︸
MSE
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Bias-variance trade-off

underfitting VS overfitting
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Statistical models

Statistical model:

y = f (x) + e

where y is a random error with zero mean (E[e] = 0) and is independent
of x.

This means that the relationship between y and x is not deterministic
(f (·))

The additive r.v. e takes care of measurement noise, model uncertainty
and non measured variables correlated with y as well

We often assume that the random variables e are independent and

identically distributed (i.i.d.)
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Statistical models

Assuming a linear basis expansion for fθ(x) parametrized by the
unknowns collected within the vector θ

fθ(x) =
K∑
1

hk (x)θk

where examples of hk (x) can be

hk (x) = xk

hk (x) = (xk )2

hk (x) = sin(xk )

hk (x) =
1

1 + e−xTβk

The optimization problem to solve is

θ̂ = arg min
θ∈Θ

RSS(θ) =
N∑
1

(yi − fθ(xi ))2

where RSS stands for Residual Sum of Squares
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Statistical models

Are there other kinds of criterion besides RSS, EPE?

YES, A more general principle for estimation is maximum likelihood
estimation

Let pθ(y) be the PDF of the samples y1, . . . , yN

The log-probability (or log-likelihood) of the observed samples is

L(θ) =
N∑
1

log pθ(yi )

Principle of maximum likelihood: the most reasonable values for θ are
those for which the probability of the observed samples is largest
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Statistical models

If the error e in the following statistical model

y = fθ(x) + e

is Gaussian, e ∼ N (0, σ2), then the conditional probability is

p(y |x , θ) ∼ N (fθ(x), σ2)

Then log-likelihood of the data is

L(θ) =
N∑
1

log p(yi |fθ(xi ), θ)

= −N

2
log(2π)− N log σ − 1

2σ2

∑N
i=1(yi − fθ(xi ))2

Least squares for the additive error model is equivalent to maximum

likelihood using the conditional probability (The yellow is the RSS(θ) )
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Penalty function and Regularization methods

Penalty function, or regularization methods, introduces our knowledge
about the type of functions f (x) we are looking for

PRSS(f , λ) := RSS(f ) + λg(f )

where the functional g(f ) will force our knowledge (or desiderata) on f

Example. One-dimension cubic smoothing spline is the solution of

PRSS(f , λ) :=
N∑

i=1

(yi − f (xi ))2 + λ

∫
[f ′′(s)]2dx

Remark. Penalty function methods have a Bayesian interpretation:

I g(f ) is the log-prior distribution

I PRSS(f , λ) is the log-posterior distribution

I the solution of arg minf PRSS(f , λ) is the posterior mode
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Kernel Methods and Local Regression

If we want a local regression estimation of f (x0), we have to solve the
problem

θ̂ = arg min
θ

RSS(fθ, x0) =
N∑

i=1

Kλ(x0, xi )(yi − fθ(xi ))2

where the kernel function Kλ(x0, x) weights the point x around x0. The
optimal estimation is fθ̂(x0)

An example of kernel function is the Gaussian kernel

Kλ(x0, x) =
1

λ
exp

[
−‖x − x0‖2

2λ

]

Examples of fθ(x) are

I fθ(x) = θ0, constant function

I fθ(x) = θ0 + θ1x , linear regression
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Basis functions

The function f can be approximated using a set of M basis functions hm

fθ(x) =
M∑

m=1

θmhm(x)

where θ = [θ1 · · · θM ]

Examples of basis functions:

I Radial basis functions:

fθ(x) =
M∑

m=1

θmKλm (µm, x), Kλ(µ, x) = e−‖x−µ‖
2/2λ

I Single-layer feed-forward neural network

fθ(x) =
M∑

m=1

θmσ(αT
mx + bm), σ(x) =

1

1 + e−x

Remark. Linear methods can then be used with nonlinear input-output

transformation because the model is linear in the parameters θ
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Subset selection

“The least squares estimates often have low bias but large variance.

Prediction accuracy can sometimes be improved by shrinking or setting

some coefficients to zero. By doing so we sacrifice a little bit of bias to

reduce the variance of the predicted values, and hence may improve the

overall prediction accuracy.”
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Ridge Regression

Ridge regression shrinks the regression coefficients by imposing a penalty
on their size.
The coefficients β̂ridge are obtained solving the minimization problem

β̂ridge = arg min
β
{

N∑
i=1

(Yi − Xiβ)T (Yi − Xiβ)︸ ︷︷ ︸
RSS(β)

+λ
m∑

i=1

β2
i︸ ︷︷ ︸

g(β)=βTβ

}

with λ ≥ 0, or the equivalent constrained problem

β̂ridge = arg minβ

N∑
i=1

(Yi − Xiβ)T (Yi − Xiβ)

s. to
m∑

i=1

β2
i ≤ t

The solution is

β̂ridge = (XTX + λI )−1XTY
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Lasso

The coefficients β̂lasso are obtained solving the minimization problem

β̂lasso = arg min
β
{

N∑
i=1

(Yi − Xiβ)T (Yi − Xiβ)︸ ︷︷ ︸
RSS(β)

+λ
m∑

i=1

|βi |︸ ︷︷ ︸
g(β)

}

with λ ≥ 0, or the equivalent constrained problem

β̂lasso = arg minβ

N∑
i=1

(Yi − Xiβ)T (Yi − Xiβ)

s. to
m∑

i=1

|βi | ≤ t

The are no closed form expression for β̂lasso

Remark 1. The Ridge Regression uses a L2 norm on β, whereas Lasso
the L1 norm. This means that the solution is nonlinear in the data.

Remark 1. Decreasing t forces some of the coefficients to be set to zero

(exactly).
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Ridge regression VS Lasso

Lasso Ridge

|β1|+ |β2| ≤ t β2
1 + β2

2 ≤ t2

The red ellipses are the contours of the least squares error function
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From r.v. to stochastic processes

Definition (random variable)
A random variable x : Ω→ E is a measurable function from the set of
possible outcomes Ω to some set E . Ω is a probability space and E is a
measurable space.

Roughly speaking: A random variable x is a rule for assigning to every

outcome ω of an experiments a number x(ω)

Definition (stochastic process)
Given a probability space (Ω,F ,P) and a measurable space (S ,Σ), an
S-valued stochastic process is a collection of S-valued random variables
on Ω, indexed by a totally ordered set T (“time”). That is, a stochastic
process is a collection {xt : t ∈ T} where each xt is an S-valued random
variable on Ω. The space S is then called the state space of the process.

Roughly speaking: A stochastic process xt is a rule for assigning to

every outcome ω a function x(t, ω)
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From r.v. to stochastic processes

{xt} has the following interpretations:

I It is a family of functions xt(ω) when t and ω are variables.

I It is a single time function (or a realization of the given process)
xt(ω̄) when t is a variable and ω = ω̄ is fixed.

I It is a random variable if t = t̄ is fixed and ω is variable, i.e. xt̄(ω)
state of the process at time t.

I It is a number if t and ω are fixed

If T = R, {xt} is a continuous-time process

If T = Z, {xk} is a discrete-time process

Even though the dynamics of the system is described by ODE, in the
following we will consider discrete-time processes because the sensing
system provides measurements at discrete moments.

Remark The r.v. xk̄ (ω) can be continuous even if k ∈ T = Z
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Gaussian filter
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State estimation

Given the measurement yk , k = 0, 1, . . . related to an unknown state
variable xk , we are interested in the following estimation problems

- Filtering

y0, y1, . . . , yk −→ x̂k|k

- h-step ahead Prediction

y0, y1, . . . , yk −→ x̂k+h|k

- h-step backward Smoothing

y0, y1, . . . , yk −→ x̂k−h|k

- Smoothing

y0, y1, . . . , yN −→ x̂k|N

32 / 66



Gaussian filters

Gaussian filters assume that the undergoing phenomena can be modeled
by Gaussian distributions.

This assumption allows to solve in recursive way the general Bayes filters’
formulation

Why are Gaussian distributions so good?

I Gaussians are unimodal: they have a single maximum

I The statistics (mean, variance and higher order moments) of a
Gaussian are described by two parameters: its mean and variance

I The linear combination of Gaussians is still Gaussian
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Gaussian Random Variables

Definition (Gaussian r.v.)
An n-dimensional random variable X is Gaussian with mean µ ∈ Rn and
variance Σ ∈ Rn×n,Σ = ΣT > 0, X ∼ N (µ,Σ) , if its probability density
function (PDF) is given by

p(x) =
1√

(2π)n det Σ
e−

1
2 (x−µ)T Σ−1(x−µ).

This means that

µ = E[X ]

Σ = Var(X ) = E[(X − E[X ])(X − E[X ])T ].
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Gaussian r.v.

Theorem (Joint Gaussian r.v.)
Let x ∈ Rn and y ∈ Rm be joint Gaussian

p(x , y) ∼ N
([

µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])
Then

I the r.v. z = Ax + By is still Gaussian, i.e. z ∼ N (µz ,Σz ), where

µz = E[Ax + By ] = Aµx + Bµy

Σz = E
[
(Ax + By − Aµx − Bµy ) (Ax + By − Aµx − Bµy )T

]
= E

[(
[A B]

[
x − µx

y − µy

])(
[A B]

[
x − µx

y − µy

])T
]

= [A B]E

[[
x − µx

y − µy

] [
x − µx

y − µy

]T
]

[A B]T

= [A B]

[
Σxx Σxy

Σyx Σyy

] [
AT

BT

]
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Gaussian r.v.

Theorem (...)

I the Gaussian random variable x conditioned on the Gaussian
random variable y is still a Gaussian random variable. The PDF of x
given y is

p(x |y) = N (µx|y ,Σx|y ) (1)

where

µx|y = µx + Σxy Σ−1
yy (y − µy ) (2)

Σx|y = Σxx − Σxy Σ−1
yy Σyx (3)

if Σyy > 0.

36 / 66



Optimal Estimator

Theorem (Minimum Variance Estimator)
Let x ∈ Rn, y ∈ Rm be two r.v. (non necessariamente Gaussiane), and g : Rm → Rn a
measurable function.

We define x̂g = g(y) as the estimator of x given y through the function g, and
eg = x− g(y) = x− x̂g the corresponding estimation error.

The estimator x̂ = E[x|y] = ĝ(y) is optimal because it minimizes the error variance, i.e.

Var(e) = E[(x− x̂)(x− x̂)T ] ≤ E[(x− x̂g )(x− x̂g )T ] = Var(eg ), ∀g(·)

where e = x− x̂ is the error of the optimal estimator.
The error of the optimal estimator and the estimation are uncorrelated

E[eĝ(y)T ] = 0.
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Stochastic model
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LTI Stochastic model

We focus now on the state-space representation of a generic Linear
Time-Invariant (LTI) stochastic model:{

xk+1 = Axk + wk

yk = Cxk + vk

where:  vk ∼ N (0,R), E[vkv
T
h ] = Rδ(k − h)

wk ∼ N (0,Q), E[wkw
T
h ] = Qδ(k − h)

x0 ∼ N (x̄0,P0)

and vk ,wk , x0 are uncorrelated zero-mean Gaussian r.v.

E[vkw
T
h ] = 0

E[x0v
T
k ] = 0

E[x0w
T
k ] = 0

The state-space model is a way to describe the dynamical

evolution of a stochastic process
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LTI Stochastic model

From the evolution of the state and of the output at time t

xk = Ak−k0x0 +
k−1∑
i=k0

Ak−i−1wi

yk = CAk−k0x0 +
k−1∑
i=k0

CAk−i−1wi + vk

we also have

E[xkw
T
h ] = 0, ∀h ≥ k

E[xkv
T
h ] = 0

E[ykv
T
h ] = Qδ(k − h)
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Kalman filtering
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Kalman filter

The Kalman filter (or minimum variance filter) is defined as:

x̂k+1|k+1 = E [xk+1|y0, . . . , yk+1] = E
[
xk+1|yk+1,Y

k
]

(4)

where Y k = (yk , . . . , y1, y0).

Goal: we need a recursive expression for x̂k+1|k+1 without using

µx|y = µx + Σxy Σ−1
yy (y − µy ) (5)

at any time instant k, i.e. when a new measurement is available.

The explicit expression for E [X |Y ] is easy to derive from (5) if X e Y

are joint Gaussian with means µX , µY and variances

[
ΣXX ΣXY

ΣYX ΣYY

]
.
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Kalman filter

To rewrite

x̂k+1|k+1 = E [xk+1|y0, . . . , yk+1] = E
[
xk+1|yk+1,Y

k
]

in the form E [X |Y ] we introduce the following conditional random
variables

X = xk+1|Y k

Y = yk+1|Y k

and compute the following means, variances and covariances:

µX = E
[
xk+1|Y k

]
µY = E

[
yk+1|Y k

]
Pk+1|k = ΣXX = Var

[
xk+1|Y k

]
ΣYY = Var

[
yk+1|Y k

]
ΣXY = ΣT

YX = Cov
[
xk+1, yk+1|Y k

]
.
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Kalman filter

The optimal estimator is given by:

E [X |Y ] = x̂k+1|k+1 = x̂k+1|k + ΣXY Σ−1
YY

(
yk+1 − ŷk+1|k

)
(6)

and the variance of the estimation error is

ΣX |Y = Pk+1|k+1 = ΣXX − ΣXY Σ−1
YY ΣYX (7)
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Conditional means

Mean µX

µX = E
[
xk+1|Y k

]
= E

[
Axk + wk |Y k

]
= AE

[
xk |Y k

]
+ E

[
wk |Y k

]
= Ax̂k|k

= x̂k+1|k

Mean µY

µY = E
[
yk+1|Y k

]
= E

[
Cxk+1 + vk+1|Y k

]
= CE

[
xk+1|Y k

]
+ E

[
vk+1|Y k

]
= Cx̂k+1|k

= CAx̂k|k
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Conditional variances

Variance ΣXX

ΣXX = Var
[
xk+1|Y k

]
= E

[(
xk+1 − x̂k+1|k

) (
xk+1 − x̂k+1|k

)T |Y k
]

= E
[(
Axk + wk − Ax̂k|k

) (
Axk + wk − Ax̂k|k

)T |Y k
]

= AE
[(
xk − x̂k|k

) (
xk − x̂k|k

)T |Y k
]
AT +

+AE
[(
xk − x̂k|k

)
wT

k |Y k
]

+

+E
[
wk

(
xk − x̂k|k

)T |Y k
]
AT + E

[
wkw

T
k |Y k

]
= APk|kA

T + Q

= Pk+1|k
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Conditional variances

Variance ΣYY

ΣYY = Var
[
yk+1|Y k

]
= E

[(
yk+1 − ŷk+1|k

) (
yk+1 − ŷk+1|k

)T |Y k
]

= E
[(
Cxk+1 + vk+1 − Cx̂k+1|k

) (
Cxk+1 + vk+1 − Cx̂k+1|k

)T |Y k
]

= CE
[(
xk+1 − x̂k+1|k

) (
xk+1 − x̂k+1|k

)T |Y k
]
CT +

+CE
[(
xk+1 − x̂k+1|k

)
vT

k+1|Y k
]

+

+E
[
vk+1

(
xk+1 − x̂k+1|k

)T |Y k
]
CT + E

[
vk+1v

T
k+1|Y k

]
= CPk+1|kC

T + R
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Conditional variances

Covariance ΣXY = ΣT
YX

ΣXY = Cov
[
xk+1, yk+1|Y k

]
= E

[(
xk+1 − x̂k+1|k

) (
yk+1 − ŷk+1|k

)T |Y k
]

= E
[(
Axk − Ax̂k|k + wk

) (
CAxk − CAx̂k|k + vk+1 + Cwk

)T |Y k
]

= AE
[(
xk − x̂k|k

) (
xk − x̂k|k

)T |Y k
]
ATCT + E

[
wkw

T
k |Y k

]
CT

= APk|kA
TCT + QCT

= Pk+1|kC
T
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Summing up

The random variable z =

[
xk+1

yk+1

]
conditioned on Y k , has the following

PDF

p
(
z |Y k

)
∼ N

([
x̂k+1|k
Cx̂k+1|k

]
,

[
Pk+1|k Pk+1|kC

T

CPk+1|k CPk+1|kC
T + R

])
with:

x̂k+1|k = Ax̂k|k

Pk+1|k = APk|kA
T + Q
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Recursive formulation

The last step is to compute

p
(
xk+1|Y k+1

)
∼ N

(
x̂k+1|k+1,Pk+1|k+1

)
where the mean x̂k+1|k+1 is the optimal estimation we are looking for and
Pk+1|k+1 the variance of the corresponding estimation error.

Substituting the previous expression we end up with

x̂k+1|k+1 = x̂k+1|k + Pk+1|kC
T
(
CPk+1|kC

T + R
)−1 (

yk+1 − Cx̂k+1|k
)

The Kalman gain is the matrix

Kk+1 = Pk+1|kC
T
(
CPk+1|kC

T + R
)−1

mapping the output estimation error into the correction of the prediction
state

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
yk+1 − Cx̂k+1|k

)
The variance of the estimation error is

Pk+1|k+1 = Pk+1|k − Pk+1|kC
T
(
CPk+1|kC

T + R
)−1

CPk+1|k
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Recursive formulation

Prediction step / A priori estimation

x̂k+1|k = Ax̂k|k

Pk+1|k = APk|kA
T + Q

Estimation step / A posteriori estimation

x̂k+1|k+1 = x̂k+1|k + Kk+1(yk+1 − Cx̂k+1|k )

Pk+1|k+1 = Pk+1|k − Pk+1|kC
T (CPk+1|kC

T + R)−1CPk+1|k

Initial conditions

x̂0|−1 = x̄0

P0|−1 = P0
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Kalman filter/predictor

Kalman filter

x̂k+1|k+1 = Ax̂k|k + Kk+1(yk+1 − CAx̂k|k )

Pk+1|k = APk|k−1AT − APk|k−1C T (CPk|k−1C T + R)−1CPk|k−1AT + Q

with

Kk+1 = Pk+1|k C T
(

CPk+1|k C T + R
)−1

The matrix recursive equation Pk+1|k = . . . is called Riccati equation.

Kalman predictor

x̂k+1|k = Ax̂k|k−1 + Kk (yk − Cx̂k|k−1)

Pk+1|k = APk|k−1AT − APk|k−1C T (CPk|k−1C T + R)−1CPk|k−1AT + Q

with

Kk = APk|k−1C T
(

CPk|k−1C T + R
)−1
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Kalman filter/predictor

Observations

1. All the information in y(i), i ∈ [0, k − 1] is “contained” in the
estimation state x̂k−1|k−1: the following conditional expectations are
equal

E[xk |yk , yk−1, . . . , y0] = E[xk |x̂k−1|k−1, yk ]

2. The optimal gain Kk is time-varying even if the stochastic model is
LTI.

3. There is a more general formulation of the Kalman filter where wk

and vk are correlated.

4. The same recursive equation for the Kalman filter can be used with
linear time-varying stochastic systems.
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Steady-state Kalman filter

What’s happen when k →∞?
Does the estimation error converge to zero with minimal variance?

Theorem
Given the stochastic LTI model{

xk+1 = Axk + wk

yk = Cxk + vk
(8)

with 
vk ∼ N (0,R), E[vk v T

h ] = Rδ(k − h)
wk ∼ N (0,Q), E[wk w T

h ] = Qδ(k − h)
x0 ∼ N (x̄0,P0)

(9)

where vk ,wk , x0 are zero mean uncorrelated Gaussian random variables.
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Steady-state Kalman filter

Theorem (...)
Then

1. The Algebraic Riccati Equation (ARE):

P∞ = AP∞AT − AP∞C T (CP∞C T + R)−1CP∞AT + Q

has a unique positive definite symmetric matrix solution P∞ = PT
∞ > 0

2. P∞ is stabilizable, i.e. (A− K∞C) is asymptotically stable with

K∞ = P∞C T
(

CP∞C T + R
)−1

.

3. limk→∞ P(k|k − 1) = P∞ holds for all initial conditions
P(0| − 1) = P0 = PT

0 ≥ 0,

if and only if

1. (A,C) is detectable,

2. (A,Q1/2) is stabilizable.
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Steady-state Kalman filter

Kalman filter (LTI)

x̂k+1|k+1 = Ax̂k|k + K∞(yk+1 − CAx̂k|k )

P = APAT − APC T (CPC T + R)−1CPAT + Q

with

K∞ = PC T
(

CPC T + R
)−1

Kalman predictor (LTI)

x̂k+1|k = Ax̂k|k−1 + K̄∞(yk − Cx̂k|k−1)

P = APAT − APC T (CPC T + R)−1CPAT + Q

with

K̄∞ = APC T
(

CPC T + R
)−1

.
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Kalman smoother
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Kalman Smoother

Model: {A,C ,Q,R}

xk+1 = Axk + wk

yk = CXk + vk

Data: sequence of N samples of the output

y0, y1, . . . , yN

STEP 1
“Standard” Kalman filtering (forward step)

x̂ f
k+1|k+1 = Ax̂ f

k|k + Kk+1(yk+1 − CAx̂ f
k|k )

x̂ f
0|0 = x̄0

P f
k|k = ...

P f
0|0 = P0
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Kalman Smoother

STEP 2
Smoothing (backward step)

x̂ s
k|N = x̂ f

k|k + K̄k

[
x̂ s

k+1|N − x̂ f
k+1|t

]
x̂ s

N|N = x̂ f
N|N

where the conditional covariance matrix P(t|N) satisfies the
time-backward matrix equation

Pk|N = P f
k|k + K̄k

[
Pk+1|N − P f

k+1|k

]
PN|N = P f

N|N .

with

K̄k = P f
k|kA

T
(
P f

k+1|k

)−1
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Problem: speed estimation

Given the measurement equation

y(t) = s(t) + v(t)

where

I s(t) is the signal we are interesting in (e.g. angular position),

I y(t) is the measurement given by a sensor (e.g. an encoder)

I v(t) is the addictive measurement noise

We can face different kinds of estimation problems:

- Filtering: determine the best estimation ŝ(t) of s(t) based on the
measurements y(·) till time t (i.e. y(0), y(1), . . . , y(t))

- Prediction: determine the best estimation ŝ(t + h) of s(t + h) with
h ≥ 1 based on the measurements y(·) till time t (i.e.
y(0), y(1), . . . , y(t))

- Smoothing: determine the best estimation ŝ(t − h) of s(t − h)
with h ≥ 1 based on the measurements y(·) till time t (i.e.
y(0), y(1), . . . , y(t))
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Problem: speed estimation

Let θ and ω be the angular position and velocity, respectively. Knowing
nothing about the physical model that produces the signal s(t) we set
the derivative of the velocity equal to a white noise.

A stochastic process n is called white noise if its values n(ti ) and n(tj )
are uncorrelated ∀i 6= j , i.e.

Corr{n(ti ), n(tj )} = Q(ti )δ(ti − tj )

We also assume the n(t) is Gaussian with zero-mean and constant
variance Q ∈ R for all t

Kinematic model

θ̇(t) = ω(t)

ω̇(t) = n(t)

Measurement equation

y(t) = θ(t) + v(t)

where v is another white noise and v(t) is Gaussian with zero-mean and

constant variance R ∈ R.
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Problem: speed estimation

Kinematic model

θ̇(t) = ω(t)

ω̇(t) = n(t)

Measurement equation

y(t) = θ(t) + v(t)

Remark. The process n takes into account the uncertainty on the model
of the system, whereas v models the measurement noise superimposed to
the “real” value θ

Let x(t) be the vector state

x(t) :=

[
θ(t)
ω(t)

]
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Problem: speed estimation

The continuous-time state space model of our basic system is

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
n(t)

y(t) =
[
1 0

]
x(t) + v(t)

Its discrete-time approximation with sample time Ts is given by

xk+1 =

[
1 Ts

0 1

]
xk +

[
T 2

s

2
Ts

]
nk

yk =
[
1 0

]
xk + vk
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Problem: speed estimation

The relationship between the two state space models xk+1 =

[
1 Ts

0 1

]
xk +

[
T 2

s

2
Ts

]
nk

yk =
[
1 0

]
xk + vk

,

{
xk+1 = Axk + wk

yk = Cxk + vk

is

A :=

[
1 Ts

0 1

]

wk :=

[
T 2

s

2
Ts

]
nk ∼ N

[0
0

]
,

[
T 2

s

2
Ts

][
T 2

s

2
Ts

]T

Q


C :=

[
1 0

]
vk := vk

Tuning of the filter
The variance R depends on the encoder resolution (we can read it on the
datasheet) whereas the matrix Q is chosen by the designer to try to
“explain” the measurements in the best way.
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Model with inputs

If an input command uk enters within the stochastic model{
xk+1 = Axk + Buk + wk

yk = Cxk + vk
,

how do the filter equations change?

Fortunately if uk is a function of past measurements (e.g. uk = f (y0:k ))

than we can simple add the term Buk in the recursive equations:

x̂k+1|k = Ax̂k|k−1 + Buk + Kk (yk − Cx̂k|k−1)

Pk+1|k = APk|k−1A
T − APk|k−1C

T (CPk|k−1C
T + R)−1CPk|k−1A

T + Q

or

x̂k+1|k = Ax̂k|k−1 + Buk + K̄∞(yk − Cx̂k|k−1)

P = APAT − APCT (CPCT + R)−1CPAT + Q
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Important remark

In the book “Probabilistic Robotics” the Kalman equations are obtained
following a different approach (using first and second derivatives of
opportune quadratic functions).

Another difference is that they start with the linear Gaussian system

xk = Axk−1 + Buk + wk

which is the same of

xk+1 = Axk + Buk+1 + wk+1

Observations:

I using wk+1 instead of wk does not change anything because w is
white noise

I on the other hand, it would make a big difference using Buk+1

instead of Buk as we did: for this reason the authors of the book
introduce the assumption that the control input u is a random
process independent of the state and the measurement
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