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Outline of the Course

I lesson 1 Introduction to Probabilistic Robotics; Basics of
Probability; Bayes filtering [R.M.]

I lesson 2 Basics of Linear methods for Regression; Kalman
filtering and applications [R.M.]

I lesson 3 Nonparametric filters; Particle filter [R.M.]

I lesson 4 Planning and Control: Markov Decision Processes
[A.F.]

I lesson 5 Exploration and information gathering [A.F.]

I lesson 6 Plan monitoring for robotics; Applications for mobile
robots [A.F.]
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Outline of this Lesson

Motivation

Basics of probability

Bayes filtering
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Motivation
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50 years of robotics
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Boston dynamics
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DARPA challenge
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Basics of probability
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Why Probabilistic Robotics?

I At the core of probabilistic robotics is the idea of estimating state
from sensor data. State estimation addresses the problem of
estimating quantities from sensor data that are not directly
observable, but that can be inferred.

I Sensors carry only partial information about those quantities, and
their measurements are corrupted by noise. State estimation seeks
to recover state variables from the data. Probabilistic state
estimation algorithms compute belief distributions over possible
world states.

I In probabilistic robotics, quantities such as sensor measurements,
controls, and the states a robot and its environment might assume
are all modeled as random variables.

I Probabilistic inference is the process of calculating these laws for
random variables that are derived from other random variables, such
as those modeling sensor data.
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Reference

This lecture is based on the following book

Sebastian Thrun, Wolfram Burgard and Dieter Fox, “Probabilistic
Robotics”, MIT Press, 2005

Several pictures from this book have been copied and pasted here
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Discrete random variables

Let X be a Discrete random variable, i.e.

X ∈ X := {x1, . . . , xN}, N is countable

p(X = x) = p(x) probability than X takes the value x ∈ X

p(·) is called probability mass function, p(·) ≥ 0

Law of total probability ∑
x∈X

p(x) = 1
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Continuous random variables

Let X be a Continuous random variable, i.e. X takes on an uncountably
infinite number of possible outcomes (support S)

P(a < X < b) =

∫ b

a

p(x)dx , (a, b) ⊂ S

p(·) is called probability density function (PDF)

Definition (PDF)
The probability density function of a continuous random variable X with
support S is an integrable function p(x) such that

1. p(x) is positive everywhere in the support S ; p(x) > 0,∀x ∈ S

2. p(x) satisfies the Law of total probability∫
S

p(x)dx = 1

3. the probability that X ∈ A, where A ⊆ S , is given by
P(X ∈ A) =

∫
A

p(x)dx
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Notation

We will ofter refer to the probability mass function and to the probability
density function as probability.
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Joint probability

Let X and Y be two random variables, the joint distribution is

p(x , y) = p(X = x and Y = y)

X and Y are independent if

p(x , y) = p(X = x)p(Y = y) = p(x)p(y)

pxy (x , y) = px(X = x)py (Y = y) = px(x)py (y)
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Conditional probability

Conditional probability: probability that X has value x conditioned on the
fact that Y value is y

p(x |y) = p(X = x |Y = y)

If p(y) > 0, the conditional probability of x given y is

p(x |y) =
p(x , y)

p(y)

if X and Y are independent

p(x |y) = p(x)
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Theorem of Total probability

Discrete random variables

p(x) =
∑
y∈Y

p(x |y)p(y)

Continuous random variables

p(x) =

∫
Sy

p(x |y)p(y)dy
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Bayes rule

Discrete random variables

p(x |y) =
p(y |x)p(x)

p(y)

(∗)
=

p(y |x)p(x)∑
x′∈X p(y |x ′)p(x ′)

(∗∗)
= ηp(y |x)p(x)

Continuous random variables

p(x |y) =
p(y |x)p(x)

p(y)

(∗)
=

p(y |x)p(x)∫
Sx

p(y |x ′)p(x ′)dx ′
(∗∗)
= ηp(y |x)p(x)

(*) = theorem of total probability

(**) = η is the normalization symbol
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Bayes rule’s meaning

Let us focus on the continuous r.v.

p(x |y) =
p(y |x)p(x)

p(y)

I x is the quantity we need to infer from the data y

I p(x) is the prior probability (or a priori probability), i.e. it is the
knowledge about x we have before using the information in y

I p(y) is the probability of the measurements y (e.g. how the sensor
works)

I p(x |y) is the posterior probability

I p(y |x) is the “inverse” probability. It describes how the x causes
the measurement y
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More on Bayes rule

Remark 1. if y is independent of x (i.e. if y carries no information
about x) we end up with

p(x |y) =
p(y |x)p(x)

p(y)
=

p(y , x)

p(x)

p(x)

p(y)
=

p(y)p(x)

p(x)

p(x)

p(y)
= p(x)

Remark 2. It is possible to condition the Bayes rule on Z = z

p(x |y , z) =
p(y |x , z)p(x |z)

p(y |z)
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Conditional independence

Let x and y be two independent r.v., we know that

p(x , y) = p(x)p(y)

What is the meaning of?

p(x , y |z) = p(x |z)p(y |z)

→ x and y are conditionally independent on another r.v. Z = z .

the r.v. y carries no information about the r.v. x if z is known
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Conditional independence

p(x , y |z) = p(x |z)p(y |z)

is equivalent to

p(x |z) = p(x |y , z)

p(y |z) = p(y |x , z)

Pay attention!
Conditional independence does not imply independence

p(x , y |z) = p(x |z)p(y |z) ; p(x , y) = p(x)p(y)

Independence does not imply conditional independence

p(x , y) = p(x)p(y) ; p(x , y |z) = p(x |z)p(y |z)
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Mean and Variance

Let X be a discrete r.v., the expectation (or expected value, or mean) is

E[X ] :=
∑
x∈X

xp(x)

The conditional mean of X assuming M is given by

E[X |M] :=
∑
x∈X

xp(x |M)

Let X be a continuous r.v., the expectation (or expected value, or mean)
is

E[X ] :=

∫
Sx

xp(x)dx

The conditional mean of X assuming M is given by

E[X |M] :=

∫
Sx

xp(x |M)dx
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Mean and Variance

If M = {Y = y} then

E[X |y ] :=

∫
Sx

xp(x |y)dx

Theorem
Given the r.v. X and a function g(·), the mean of the random variable
Y = g(X ) is

E[Y ] =

∫
Sx

g(x)p(x)dx

Theorem (Linearity)
E[a1g1(X ) + . . .+ aNgN(X )] = a1E[g1(X )] + . . .+ aNE[gN(X )]

( E[aX + b] = aE[X ] + b )
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Mean and Variance

Let X be a discrete r.v. with mean µ = E[X ], the variance σ2 is

σ2 := E[(X − µ)2] =
∑
x∈X

(x − µ)2P(x)

Let X be a continuous r.v. with mean µ = E[X ], the variance σ2 is

σ2 := E[(X − µ)2] =

∫
Sx

(x − µ)2p(x)dx

The following relationship holds

σ2 = E[(X − µ)2] = E[X 2]− E2[X ]

σ is called standard deviation
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Covariance

Let X and Y be two r.v. with mean µx = E[X ] and µy = E[Y ],
respectively. The covariance of X and Y is by definition the number

Σxy = E[(X − µx)(Y − µy )].

The following relationship holds

Σxy = E[(X − µx)(Y − µy )] = E[XY ]− E[X ]E[Y ]

The correlation coefficient r is the ratio

rxy =
Σxy

σxσy

with |rxy | ≤ 1

Remark. the r.v. X , Y and X − E[X ], Y − E[Y ] have the same

covariance and correlation coefficient
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Uncorrelation and Orthogonality

Definition
Two r.v. X , Y are uncorrelated if their covariance is zero, i.e.

Σxy = 0 ⇔ rxy = 0 ⇔ E[XY ] = E[X ]E[Y ]

Definition
Two r.v. X , Y are orthogonal (X⊥Y ) if

E[XY ] = 0
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Uncorrelation and Orthogonality

Observations:

I if X and Y are uncorrelated, then X −µx and Y −µy are orthogonal

X − µx⊥Y − µy ,

I if X and Y are uncorrelated and µx = 0 and µy = 0, then X⊥Y ,

I if X and Y are independent, then they are uncorrelated (the
converse is false),

I if X and Y are Gaussian and uncorrelated, then they are
independent,

I if X and Y are uncorrelated with mean µx , µy and variance σ2
x , σ2

y ,
then the mean and the variance of the r.v. Z = X + Y are

µz = µx + µy

σ2
z = σ2

x + σ2
y
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Conditional Mean and Variance

We already introduced the conditional mean of the r.v. X assuming
Y = y

µx|y = E[X |y ] =

∫
Sx

xp(x |y)dx

We can also define the conditional variance of the r.v. X assuming Y = y

σ2
x|y = E[(X − µx|y )2|y ] =

∫
Sx

(x − µx|y )2p(x |y)dx

Observations:

I E[g(X ,Y )|y ] =
∫
Sx

g(x , y)p(x |y)dx = E[g(X , y)|y ]

I E [E[X |y ]] = E[X ]
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Conditional Mean and Variance

Is there any difference between E[X |y ] and E[X |Y ]?

YES!!!

ϕ(y) = E[X |y ] is a function of y

whereas

ϕ(Y ) = E[X |Y ] is a random variable

Observations:

I E [E[X |Y ]] = E[X ]

I E [E[g(X ,Y )|Y ]] = E[g(X ,Y )]
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Mobile robots

We mainly focus on mobile robots.

I robot acquires information about the surrounding environment by
analyzing the data/measurements collected by its on-board sensors
(cameras, laser scanners, bumpers, odometers, GPS)

data −→ elaboration −→ information

Elaboration means to estimate things that are not directly measured
and/or to clean noisy measurements

I robot interacts with the environment through its actuators. The
robot ‘changes’ the environment that must be estimated
continuously

We are drowning in information and starving for knowledge.
–Rutherford D. Roger
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Examples of Unmanned Vehicles

UAV, UGV, etc
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Mobile robots: Sensors

Stereo Camera, RGBD Camera, Infrared sensor, Laser scanner,
Odometer, GPS, Force sensor
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Mobile robots

33 / 49



Mobile robot + Environment

In this course we call state the collection of all information that describes
the robot AND the environment. We indicate the state with x , or xt if it
is important to highlight the time.

I dynamic state: all the states that change over the time.
E.g. velocity of the robot, position of a moving obstacle, status of
some object within the scene (open door vs closed door), ...

I static state: all the states that do not change over the time.
E.g. position of a door/wall, static obstacles, dimension of the robot

Important examples:

I POSE: actual position and orientation of the robot

I LANDMARKS: stationary features of the environment that can be
identified and used to construct a map and then to plan
collision-free trajectories to reach a target (pre-defined or decided at
run-time)
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Mobile robot + Environment

The state xt is complete if it contains all the knowledge needed to predict
the future. Past measurements (zt−1, zt−2, . . .), past states
(xt−1, xt−2, . . .), past commands (ut−1, ut−2, . . .) do not carry additional
information to predict the future more accurately.

The state at time t can be seen as the value of a process Xt

Definition (Markov process)
A Markov process is a stochastic process whose past has no influence on
the future if its present is specified.

A complete state means that the process Xt is Markovian.

The goal of probabilistic robotics is to provide tools to compute “the

best” estimation of xt given the available measurements till time t
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Mobile robot + Environment

Even though Xt is defined for t ∈ R our information update has a
discrete nature due to the way we collect measurements from the sensors.
→ the motion of the mobile robot is continuous (it is describe by
differential equations) whereas, for example, the odometer gives a new
measurement every Ts seconds.

From now on the state xt will be updated with t ∈ Z, i.e.
xt , xt−1, . . . , xt−N . Xt is a discrete time Markov process.
However, some element of the state can take value in R.

Properties of Markov processes

I p(xn|xn−1, xn−2, . . . , x1) = p(xn|xn−1)

I E[Xn|Xn−1,Xn−2, . . . ,X1] = E[Xn|Xn−1]
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Notation

I Environment Measurement data zt provides information about the
actual state of the environment. E.g. camera images, laser scanner
measurements.

zt : measurement data at time t

zt1:t2 = {zt1 , zt1+1, . . . , zt2} : measurement data from time t1 to t2 ≥ t1

I Control data ut carries information about the change of state in the
environment. E.g. robot velocity

ut : control data at time t, i.e.

change of state in the interval (t − 1, t]

ut1:t2 = {ut1 , ut1+1, . . . , ut2} : control data from time t1 to t2 ≥ t1
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Complete state ⇔ Markov process

If xt is complete (i.e. the process Xt is a Markov process) the following
equalities hold

I state transition probability: how past states, past measurements,
and past and actual commands change the actual state

p(xt |x0:t−1, z1:t−1, u1:t) = p(xt |xt−1, ut)

(→ process equation)

I measurement probability: how past states, past measurements, and
past and actual commands influence the actual measurement

p(zt |x0:t , z1:t−1, u1:t) = p(zt |xt)

(→ measurement equation)

These equalities are examples of conditional independence:

the state xt is sufficient to predict the (potentially noisy) measurement zt .

Knowledge of any other variable, such as past measurements,

controls or even past states, is irrelevant if xt is complete
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Complete state ⇔ Markov process

Conditional independence is the main source

of tractability of probabilistic robotics algorithms

It is enough to store the last value of the state

The state transition probability and the measurement probability describe
the dynamical stochastic system of the robot and the environment
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Dynamic Bayes network

Dynamic Bayes network (DBN) or Hidden Markov Model (HMM) of our
dynamical stochastic system

state transition probability p(xt |xt−1, ut)

measurement probability p(zt |xt)
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Belief

A key concept in probabilistic robotics is that of belief:

I xt is the true state of the environment at time t

I bel(xt) is the robot knowledge about the state of the environment
at time t based on past and actual measurement z1:t , and past
and actual commands u1:t

bel(xt) = p(xt |z1:t , u1:t)

p(xt |z1:t , u1:t) is the posterior probability

I bel(xt) is the robot knowledge about the state of the environment
at time t based on past measurement z1:t−1 , and past and actual

commands u1:t

bel(xt) = p(xt |z1:t−1, u1:t)

p(xt |z1:t−1, u1:t) is the probability before incorporating zt (i.e. prior
probability)
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Bayes filtering
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Bayer recursive algorithm

Algorithm 1 bel(xt) =BayerFilter(bel(xt−1), ut , zt)

1: forall xt ∈ Sx do
2: bel(xt) =

∫
Sx

p(xt |ut , xt−1)bel(xt−1)dxt−1

3: bel(xt) = ηp(zt |xt)bel(xt)
4: end
5: return bel(xt)

the algorithm updates recursively the belief distribution bel(xt) by

integrating the actual control data ut (step 2) and the new measurement

zt (step 3) starting from the previous belief distribution bel(xt−1)
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Bayer recursive algorithm

Algorithm 2 bel(xt) =BayerFilter(bel(xt−1), ut , zt)

1: forall xt ∈ Sx do

2: bel(xt) =
∫
Sx

p(xt |ut , xt−1)bel(xt−1)dxt−1

3: bel(xt) = ηp(zt |xt)bel(xt)
4: end
5: return bel(xt)

I bel(xt) is the prediction in this two-step statistical filtering

(computed using the old bel(xt−1) and the current controls ut)
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Bayer recursive algorithm

Algorithm 3 bel(xt) =BayerFilter(bel(xt−1), ut , zt)

1: forall xt ∈ Sx do
2: bel(xt) =

∫
Sx

p(xt |ut , xt−1)bel(xt−1)dxt−1

3: bel(xt) = ηp(zt |xt)bel(xt)
4: end
5: return bel(xt)

I bel(xt) is the measurement update in this two-step statistical

filtering (computed integrating bel(xt) and the new measurements
zt)
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Bayer recursive algorithm

In the book “Probabilistic Robotics”, the authors report the following
Assumptions:

I the state xt is complete

I ut are chosen at random

before deriving the Bayer filter

The second assumption does not hold when we want to decide ut to
fulfill some well defined goal.

We will see that it is enough to ask that ut is a function of past

measurements/states
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Bayer recursive algorithm

Prediction step

bel(xt) = p(xt |z1:t−1, u1:t)

th total prob.
=

∫
Sx

p(xt |xt−1, z1:t−1, u1:t)p(xt−1|z1:t−1, u1:t)dxt−1

Markov
=

∫
Sx

p(xt |xt−1, ut)p(xt−1|z1:t−1, u1:t)dxt−1

ut random
=

∫
Sx

p(xt |xt−1, ut)p(xt−1|z1:t−1, u1:t−1)dxt−1

=

∫
Sx

p(xt |xt−1, ut)bel(xt−1)dxt−1 line 2: prediction
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Bayer recursive algorithm

Measurement update

bel(xt) = p(xt |z1:t , u1:t)

Bayes rule
=

p(xt |z1:t−1, u1:t)p(zt |xt , z1:t−1, u1:t)

p(zt |z1:t−1, u1:t)

= ηp(xt |z1:t−1, u1:t)p(zt |xt , z1:t−1, u1:t)
Markov

= ηp(xt |z1:t−1, u1:t)p(zt |xt)
= ηp(zt |xt)bel(xt) line 3: measurement update
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Open questions

I How strong the Markov assumption is (i.e. xt complete)?

[we have always to deal with noisy measurements and uncertain
model]

I When can the a priori and posteriori probabilities (bel(xt) and
bel(xt)) be really computed?

I What about the computational efficiency?
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