1

Special Topics in AI: Intelligent Agents and Multi-Agent Systems

Course Presentation and Introduction

Alessandro Farinelli

Lecture Material

Artificial Intelligence – A Modern Approach by Stuart Russell - Peter Norvig

An Introduction to Multiagent Systems by Michael Wooldridge

Multiagent Systems. 2nd Edition.

Gherard Weiss (Ed.)

Lecture slides and Info:

Course Organization

Wed 17th Oct. 15:30 -- 17:30 Room M; Tue 23rd Oct. 15:30 -- 17:30; Room H Tue 30th Oct. 15:30 -- 17:30; Room H Mon. 5th Nov. 16:00 -- 18:00; Sala Verde Tue. 13th Nov. 15:30 -- 17:30; Room H Tue. 20th Nov. 15:30 -- 17:30; Room H Tue. 27th Nov. 15:30 -- 17:30; Room H Tue. 4th Dec. 15:30 -- 17:30; Room H Tue. 11th Dec. 15:30 -- 17:30; Room H

Course Aim

At the end of this course will be able to:

- 1. Understand main issues and research challenges for Multi-Agent Systems
 - Decentralized Coordination, Market Based Allocation, Reasoning under uncertainty
- 2. Model and solve Decentralized Coordination problems
 - DCOPs (exact and approx. methods)
- 3. Understand main models and solution techniques for decision making under uncertainty
 - MDP, POMDPs, Dec-MDPs

Course Program

- 1. Decentralized Coordination
 - Modeling Decentralized Coordination as DCOPs
 - DCOPs solution techniques (exact and approx.)
- 2. Market Based Allocation
 - Auction Mechanisms, Combinatorial auctions, Sequential auctions
- 3. Reasoning under uncertainty
 - MDPs, POMDPs
 - Probabilistic approaches for robot navigation

Exam modalities

- Students read, present to the class, and discuss a set of selected papers.
- Student together with instructor choose papers
 - <u>Topics</u>: Decentralized optimization, Market-Based Allocation, Reasoning under uncertainty (robotics)
- Presentation:
 - From 45mins to 1 hour + questions
 - During the last three lessons (4th 11th 18th Dec.)

Outline

- Course Presentation
 - Aims, schedule, exam modalities
- Intelligent agents
 - AI, Intelligent agents, Rationality
- Multi-Agent Systems
 - Main features, techniques, applications

What is AI?

Systems that think rationally
Systems that act rationally

Thinking humanly: Cognitive Science

- Cognitive Neuroscience → theories of internal activities of the brains
 - Level of abstraction? Validation ?
- Available theories do not explain human-level intelligence

Thinking rationally: Laws of thoughts

- Normative not descriptive
- Problems:
 - Intelligence not always based on logical deliberation
 - What are the purpose of thinking ? Which thoughts should I have out of all the ones that I could have

Acting rationally

- Do the right thing
 - Action that maximizes some measure of performances given current information
- Thinking should be in service of rational actions
 - Thinking is not necessary (e.g., blinking reflex)
- Correct thinking (inference) does not always result in rational actions
 - Thinking is not sufficient

Rational agents

- Agent: entity that perceives and acts
- Rational agent
 - A function from percept histories to actions

$f:\mathcal{P}^* ightarrow \mathcal{A}$

 For a given class of environments and tasks we seek the agent with best performance (<u>optimization problem</u>)

Agents and Environments

- <u>Agents</u>: humans, softbots, thermostats, robots, etc.
- Agent function: maps perception histories to actions
- <u>Agent program</u>: implements the agent function on the physical architecture

Rationality

- <u>Given</u> a performance measure for environment sequences
- <u>Rational agent:</u> chooses actions that maximizes the expected value given percept sequence
- Rational ≠ omniscient
 - Perception may not supply all relevant info
- Rational ≠ clairvoyant
 - Action outcome might be unexpected
- Hence Rational ≠ successful
- Rational => exploration, learning, autonomy,...

	AI (recent) history
1943	McCulloch & Pitts: Boolean circuit model of brain
1950	Turing's "Computing Machinery and Intelligence"
1950s	Early Al programs, e.g., Samuel's checkers program, Newell & Simon's Logic Theorist
1956	Dartmouth meeting: "Artificial Intelligence" adopted
1965	Robinson's complete algorithm for logical reasoning
1966-74	AI discovers computational complexity
	Neural network research almost disappears
1969-79	Early development of knowledge-based systems
1980-88	Expert systems industry booms
1988-93	Expert systems industry busts: "AI Winter"
1985-95	Neural networks return to popularity
1988-	Resurgence of probability; "Nouvelle AI": ALife, GAs, soft computing
1995-	Agents, agents, everywhere
2003–	Human-level AI back on the agenda

AI Exciting Applications

- Game Playing
 - IBM's Deep Blue (1997)
- <u>Poker</u> (Now) http://webdocs.cs.ualberta.ca/~games/poker/
- Autonomous Control
 - Google self driving car http://www.ted.com/talks/sebastian_thrun_google_s_driverle ss_car.html
- Search and Recue/hostile environments
 - RoboCup Rescue (http://www.robocuprescue.org/)
- Human Agent Collectives
 - Orchid project (http://www.orchid.ac.uk/project-aims/)

Example: Search and Rescue

LabRoCoCo http://labrococo.dis.uniroma1.it/wiki/doku.php

Multi-Agent Systems

- (Durfee and Lesser 1989): "loosely coupled network of problem solvers that interact to solve problems that are beyond the individual capabilities or knowledge of each problem solver "
- Problem solvers: Intelligent agents
- (John Gage, Sun Microsystems) "The network is the computer"

Example: cooperative foraging

MAS Characteristics

- (K. P. Sycara 1998)
 - 1. Each agent has incomplete information or capabilities for solving the problem and, thus, has a limited viewpoint
 - 2. There is no system global control
 - 3. Data is decentralized
 - 4. Computation is asynchronous

Why MAS?

- To solve problem that are too large for a single agent
 - Problem decomposition
- To Avoid single point of failure in critical applications
 Disaster mitigation/urban search and rescue
- To model problem that are naturally described with collectives of autonomous components
 - Meeting scheduling, Traffic control, Forming coalition of customers, ...

Electricity group purchasing

- Allow group purchasing among electricity consumers
- Very popular successful cases
 - Groupon, Groupalia
 - UK Labour party initiative on collective electricity purchase

Group synergies

- Traditional group purchasing based on group size
- Group synergy: complementary energy restrictions
 - Flattened demand => Better prices

Electricity Group Purchasing

• Virtual Electricity Consumer (VEC): A group of consumers that act in the market as a single energy consumer.

Coalition Structure Generation

- Aim: identify the set of non-overlapping coalitions with maximal value
- NP-Hard
- Binary integer problem formulation (IP)

Empirical evaluation

- Real energy profiles from houses in UK
 - Energy consumption averaged over a month
- 20 agents
- Analyze average user gain and coalition structure:
- network structure (Random, Scalefree and Small-World)
- # friends acquaintances (#edges/#nodes)
- Different market conditions

Market (€/KWh)	M1	M2	M3
$\mathbf{p}_{\mathbf{F}}$	70	60	40
$\mathbf{p}_{\mathbf{S}}$	80	80	80

User gain and stability

Topology	Density	% Average Gain			% Empty Core		
	Density	M1	M2	M3	M1	M2	M3
Random	Low	0.5	1.1	6.6	0	2	0
	Medium	0.5	1.3	7.2	48	31	58
	High	0.6	1.3	7.1	54	48	59
ScaleFree	Low	0.6	1.4	7.2	0	0	0
	Medium	0.6	1.4	7	50	40	52
	High	0.6	1.4	7.2	64	60	52

- Lower forward-market price => higher gain
- Higher network density => slightly higher gain, many unstable coalitions
- Similar considerations for small-world

