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We study problems related to robotics for 

disaster response:

4
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We study problems related to robotics for 

disaster response:

Other domains exist (e.g. traffic control, energy or 

water distribution ).

However, ROBOTICS is the most challenging

5

First Responders (FRs) at the scene of a disaster 

require accurate Situational Awareness

Situation Awareness[Endsley 2000]:  The ability to 

make sense, and predict what is happening within an 

environment

6

This information is necessary to prioritise 

intervention

7

Such information is necessary to prioritise 

intervention

More information will allow the first responders to 

discover (and save) more casualties

8
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FRs request imagery using Personal Digital 

Assistants (PDAs)

9

Unmanned Vehicles (UVs) can acquire accurate 

information

UVs can collect and process more information 

than humans
10

Unmanned Vehicles (UVs) can acquire accurate 

information

UVs can reach places dangerous to humans

11

Imagery is provided by a team of Unmanned 

Aerial Vechicles (UAVs)

12
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Within this setting, coordination is necessary to 

improve the performance

By coordinating, the UAVs can explore more areas

13

Within this setting, coordination is necessary to 

improve the performance

By coordinating, the UAVs can also decide to join forces in 

exploring a vast area

14

UAVs coordinate to attend the imagery tasks

15

This coordination should happen in a 

decentralised fashion

16
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This coordination should happen in a 

decentralised fashion

17

This coordination should happen in a 

decentralised fashion

A Decentralised System improves Scalability

18

This coordination should happen in a 

decentralised fashion

A Decentralised System improves Robustness

19

This coordination should happen in a 

decentralised fashion

A Decentralised System improves Robustness

No central point of failure
20
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This coordination should take multiple objectives 

into account

Search for casualties

21

This coordination should take multiple objectives 

into account

Track the ones that have been found

22

This coordination should take risk and 

uncertainty into account

Uncertainty = noisy sensors / faulty 

communication channels … 
23

This coordination should take risk and 

uncertainty into account

Risk = Make a sub-optimal decision (e.g. 

explore area with no casualties)
24
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Coordination problems are often 

represented as Distributed Constraint 

Optimisation Problems (DCOP) 

• A DCOP is a tuple <A, X, D, U> s.t.:

– A is a set of agents

– X is a set of variables (typically one per agent)

– D is a set of discrete domains (one per variable)

– U is a set of constraint functions defined over the 

variables

• To solve a DCOP the agents maximise the sum 

of the constraints in U. 

25

Variables and constraints are useful to 

encompass the sparse agents interactions

Variables = decisions
Functions = interactions

26

Multiple decentralised coordination algorithms 

exist in literature:

Communication Cost

Negotiation Algorithms

Best Response (BR)

Market Based Allocation 

(MBA)

Auctions Techniques (AT)

Optimality

27

Negotiation Algorithms

Best Response (BR)

Market Based Allocation 

(MBA)

Auctions Techniques (AT)

Many algorithms provide quality guarantees at 

the cost of a higher computation

Complete 

Algorithms

DPOP

OptAPO

ADOPT

Communication Cost

Iterative Algorithms

Distributed Stochastic 

Algorithm (DSA) 

Maximum Gain 

Messaging (MGM)

Optimality

28
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Max-Sum appears as a good compromise 

between feasibility and solution’s quality

Complete 

Algorithms

DPOP

OptAPO

ADOPT

Communication Cost

Optimality

Negotiation Algorithms

Best Response (BR)

Market Based Allocation 

(MBA)

Auctions Techniques (AT)

Iterative Algorithms

Distributed Stochastic 

Algorithm (DSA) 

Fictitious Play (FP)

Max-Sum

Algorithm

29

Max-Sum has been applied to multiple 

Situational Awareness problems

• Monitoring Spatial Phenomena [Stranders, IJCAI’09]

• Patrolling / Pursuit Evasion [Stranders and Delle Fave, AAAI’ 
10]

• Resource Allocation in Disaster Response Scenarios [Mac 
Arthur and Ramchurn AAAI’ 11]

• Target Search [Delle Fave, AAMAS’ 10]

• Dynamic Task Assignment for UAVs [Delle Fave IAAI’ 12, ICRA’ 
12]

• Target Tracking [Rogers, AAMAS’ 08]
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Max-Sum has been applied to multiple 

Situational Awareness problems

• Monitoring Spatial Phenomena [Stranders, IJCAI’09]

• Patrolling / Pursuit Evasion [Stranders and Delle Fave, 
AAAI’ 10]

• Resource Allocation in Disaster Response Scenarios [Mac 
Arthur and Ramchurn AAAI’ 11]

• Target Search [Delle Fave, AAMAS’ 10]

• Dynamic Task Assignment for UAVs [Delle Fave ICRA’ 12]

• Target Tracking [Rogers, AAMAS’ 08]

However:

All this work has been tested only in simulation

31

Max-Sum has been applied to multiple 

Situational Awareness problems

• Monitoring Spatial Phenomena [Stranders, IJCAI’09]

• Patrolling / Pursuit Evasion [Stranders and Delle Fave, 
AAAI’ 10]

• Resource Allocation in Disaster Response Scenarios [Mac 
Arthur and Ramchurn AAAI’ 11]

• Target Search [Delle Fave, AAMAS’ 10]

• Dynamic Task Assignment for UAVs [Delle Fave ICRA’ 12]

• Target Tracking [Rogers, AAMAS’ 08]

Moreover:

There exists no systematic methodology to apply max-

sum to all these different problems.

32
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Max-Sum has been applied to multiple 

Situational Awareness problems

• Monitoring Spatial Phenomena [Stranders, IJCAI’09]

• Patrolling / Pursuit Evasion [Stranders and Delle Fave, 
AAAI’ 10]

• Resource Allocation in Disaster Response Scenarios [Mac 
Arthur and Ramchurn AAAI’ 11]

• Target Search [Delle Fave, AAMAS’ 10]

• Dynamic Task Assignment for UAVs [Delle Fave ICRA’ 12]

• Target Tracking [Rogers, AAMAS’ 08]

Moreover:

Max-Sum cannot address multiple objectives nor 

uncertainty.

33

Max-Sum runs over a Factor Graph, a 
bipartite graph:

A factor graph contains two types of nodes:

Variables and Function nodes

34

Max-Sum runs over a Factor Graph, a 
bipartite graph:

Variables represent agents decisions

35

Max-Sum runs over a Factor Graph, a 
bipartite graph:

Functions represent a DCOP’s constraints (i.e. the 

agent’s utility, the assignment of a task…)

36



11/1/2012

10

Max Sum is an approximated message 
passing algorithm 

• Messages flow between function and variable nodes of the factor 
graph

– From variable to function

– From function to variable

37

2 types of messages are passed between 
the nodes

38

2 types of messages are passed between 
the nodes

39

2 types of messages are passed between 
the nodes

An approximate solution is computed by calculating the 

argument of the sum of the messages flowing into each 

variables

40
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Max-Sum belongs to a broader class of 

algorithms: the Generalised Distributive 

Law

• GDL algorithms proceed over 3 phases:

– PHASE 1: transform the constraint graph so that 

no cycles are present.

• 2 techniques: junction tree (DFS in DPOP)/ spanning 

tree

41

Max-Sum belongs to a broader class of 

algorithms: the Generalised Distributive 

Law

• GDL algorithms proceed over 3 phases:

– PHASE 1: transform the constraint graph so that 

no cycles are present.

• 2 techniques: junction tree (DFS in DPOP)/ spanning 

tree

However: 

• a spanning tree yields an approximate solution (but 

bounded)

• a junction tree yields an exponential cost in terms of 

computation and communication. 
42

Max-Sum belongs to a broader class of 

algorithms: the Generalised Distributive 

Law

• GDL algorithms proceed over 3 phases:

– PHASE 1: transform the constraint graph so that 

no cycles are present.

• 2 techniques: junction tree (DFS in DPOP)/ spanning 

tree

– PHASE 2: run the “Max-Sum” message passing 

algorithms (util propagation in DPOP).

• Solves the problem optimally because it is acyclic
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Max-Sum belongs to a broader class of 

algorithms: the Generalised Distributive 

Law

• GDL algorithms proceed over 3 phases:

– PHASE 1: transform the constraint graph so that 

no cycles are present.

• 2 techniques: junction tree (DFS in DPOP)/ spanning 

tree

– PHASE 2: run the “Max-Sum” message passing 

algorithms (util propagation in DPOP).

• Solves the problem optimally because it is acyclic

– PHASE 3: use Value Propagation to retrieve a 

consistent solution.  
44
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We use GDL algorithms to build a system to 

present FRs with accurate SA using UAVs

46

To deploy max-sum we propose a 5 steps 

methodology

STEP 1 / 2: WHAT are the nodes?

STEP 3: WHO controls the nodes?

STEP 4: WHEN are messages 

computed?

STEP 5: HOW do nodes know their 

neighbours?
47

STEP 1 / 2: WHAT are the nodes?

48
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STEP 1 / 2: WHAT are the nodes?

Tasks

Utilities of Tasks

49

STEP 3: WHO controls the nodes?

50

STEP 3: WHO controls the nodes?

UAVs

51

STEP 3: WHO controls the nodes?

UAVs

PDAs

52
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STEP 4: WHEN are messages 

computed?

53

Synchronised

WAIT

STEP 4: WHEN are messages 

computed?

54

Synchronised Reactive

When receive msg
WAIT

STEP 4: WHEN are messages 

computed?

55

Synchronised Periodical

Every T seconds

Reactive

When receive msg
WAIT

STEP 4: WHEN are messages 

computed?

56
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STEP 5: HOW do nodes know their 

neighbours?

57

UAVs broadcast 

their position

STEP 5: HOW do nodes know their 

neighbours?

58

Tasks broadcast 

their properties

STEP 5: HOW do nodes know their 

neighbours?

59

The task utility weights the problem’s constraints 

to improve the allocation

Tasks parameters

UAVs parameters

60
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Task Priority

The Priority represents a task’s importance

61

The Urgency prevents the tasks starvation

Task Urgency

62

The duration models the probability that the 

UAVs will complete the task

Task Termination:

Poisson Process

(details in the paper)

63

This probability allows to trade off between the 

UAVs that can attend the task

Time span between the UAV 

with the highest battery life and 

the UAV closest to the task

64
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The allocation varies depending on the UAVs 

capabilities

Task 2 (HP, LU, LD)

Task 1 (LP, LU, LD)

UAV 1 (HB)

UAV 2 (HB)

The UAVs can attend both the tasks

65

Why is this decision made?

HB means that        

is very high for 

both the UAVs

66

Each UAV can complete 

both the tasks

HB means that        

is very high for 

both the UAVs

Why is this decision made?

67

Max-sum allocate each UAV to one 

different task so as to maximise the utility

Why is this decision made?

68
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The allocation varies depending on the UAVs 

capabilities

Task 2 (HP, LU, LD)

Task 1 (LP, LU, LD)

UAV 1 (LB)

UAV 2 (LB)

The UAVs may not be able to attend 

any task -> they join their forces
69

LB means that        

is very low for 

both the UAVs

Why is this decision made?

70

The UAVs might not be 

able to complete one 

single  task even working 

together

LB means that        

is very low for 

both the UAVs

Why is this decision made?

71

Max-sum allocate both the 

UAVs to the HP task so as to 

maximise the utility

Why is this decision made?

72
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The allocation varies depending on the UAVs 

capabilities

Task 2 (HP, LU, LD)

Task 1 (LP, LU, LD)

UAV 1 (HB)

UAV 2 (LB)

The UAVs may be able to attend both the 

tasks -> they revise their decisions
73

HB for 1 UAV means 

that        is very high for 

only 1 UAV

Why is this decision made?

74

HB for 1 UAV means 

that        is very high for 

only 1 UAV

The UAVs will be able to 

complete the HP task if 

they work together

Why is this decision made?

75

When they both reach 

the HP task,       is the 

same for both the UAVs 

One UAV hands over the 

HP task and goes to 

complete the LP one

Why is this decision made?

76
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VIDEOs legend

UAVs video

Factor Graph
Flight summary

77 78
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DCOPs are not sufficient to model 
complex interactions

Problem:Problem:Problem:Problem: the agents decisions cannot be 
represented considering a single scalar 
function

Example:Example:Example:Example: mission objective + computation, 
communication, and battery life

Consequence:Consequence:Consequence:Consequence: Standard DCOP do not encompass 
the complexity of the real world

81

There exist many type of complex 
interactions

Examples: Examples: Examples: Examples: 
• Multiple conflicting objectives (search, track, 

avoid dangerous areas)

• Uncertainty and risk (risk to search dangerous 
areas or areas with no casualties because 
information is uncertain)

82

Such complex interactions can be 
modeled using partially ordered 

functions

ExampleExampleExampleExample:
• Bi-objective functions: (1,2), (2,1), 

(1,1)

• Mean and variance: (3,1.3), (5,2.5), 
(1,5.4)

83

Such complex interactions can be 
modeled using partially ordered 

functions

ExampleExampleExampleExample:
• Bi-objective functions: (1,2), (2,1), 

(1,1)

• Mean and variance: (3,1.3), (5,2.5), 
(1,5.4)

Which assignment is the best?

84
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DCOPs + PO functions = new CLASS of 

problems: PO-DCOPs

• A PO-DCOP is a tuple <A, X, D, U> s.t.:

– A is a set of agents

– X is a set of variables (typically one per agent)

– D is a set of discrete domains (one per variable)

– U is a set of partially-ordered constraint functions 

defined over the variables

85

DCOPs + PO functions = new CLASS of 

problems: PO-DCOPs

• A PO-DCOP is a tuple <A, X, D, U> s.t.:

– A is a set of agents

– X is a set of variables (typically one per agent)

– D is a set of discrete domains (one per variable)

– U is a set of partially-ordered constraint functions 

defined over the variables

What is the solution of a PO-DCOP?

86

The solutions of a PO-DCOP are similar 

to those of a DCOP

• The solutions are all the assignments of the 

variables in X that optimise (     ≈ counting 

operator) the aggregation of the partially 

ordered functions in U (     ≈ aggregation 

operator)

87

The solutions of a PO-DCOP are similar 

to those of a DCOP

• The solutions are all the assignments of the 

variables in X that optimise (     ≈ counting 

operator) the aggregation of the partially 

ordered functions in U (     ≈ aggregation 

operator)

88
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A PO-DCOP has multiple non-
dominated solutions

ExampleExampleExampleExample:
• Bi-objective functions: (1,2), (2,1), 

(1,1)

• Mean and variance: (3,1.3), (5,2.5), 
(1,5.4)

89

The solutions of a PO-DCOP are similar 

to those of a DCOP

• The solutions are all the assignments of the 

variables in X that optimise (     ≈ counting 

operator) the aggregation of the partially 

ordered functions in U (     ≈ aggregation 

operator)

Can we use GDL algorithms to solve 

them? 

90

PO-DCOPs structure allows to use GDL 

algorithms

• The abstract GDL framework uses two operators:

– for combining sets of values (“sum”)

– for selecting values from a set (“max”)

• Exploits the fact that       distributes over 

to minimise computation

By changing     and     in the message 

passing algorithms we can 

instantiate new algorithms

91

The GDL solves PO-DCOPs using local message 

passing

• Messages flow between function and variable 

nodes of the factor graph

– From variable to function

– From function to variable

92
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PO-DCOPs structure allows to use GDL 

algorithms

• The abstract GDL framework uses two operators:

– for combining sets of values (“sum”)

– for selecting values from a set (“max”)

• Exploits the fact that       distributes over 

to minimise computation

Main Theorem: if the constraint graph 

representing a PO-DCOP is acyclic then  

GDL algorithms produce optimal 

solutions
93

PO-DCOPs structure allows to use GDL 

algorithms

• The abstract GDL framework uses two operators:

– for combining sets of values (“sum”)

– for selecting values from a set (“max”)

• Exploits the fact that       distributes over 

to minimise computation

Main Theorem: if the constraint graph 

representing a PO-DCOP is acyclic then  

GDL algorithms produce optimal 

solutions

We can instantiate ALL GDL 

algorithms!

94
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We instantiate PO-DCOP to solve 
multimultimultimulti----objectiveobjectiveobjectiveobjective problems

ProblemProblemProblemProblem: multiple (conflicting) 
objectives exist

ExampleExampleExampleExample: In search and rescue, 
agents need to search, track, and 
maintain communications 96
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We define MO-DCOPs: constraint 
functions become constraint 

vectors

x1

x2

x3

U1(x1,x2)
= [U11, U12]

U2(x2,x3)
= [U21, U22]

Local constraint vectors

MO-DCOPs: 

97

x1

x2

x3

U1(x1,x2)
= [U11, U12]

U2(x2,x3)
= [U21, U22]

Global constraint 
vector

U(x) = argmax ∑ Ui(xi)

= argmax∑ [Ui1,Ui2]

MO-DCOPs: 

We define MO-DCOPs: the global  
function become a global vector

98

MO-DCOPs can be directly encoded 
into a factor graph

U1 =[U11, U12]

U2 =[U21, U22]
x1

x2

A1 A2

99

MO-DCOPS have multiple optimal 
solutions which are non-

comparable

x1 x2 UUUU1 =[U11, U12] UUUU2 =[U21, U22] UUUU = UUUU1 + UUUU2

0 0 (1,2) (2,0) (3,2)

0 1 (2,1) (0,2) (2,3)

1 0 (0,0) (4,3) (4,3)

1 1 (1,1) (2,3) (3,4)

dominates

100
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MO-DCOPS have multiple optimal 
solutions which are non-

comparable

x1 x2 UUUU1 =[U11, U12] UUUU2 =[U21, U22] UUUU = UUUU1 + UUUU2

0 0 (1,2) (2,0) (3,2)

0 1 (2,1) (0,2) (2,3)

1 0 (0,0) (4,3) (4,3)

1 1 (1,1) (2,3) (3,4) dominates

101

MO-DCOPS have multiple optimal 
solutions which are non-

comparable

x1 x2 UUUU1 =[U11, U12] UUUU2 =[U21, U22] UUUU = UUUU1 + UUUU2

0 0 (1,2) (2,0) (3,2)

0 1 (2,1) (0,2) (2,3)

1 0 (0,0) (4,3) (4,3)

1 1 (1,1) (2,3) (3,4)

Non-dominated vectors

102

MO-DCOPS have multiple optimal 
solutions which are non-

comparable

x1 x2 UUUU1 =[U11, U12] UUUU2 =[U21, U22] UUUU = UUUU1 + UUUU2

0 0 (1,2) (2,0) (3,2)

0 1 (2,1) (0,2) (2,3)

1 0 (0,0) (4,3) (4,3)

1 1 (1,1) (2,3) (3,4)

Pareto optimal solutions: 

it is not possible to increase the value of one objective 
without decreasing the value of another.

103

We instantiate Bounded Multi-
Objective Max-Sum (B-MOMS)

• Extends the Bounded Max-Sum 
Algorithm

• Proceeds in 3 phases:3 phases:3 phases:3 phases:

1.Bounding phase

2.Max-Sum phase

3.Value Propagation phase

104
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Phase 1: The Bounding Phase 
provides quality guarantees

• Prune the factor graph to a tree to 
guarantee convergence of the 
max-sum algorithm

• Remove edges with minimal 
impact on solution quality

w11 w22

w12

w21

U2 =[U21, U22]

105

U1 =[U11, U12]

x1

x2
A1 A2

Phase 1: The Bounding Phase 
provides quality guarantees

• Prune the factor graph to a tree to 
guarantee convergence of the 
max-sum algorithm

• Remove edges with minimal 
impact on solution quality 106

w11 w22 

w12

w21

U’2 =[U’21, U’22]

U1 =[U11, U12]

x1

x2
A1 A2

Phase 2: The Max-Sum Phase 
solves the approximated problem

f2v

v2f

U’2

U1 =[U11, U12]

x1

x2
A1 A2

• Optimally solves the approximated problem
(Main Theorem discussed earlier)

107

Phase 2: The Max-Sum Phase 
solves the approximated problem

108

• Messages flow between function and variable nodes of the factor 
graph

– From variable to function

– From function to variable

However, max and + operators are generalised 

to consider multiple objectives
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x1 x2 UUUU1 =[U11, U12]

0 0 (1,2) + (0,1)

0 1 (2,1) + (1,0)

1 0 (0,0) + (0,1)

1 1 (1,1) + (1,0)

U1 =[U11, U12]

x1
x2

x2 x2 -> U1

0 (0,1)

1 (1,0)

Phase 2: Max-Sum messages now 
contain multiple non-dominated 

vectors
Example: computing the message from U1 to x1 :

109

x1 x2 UUUU1 + Q2 ->1

0 0 (1,2) + (0,1)

0 1 (2,1) + (1,0)

1 0 (0,0) + (0,1)

1 1 (1,1) + (1,0)

PO

110

U1 =[U11, U12]

x1
x2

x2 x2 -> U1

0 (0,1)

1 (1,0)

x1 U1 -> x1

0 (1, 3), (3, 1)

1 (2,1)

PO

Result:

Phase 2: Max-Sum messages now 
contain multiple non-dominated 

vectors
Example: computing the message from U1 to x1 :

At the end of phase 2, each agent 
recovers its corresponding PO 

assignments

x1

U1 =[U11, U12]

x2

U’2

A1 A2

x1 PO

0 (0,0)

1 (2,0), (1,1)

x2 PO

0 (2,0)

1 (1,1)

111

Phase 3: Value Propagation selects 
one Pareto optimal assignment

x1

U1 =[U11, U12]

x2

U’2

112

A1 A2

x1 PO

0 (0,0)

1 (2,0), (1,1)

x2 PO

0 (2,0)

1 (1,1)

U(x1 = 1, x2=0) = (2,0)

U(x1 = 1, x2=1) = (1,1)

Two solutions: (1, 0) and (1, 1)
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Phase 3: Value Propagation selects a 
consistent Pareto optimal assignment

Either at randomrandomrandomrandom, or based on a logical logical logical logical 
conditionconditionconditioncondition.

x1

U1 =[U11, U12]

x2

U’2

113

A1 A2

x1 PO

0 (0,0)

1 (2,0), (1,1)

x2 PO

0 (2,0)

1 (1,1)

Our results: B-MOMS typically provides 
solutions within 50% of the optimal

114

M = # agents

Density of the graph

Acyclic graphs

Fully connectedA
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Our results: B-MOMS is optimal on 
acyclic graphs
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Our results: On acyclic graphs, the 
runtime is, on average 0.5 sec per 

agent for up to 100 agents

116
Number of agents
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Our results: Even on fully 
constrained problems, the runtime 
is < 30 minutes for 100 agents

117
Number of agents

This seminar is about coordination problems 

and algorithms 

I. Motivation

II. Case Study of Coordination on Unmanned Aerial 
Vehicles

III. Partially Ordered Distributed Contraint 
Optimisation Problems (PO-DCOPs)

a. Problem and Algorithms Definition

b. Multi Objective Distributive Constraint Optimisation 
Problems (MO-DCOPs)

c. Risk Aware Distributive Constraint Optimisation 
Problems (RA-DCOPs)

IV. Conclusions and Future Work 
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So, local functions output probability 

distributions instead of scalars

119

Random
Variable

The new objective is to maximise expected 

utility

120

Sum of local constraint values (= also random variable)

Objective: maximise expected utility of the sum of 
values
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Why maximise expected utility instead of 

expected value?

121

Instead of

Agents might not be risk neutral!

Utility function represents risk profile

122

Standard
risk 
theory 

Agents might not be risk neutral!

Utility function represents risk profile

123= $$$$

Standard
risk 
theory 

Agents might not be risk neutral!

Utility function represents risk profile

124= civilians saved

Standard
risk 
theory 
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Risk Aware-DCOPs (RA-DCOPs) formalise 

uncertainty and risk in decentralised 

coordination problems

125

An RA-DCOP consists of:
1. Discrete decision variables

2. Local functions expressing 
uncertain interactions 
between agents

3. A utility function mapping 
value to utility

4. A global objective

DCOP algorithms cannot solve 

RA-DCOPs

In general, an RA-DCOP can not be expressed as a sum of 

factors (U is not linear):

126

So, RA-DCOPs are not DCOPs!

RA-DCOPDCOP

What if we ignore uncertainty by using a DCOP

algorithm to solve RA-DCOPs?

What happens if we transform a RA-DCOP into a 

DCOP by defining local functions as follows?

127

And thus maximise the left-hand side of:

What if we ignore uncertainty by using a DCOP

algorithm to solve RA-DCOPs?

128Red Green Blue
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129

An example:

What if we ignore uncertainty by using a DCOP

algorithm to solve RA-DCOPs?

130

An example:

Adding random variables: 

convolution operator

What if we ignore uncertainty by using a DCOP

algorithm to solve RA-DCOPs?

131

An example:

What if we ignore uncertainty by using a DCOP

algorithm to solve RA-DCOPs?

Not additive:

132

What if we ignore uncertainty by using a DCOP

algorithm to solve RA-DCOPs?
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133-1 instead of 2!

What if we ignore uncertainty by using a DCOP

algorithm to solve RA-DCOPs?

134-1 instead of 2!

Sub-optimality!

What if we ignore uncertainty by using a DCOP

algorithm to solve U-DCOPs?

Main challenge: what should      and         be to 

solve RA-DCOPs?

135

DCOP:

RA-DCOP:

How do we define       and      for RA-

DCOPS?  

136
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How do we define      and      for U-DCOPS?  

137

sums random variables: convolution

How do we define      and      for U-DCOPS?  

138

sums random variables: convolution

should select random variables that have the potential

of maximising global expected utility

selects all random variables that are not 

dominated under 

139

RA-DCOP

DCOP

To benchmark U-GDL, we compared against a 

GDL algorithm (max-sum)

140

PO-GDL
RA-DCOP

vs.

Main question: 
What happens if we ignore 

uncertainty?

GDL
DCOP



11/1/2012

36

To benchmark U-GDL, we compared against a 

GDL algorithm (max-sum)
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DCOPRA-DCOP

What happens if we ignore uncertainty?

Messages are smaller

142

PO-GDL GDL

Sparse graphs

Dense graphs

143

PO-GDL GDL

Sparse graphs

Dense graphs

What happens if we ignore uncertainty?

Less computation needed

144

PO-GDL

GDL

What happens if we ignore uncertainty?

We lose optimality!
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This seminar is about coordination problems 

and algorithms 

I. Motivation

II. Case Study of Coordination on Unmanned Aerial 
Vehicles

III. Partially Ordered Distributed Contraint 
Optimisation Problems (PO-DCOPs)

a. Problem and Algorithms Definition

b. Multi Objective Distributive Constraint Optimisation 
Problems (MO-DCOPs)
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To summarise:

• We presented a detailed study of coordination 

problems and GDL algorithms:

– In practice: we presented a case study where max-

sum is deployed in a multi-agent system for 

disaster response.

– In theory: we extended the DCOP and the GDL 

frameworks to represent problems involving 

multiple interactions

• We presented a study on multi-objective and on risk-

aware coordination problems.
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To summarise:

• Our initial empirical evaluation emphasizes 

that:

– Considering the complexity of the problems the 

algorithms are efficient both in terms of 

computation and communication.

– This complexity is, however, still not sufficient to 

deploy these techniques in the real world.
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Future Work:

• We wish to study approximation techniques 

for these problems

– Some questions:

• Can we use standard max-sum?

• Can we use pruning techniques to cut the search space 

or the message size?

• Can we make these algorithms more efficient to solve 

dynamic problems?
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