23/10/2012

_ o _ Outline
Special Topics in Al: Intelligent

Agents and Multi-Agent Systems * Introduction

— DCOP for MAS

.. . .. . — how to model problems in the DCOP framework
Distributed Constraint Optimization

¢ Solution Techniques for DCOPs
(Exact approaches, DPOP) a

— Exact algorithms (DCSP, DCOP)
+ DPOP

— Heuristics and approximate algorithms (without/with
quality guarantees)

Alessandro Farinelli ¢ DSA, MGM, Max-Sum; k-optimality, bounded max-sum
Working together Decentralised Coordination
Coordination problem:  Decentralised coordination: Local decision with local
Choose agent’s individual actions so to maximise information
a system-wide objective + Why Decentralised coordination ?
ﬁ ‘ — In general no benefit for computation or solution quality
‘ ‘ “ — Robustness
Task allocation: m / 'd . . .
o . o > oW ¥ * avoid single point of failure
individual actions: which fire to tackle ,\ Scalabilit
- —Sc ility
system-wide objective: minimise total
Y T : m * Not enough bandwidth to communicate/process all
extinguish time W . .
ution: a foint act P information
solution: a joint action m — Leads to problem decomposition

* Each agent cares only of local neighbours




DCOPs for Decentralized Coordination

Why DCOPs for decentralized coordination ?

* Well defined problem
— Clear mathematical formulation that captures most
important aspects
— Many solution techniques
+ Optimal: ABT, ADOPT, DPOP, ...
* Heuristics: DSA, MGM, Max-Sum, ...
* Solution techniques can handle large problems

— compared for example to sequential dec. Making (MDP,
POMDP)

Reference Applications

Incident Management Cooperative Exploration

Modeling Problems as DCOP

¢ Surveillance

* Meeting Scheduling

* Why decentralize
— Robustness to failure and message loss

23/10/2012



Target Tracking - DCOP

A e
()

* Variables -> Cameras

¢ Domains -> Camera
actions
— look left, look right

* Constraints
— Overlapping cameras
— Related to targets e
L,R
* Diabolik, Eva { }

¢ Maximise sum of
constraints

Meeting Scheduling

K]

Better in [18:00 — 19:00]

Window13:00 — 20:00
Duration 1h

Window 15:00 — 18:00
Duration 2h

* Why decentralize
— Privacy

Meeting Scheduling - DCOP

[15-18]
16:00

[15-18]
16:00
........ Equals (Hard)

[13-20]
— - — - Preference (Soft) 19:00

Constraint Networks

X = {Xl yerns Xn} a set of variables (e.g. meetings)
D= {Dl yeees Dn } a set of discrete variable domains (e.g. time slots)
C = {C1 eens Cm }a set of constraints (e.g., equality, non overlap, )

S, € X Scope of constraint  C,

Hard constraints Soft constraint
Ri Xj Xk Fi | x X
o 20 o0
0 1 0|0 1
1 0 o1 o0
- 1011

23/10/2012




Graphical Representation

Hypergraph Primal Graph

— &=®
: A
/
/\

& ® ¥

)
@ ) )

Dual Graph

@ @ (\;/\
—_—————————— 7777./ \777/

Binary constraint networks

¢ Each constraint is
defined over two
variables

* Every constraint
network can be mapped
to a binary constraint
network but

— Addition of
variables/constraints

— Add complexity

Constraint graph

¢ Link between two variables if they share at least one
constraint (i.e., primal graph)
— In general, constraint graph # constraint network

Obijectives for constraint networks

e Constraint Satisfaction Problem (CSP)

— Objective: find an assignment for all the variables in the
network that satisfies all constraints

* Constraint Optimization Problems (COP)

— Objective: find an assignment for all the variables in the
network that satisfies all constraints and optimizes a global

objective function

X'= arg)r(nax(zi: F, (X,.)]

Global function: an aggregation (i.e., sum) of local functions F,(X,)

23/10/2012



Distributed Constraint Reasoning

In a decentralized
context:

* Agents control
Variables

* Agents communicate
to solve the problem

Benchmarking problems

* Motivations
— Analysis of complexity and optimality is not enough
— Need to empirically evaluate algorithms on the same
problem
e Graph coloring
— Simple to formalise very hard to solve

— Well known parameters that influence complexity

* Number of nodes, number of colors, density (number of
link/number of nodes)

— Many versions of the problem
* CSP, MaxCSP, COP

Graph Coloring

* Network of nodes
* Nodes can take on various colors
* Adjacent nodes should not have the same color
— If it happens this is a conflict
CSP
o o [ J

No

Graph Coloring - MaxCSP

e QOptimization Problem
¢ Natural extension of CSP
¢ Minimise number of conflicts

]

23/10/2012



Weighted Graph Coloring - COP

* Optimization Problem
¢ Conflicts have a weight
* Maximise the sum of weights of violated constraints

COP

Distributed COP

* We focus on optimization
¢ DCOP = Constraint Network + Agents A = {Al""’ Ak}
* Where each agent:

— Controls a subset of the variables (typically just one)

— Is only aware of constraints that involve the variables it
controls

— Communicate only with neighbours (constraint graph)

Performance measures

* Solution quality
— Optimality not always achievable,
— Optimality Guarantees

* Coordination Overdead
— Computation: computation effort (time complexity)

— Communication: number and size of messages (network
load)

» Desirable properties (hard to quantify)

— Robustness to failures, parallelism, flexibility, privacy
maintenance, etc.

DCOP Solution techniques

* Exactapproaches
— Guarantee optimal solution
— Exponential coordination overhead
— ADOPT, DPOP, OptAPO
* Heuristics
— Low coordination overhead
— No guarantees on optimality
— DSA, MGM, Max-Sum
* Approximate approaches
— Low coordination overhead
— Optimality guarantees
— Bounded max-sum, k-optimality

23/10/2012



Exact Approaches |

« ADOPT (Search based) [Modi et al 05]
— Distributed branch and bound
— Partial order based on a DFS search (pseudotree)
— Asynchronous (high parallelism, flexible)
— Number of messages exponential in number of agents

« Small messages but exponentially many

Exact Approaches Il

+ DPOP (Inference) [Petcu and Faltings 07]
— Distributed Bucket Elimination
— Partial order based on a DFS search (pseudotree)
— Linear number of messages
— Exponential message size (in width of DFS search tree)

— DFS-tree width tipically much less than number of
agents

+ Few messages but exponentially large

Dynamic Programming
Optimization Protocol

1. DFS-tree building (special case of Pseudo tree)
— Constraint graph - DFS-Tree
— Token passing

2. Utility propagation
— Compile information to compute optimal value
— Util messages from leaves to root

3. Value Propagation
— Root chooses optimal value and propagate decision
— Value messages from root to leaves

Pseudotrees: basic concepts

* Pseudotree arrangement of a graph G
— Arooted tree with the same node as G
— Adjacent nodes in G falls in the same branch of the tree

* Nodes in different branches do not share direct coinstraints
— A DFS visit of a graph induces a Pseudotree
* Not every pseudotree can be obtained with a DFS visit

Objective: find assignment
with maximal value

23/10/2012



Building a DFS tree

* Traverse the graph using a recursive procedure
e Each time we reach Xi from Xj we mark Xi as visited and
state that Xj is the father of Xi (and Xi is a children of Xj)
* When a node Xi has a visited neighbour that is not its
parent we state that Xj is a pseudo-parent of Xi (and Xi is
a pseudochildren of Xj)
* Can be done with a distributed procedure:
— Each node need only to communicate with neighbours
— Token passing to propagate information (e.g., visited nodes)

Building a DFS-tree: example

— .- token movement
time++ = each time token moves

st: first time node received the token

et: last time node sent the token

Pseudotrees and Separator

— Separator
Definition

Sep; separator of node X;: all ancestors (though tree and
back edges) which are connected with X; and with any
descendant of X;

Basic Property
Sepi minimal set of ancestors that, if removed, completely
disconnects the subtree rooted at node X; from the rest of

the problem

P
LS,

6WO’OC‘/?//Q’

_ pllyooP"%*

Operative Definition
Sepi = UXjEC; Sepj U P; U PP; \ X

Ci: children of node i

Util Propagation

Aim: build a value function so that root agent can make

optimal decision.
Dynamic programming: provide only key information

Each agent computes messages for its parent based on
messages received from children and relevant constraints.

Each message projects out X; (by maximisation) and
aggregates (by summation) functions received from
children and all constraints with ancestors (parents and

pseudoparents)

23/10/2012




Util Propagation: messages

n}ax(F1_4(x1 Xa) @ Fa.4(xe, X4))TT}2X(F1 3(X1.x3) ® Fo3(X2,X3))
o

Message Computation

Functions = tables (variable are all discrete)
Aggregation = join operator (relational algebra)
Maximization = projection (keeping most valuable tuples)

The Utilmessage U;_,; that agent A; sends to its parent A; can be
computed as:

U[HI'(SQ,O,‘) = mle;lx ® Uk—i® ® F/Zp
AkeCi APEP,'UPP,'

The ® operator is a join operator that sums up functions with different
but overlapping scores consistently.

Join-sum operator

NPT Y MaXjy,) (Fr.e & Faq)
0 1 i X1 Xp X4 X1 X2 M
4]0 0 0 0 0
PO~y o0joo0 1 MO o
1 Project
add 22 10 max1) | o 4 |
o 110 1 1 Toutx, 019
sl1 0 o T 0 0
0o 0 —
0 111 0 1 max(2,1) 10 1
Lo 0l1 1 0 ooy |11 0
11 21 1 1 maO2 14 1

Util Message propagation

(root)
e o Us—t |aly Sepz
L TN 0o |10
* 1 5

fTLaX(U3a2 @ Uss2@Fi2)
2 v

Upo | X1 X c Uswo | X1 X3 Sepg
4 3 4 0
2 ' 1
2 0
2 1

23/10/2012



Value Propagation

Aim: inform all agents about decision from above so that
they can choose best values for their variables

Root agent A, computes x; which is the argument that
maximises the sum of messages received by all children

It sends a message V, .. = {X, = x}} containing this
value to all children C,

The generic agent A; sends a message to each child A;
Visj = {Xs = xZ} U X; = x*, where Xs € Sep; N Sep;

Value Computation

Keeping fixed the value of parent/pseudoparents, finds the value that
maximizes the computed cost function in the util phase:

3 =argmax | @) Ui x) @ Q) Fiplxixp)
" \acsc ApCRUPP;

where X = UA,EP,UPP,{XF} is the set of optimal values for A;'s parent
and pseudoparents received from A;’s parent.

Can reuse stored tables for computing util messages

Value Propagation: messages

X{ = max Uisa(x1)
1

Xy = nlax(UBHZ(X;-)Q)@ Us—2(x,x2) @ Fra(Xf.X2))
2 \

\

\
|
|
|
|
|
1

I

X5 = ”}?X(F1.4(X1*-X4)®F2.4(X5-X4)) x5 = max(Fia(x7,x3) ® Fo.3 (X3, xa))
3

DPOP analysis

* Synchronous algorithm
Linear number of messages but exponentially large

Messages (and computation) is exponential in
separator size

» Separator size = graph induced width with DFS
ordering

23/10/2012

10



Induced graph and Induced width

Given graph G = <V,E>

Width of v = number of v’s ancestors
Width of a graph = maximal width of nodes
Given order o over vertices of a graph G:

G* induced graph of G given o
— Process variables from last to first

— When processing v connect all neighbours that precede v
(ancestors)

Induced width of G (given o) = width of induced graph
Induced width of G = min induced width over orderings
Finding this is NP-hard

Separator size and induced width

Given DFS order o of a graph G:

Induced width of G over o equals the size of largest
separator given by o

Intuition:
¢ Width of a node = number of induced ancestors

e connecting ancestors = propagating the children’s
separator in the separator computation

DFS tree and efficiency

* Depth first order is crucial for DPOP efficiency
* Finding optimal order is NP-hard

— Optimal = minimize separator size
* Good heuristics:

— Maximum Connected Node (MCN)
— Maximum Cardinality Set (MCS) for DFS

DFS tree Heuristics

Maximum Connected node

m Choose node with maximum number of neighbours as root
m Select the neighbour with the highest number of
neighbours

m Brake ties arbitrarily (e.g. lower/higher Id)

Maximum Cardinality Set for DFS

m Maximum cardinality does not produce a DFS in general,
must be adapted to DFS
m Choose a random node as root
m Select the neighbour with the highest number of visited
neighbours

23/10/2012

11



DFS tree Pseudotrees

* DPOP would work on any pseudotree arrangement
of primal graph

» But DFS induces only a specific set of orderings:
— Not all pseudotres are DFS trees

* We might loose good orderings to keep computation
local

— Trade-off depends on applications

Summary

* DCOPs, general framework to address Multi-Agent coordination
— Many solution techniques for (relatively) large scale systems
* Complete approaches
— Suffers from exponential element (DCOPs are hard problems)
— ADOPT:
« search based, asynchronous
* Small messages but exponentially many
— DPOP:
* Dynamic programming based, synchronous
* Few message but exponentially large
* Typically much more efficient than ADOPT

References

Constraint Network
* Constraint Processing, R. Dechter, Morgan Kaufmann

ADOPT
¢ [Modi et al., 2005] P. J. Modi, W. Shen, M. Tambe, and M.Yokoo. ADOPT:

Asynchronous distributed constraint optimization with quality guarantees.

Artificial Intelligence Journal, (161):149-180, 2005.

bpoP

* [Petcu 2007] A. Petcu. A Class of Algorithms for Distributed Constraint
Optimization. PhD. Thesis No. 3942, Swiss Federal Institute of Technology
(EPFL), Lausanne (Switzerland), 2007. (Chapters 2, 3 and 4)

23/10/2012

12



