1

Special Topics in AI: Intelligent Agents and Multi-Agent Systems

Distributed Constraint Optimization (Exact approaches, DPOP)

Alessandro Farinelli

Working together

Coordination problem:

Choose agent's <u>individual actions</u> so to maximise a <u>system-wide objective</u>

Task allocation:

individual actions: which fire to tackle system-wide objective: minimise total extinguish time solution: a joint action

Outline

- Introduction
 - DCOP for MAS
 - how to model problems in the DCOP framework
- Solution Techniques for DCOPs
 - Exact algorithms (DCSP, DCOP)
 - DPOP
 - Heuristics and approximate algorithms (without/with quality guarantees)
 - DSA, MGM, Max-Sum; k-optimality, bounded max-sum

Decentralised Coordination

- <u>Decentralised coordination</u>: Local decision with local information
- Why Decentralised coordination ?
 - In general no benefit for computation or solution quality
 - Robustness
 - avoid single point of failure
 - Scalability
 - Not enough bandwidth to communicate/process all information
 - Leads to problem decomposition
 - Each agent cares only of local neighbours

DCOPs for Decentralized Coordination

- Why DCOPs for decentralized coordination ?
- Well defined problem
 - Clear mathematical formulation that captures most important aspects
 - Many solution techniques
 - Optimal: ABT, ADOPT, DPOP, ...
 - Heuristics: DSA, MGM, Max-Sum, ...
- Solution techniques can handle large problems
 - compared for example to sequential dec. Making (MDP, POMDP)

Objectives for constraint networks

- Constraint Satisfaction Problem (CSP)
 - Objective: <u>find an assignment</u> for all the variables in the network that satisfies <u>all constraints</u>
- Constraint Optimization Problems (COP)
 - Objective: <u>find an assignment</u> for all the variables in the network that satisfies all <u>constraints and optimizes a global</u> <u>objective function</u>

$$X^* = \arg\max_{X} \left(\sum_{i} F_i(X_i) \right)$$

Global function: an aggregation (i.e., sum) of local functions $F_i(X_i)$

Distributed Constraint Reasoning

AI

 X_2

X3

A2

A3

- Agents control Variables
- Agents communicate to solve the problem

Benchmarking problems

- Motivations
 - Analysis of complexity and optimality is not enough
 - Need to empirically evaluate algorithms on the same problem
- Graph coloring
 - Simple to formalise very hard to solve
 - Well known parameters that influence complexity
 - Number of nodes, number of colors, density (number of link/number of nodes)
 - Many versions of the problem
 - CSP, MaxCSP, COP

<section-header> Graph Coloring - MaxCSP Optimization Problem Natural extension of CSP Minimise number of conflicts

5

Weighted Graph Coloring - COP

- Optimization Problem
- Conflicts have a weight
- Maximise the sum of weights of violated constraints

Performance measures

- Solution quality
 - Optimality not always achievable,
 - Optimality Guarantees
- Coordination Overdead
 - Computation: computation effort (time complexity)
 - <u>Communication</u>: number and size of messages (network load)
- Desirable properties (hard to quantify)
 - Robustness to failures, parallelism, flexibility, privacy maintenance, etc.

DCOP Solution techniques

- Exact approaches
 - Guarantee optimal solution
 - Exponential coordination overhead
 - ADOPT, DPOP, OptAPO
- Heuristics
 - Low coordination overhead
 - No guarantees on optimality
 - DSA, MGM, Max-Sum
- Approximate approaches
- Low coordination overhead
 - Optimality guarantees
 - Bounded max-sum, k-optimality

Exact Approaches I

- ADOPT (Search based) [Modi et al 05]
 - Distributed branch and bound
 - Partial order based on a DFS search (pseudotree)
 - Asynchronous (high parallelism, flexible)
 - Number of messages exponential in number of agents
- · Small messages but exponentially many

Dynamic Programming Optimization Protocol

- 1. DFS-tree building (special case of Pseudo tree)
 - − Constraint graph \rightarrow DFS-Tree
 - Token passing
- 2. Utility propagation
 - Compile information to compute optimal value
 - Util messages from leaves to root
- 3. Value Propagation
 - Root chooses optimal value and propagate decision
 - Value messages from root to leaves

Exact Approaches II

- DPOP (Inference) [Petcu and Faltings 07]
 - Distributed Bucket Elimination
 - Partial order based on a DFS search (pseudotree)
 - Linear number of messages
 - Exponential message size (in width of DFS search tree)
 - DFS-tree width tipically much less than number of agents
- Few messages but exponentially large

Pseudotrees: basic concepts

- Pseudotree arrangement of a graph G
 - A rooted tree with the same node as G
 - Adjacent nodes in G falls in the same branch of the tree
 Nodes in different branches do not share direct coinstraints
 - A DFS visit of a graph induces a Pseudotree
 - Not every pseudotree can be obtained with a DFS visit

Building a DFS tree

- Traverse the graph using a recursive procedure
- Each time we reach Xi from Xj we mark Xi as visited and state that Xj is the father of Xi (and Xi is a children of Xj)
- When a node Xi has a visited neighbour that is not its parent we state that Xj is a pseudo-parent of Xi (and Xi is a pseudochildren of Xj)
- Can be done with a <u>distributed</u> procedure:
 - Each node need only to communicate with neighbours
 - Token passing to propagate information (e.g., visited nodes)

Util Propagation

<u>Aim:</u> build a value function so that root agent can make optimal decision. <u>Dynamic programming</u>: provide only key information

Each agent computes messages for its parent based on messages received from children and relevant constraints.

Each message projects out X_i (by maximisation) and aggregates (by summation) functions received from children and all constraints with ancestors (parents and pseudoparents)

Message Computation

Functions \rightarrow tables (variable are all discrete) Aggregation \rightarrow join operator (relational algebra) Maximization \rightarrow projection (keeping most valuable tuples)

The *Util* message $U_{i\rightarrow j}$ that agent A_i sends to its parent A_j can be computed as:

$$U_{i
ightarrow j}(Sep_i) = \max_{x_i} \left(\bigotimes_{A_k \in C_i} U_{k
ightarrow i} \otimes \bigotimes_{A_p \in P_i \cup PP_i} F_{i,p}
ight)$$

The \otimes operator is a join operator that sums up functions with different but overlapping scores consistently.

Value Propagation

<u>Aim:</u> inform all agents about decision from above so that they can choose best values for their variables

Root agent A_r computes x_r^* which is the argument that maximises the sum of messages received by all children

It sends a message $V_{r
ightarrow c} = \{X_r = x_r^*\}$ containing this value to all children C_r

The generic agent A_i sends a message to each child A_j $V_{i \rightarrow j} = \{X_s = x_s^*\} \cup X_i = x_i^*$, where $X_s \in Sep_i \cap Sep_j$

Value Computation

Keeping fixed the value of parent/pseudoparents, finds the value that maximizes the computed cost function in the util phase:

$$x_i^* = \arg \max_{x_i} \left(\bigotimes_{A_j \in C_i} U_{j \to i}(x_i, \mathbf{x}_s^*) \otimes \bigotimes_{A_p \in P_i \cup PP_i} F_{i,p}(x_i, x_p^*) \right)$$

where $\mathbf{x}_{s}^{*} = \bigcup_{A_{j} \in P_{i} \cup PP_{i}} \{x_{j}^{*}\}$ is the set of optimal values for A_{i} 's parent and pseudoparents received from A_{i} 's parent.

Can reuse stored tables for computing util messages

DPOP analysis Synchronous algorithm Linear number of messages <u>but exponentially large</u> Messages (and computation) is exponential in separator size Separator size → graph induced width with DFS ordering

Induced graph and Induced width

Given graph G = <V,E>

Width of v = number of v's ancestors

Width of a graph = maximal width of nodes

Given order o over vertices of a graph G:

G* induced graph of G given o

- Process variables from last to first
- When processing v connect all neighbours that precede v (ancestors)

Induced width of G (given o) = width of induced graph Induced width of G = min induced width over orderings Finding this is NP-hard

Separator size and induced width

Given DFS order o of a graph G:

Induced width of G over o equals the size of largest separator given by o

Intuition:

- Width of a node = number of induced ancestors
- connecting ancestors = propagating the children's separator in the separator computation

DFS tree and efficiency

- Depth first order is crucial for DPOP efficiency
- Finding optimal order is NP-hard
 - Optimal \rightarrow minimize separator size
- Good heuristics:
 - Maximum Connected Node (MCN)
 - Maximum Cardinality Set (MCS) for DFS

DFS tree Heuristics

Maximum Connected node

- Choose node with maximum number of neighbours as root
- Select the <u>neighbour</u> with the highest number of neighbours
- Brake ties arbitrarily (e.g. lower/higher Id)

Maximum Cardinality Set for DFS

- Maximum cardinality does not produce a DFS in general, must be adapted to DFS
 - Choose a random node as root
 - Select the <u>neighbour</u> with the highest number of visited neighbours

DFS tree Pseudotrees

- DPOP would work on any pseudotree arrangement of primal graph
- <u>But</u> DFS induces only a specific set of orderings:
 Not all pseudotres are DFS trees
- We might <u>loose good orderings</u> to keep <u>computation</u> <u>local</u>
 - Trade-off depends on applications

References

Constraint Network

• Constraint Processing, R. Dechter, Morgan Kaufmann

ADOPT

• [Modi et al., 2005] P. J. Modi, W. Shen, M. Tambe, and M.Yokoo. ADOPT: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence Journal, (161):149-180, 2005.

DPOP

 [Petcu 2007] A. Petcu. A Class of Algorithms for Distributed Constraint Optimization. PhD. Thesis No. 3942, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland), 2007. (Chapters 2, 3 and 4)

Summary

- DCOPs, general framework to address Multi-Agent coordination
 - Many solution techniques for (relatively) large scale systems
- Complete approaches
 - Suffers from exponential element (DCOPs are hard problems)
 - ADOPT:
 - search based, asynchronous
 - Small messages but exponentially many
 - DPOP:
 - Dynamic programming based, synchronous
 - Few message but exponentially large
 - Typically much more efficient than ADOPT