
23/10/2012

1

Special Topics in AI: Intelligent

Agents and Multi-Agent Systems

Alessandro Farinelli

Distributed Constraint Optimization

(Exact approaches, DPOP)

Outline

• Introduction

– DCOP for MAS

– how to model problems in the DCOP framework

• Solution Techniques for DCOPs

– Exact algorithms (DCSP, DCOP)

• DPOP

– Heuristics and approximate algorithms (without/with

quality guarantees)

• DSA, MGM, Max-Sum; k-optimality, bounded max-sum

Working together

Coordination problem:

Choose agent’s individual actions so to maximise

a system-wide objective

Task allocation:

individual actions: which fire to tackle

system-wide objective: minimise total

extinguish time

solution: a joint action

Decentralised Coordination

• Decentralised coordination: Local decision with local

information

• Why Decentralised coordination ?

– In general no benefit for computation or solution quality

– Robustness

• avoid single point of failure

– Scalability

• Not enough bandwidth to communicate/process all

information

– Leads to problem decomposition

• Each agent cares only of local neighbours

23/10/2012

2

DCOPs for Decentralized Coordination

Why DCOPs for decentralized coordination ?

• Well defined problem

– Clear mathematical formulation that captures most

important aspects

– Many solution techniques

• Optimal: ABT, ADOPT, DPOP, ...

• Heuristics: DSA, MGM, Max-Sum, ...

• Solution techniques can handle large problems

– compared for example to sequential dec. Making (MDP,

POMDP)

Incident Management

Reference Applications

Environment monitoring

Cooperative Exploration

Energy management

Modeling Problems as DCOP

• Surveillance

• Meeting Scheduling

Target Tracking

• Why decentralize

– Robustness to failure and message loss

23/10/2012

3

Target Tracking - DCOP

• Variables -> Cameras

• Domains -> Camera

actions

– look left, look right

• Constraints

– Overlapping cameras

– Related to targets

• Diabolik, Eva

• Maximise sum of

constraints

L, R

L, R

L, R

D

E

T1

T2

T3

Meeting Scheduling

• Why decentralize

– Privacy

Window 15:00 – 18:00

Duration 2h

Window13:00 – 20:00

Duration 1h

Better in [18:00 – 19:00]

Meeting Scheduling - DCOP

BSPS

PL BL

No overlap (Hard)

Equals (Hard)

Preference (Soft)

16:00

16:0019:00

19:00

[15 – 18][13 – 20]

[13 – 20]

BC

[15 – 18]

16:00

[15 – 18]

Constraint Networks

a set of variables (e.g. meetings){ }
n

XXX ,...,1=

{ }
n

DDD ,...,1=

{ }
m

CCC ,...,1=

XS
i
⊆

a set of discrete variable domains (e.g. time slots)

a set of constraints (e.g., equality, non overlap,)

Scope of constraint
i

C

Hard constraints Soft constraint

23/10/2012

4

Graphical Representation

Hypergraph

Dual Graph

Primal Graph

Binary constraint networks

• Each constraint is

defined over two

variables

• Every constraint

network can be mapped

to a binary constraint

network but

– Addition of

variables/constraints

– Add complexity

Constraint graph
• Link between two variables if they share at least one

constraint (i.e., primal graph)

– In general, constraint graph ≠ constraint network

Objectives for constraint networks

• Constraint Satisfaction Problem (CSP)

– Objective: find an assignment for all the variables in the

network that satisfies all constraints

• Constraint Optimization Problems (COP)

– Objective: find an assignment for all the variables in the

network that satisfies all constraints and optimizes a global

objective function

()

= ∑

i

ii

X

XFX maxarg*

Global function: an aggregation (i.e., sum) of local functions)(
ii

XF

23/10/2012

5

Distributed Constraint Reasoning

In a decentralized

context:

• Agents control

Variables

• Agents communicate

to solve the problem

Benchmarking problems

• Motivations

– Analysis of complexity and optimality is not enough

– Need to empirically evaluate algorithms on the same

problem

• Graph coloring

– Simple to formalise very hard to solve

– Well known parameters that influence complexity

• Number of nodes, number of colors, density (number of

link/number of nodes)

– Many versions of the problem

• CSP, MaxCSP, COP

Graph Coloring

• Network of nodes

• Nodes can take on various colors

• Adjacent nodes should not have the same color

– If it happens this is a conflict

CSP
Yes No

Graph Coloring - MaxCSP

0 -4

• Optimization Problem

• Natural extension of CSP

• Minimise number of conflicts

-1

23/10/2012

6

Weighted Graph Coloring - COP

• Optimization Problem

• Conflicts have a weight

• Maximise the sum of weights of violated constraints

COP
-2 -1

-1

-1

-2

-3

-1

-1

-2

-3

-1

-1

-2

-3

Distributed COP
• We focus on optimization

• DCOP = Constraint Network + Agents

• Where each agent:

– Controls a subset of the variables (typically just one)

– Is only aware of constraints that involve the variables it

controls

– Communicate only with neighbours (constraint graph)

},...,{ 1 k
AAA =

BS

PS

PL
BL

BC

Performance measures

• Solution quality

– Optimality not always achievable,

– Optimality Guarantees

• Coordination Overdead

– Computation: computation effort (time complexity)

– Communication: number and size of messages (network

load)

• Desirable properties (hard to quantify)

– Robustness to failures, parallelism, flexibility, privacy

maintenance, etc.

DCOP Solution techniques

• Exact approaches

– Guarantee optimal solution

– Exponential coordination overhead

– ADOPT, DPOP, OptAPO

• Heuristics

– Low coordination overhead

– No guarantees on optimality

– DSA, MGM, Max-Sum

• Approximate approaches

– Low coordination overhead

– Optimality guarantees

– Bounded max-sum, k-optimality

23/10/2012

7

Exact Approaches I

• ADOPT (Search based) [Modi et al 05]

– Distributed branch and bound

– Partial order based on a DFS search (pseudotree)

– Asynchronous (high parallelism, flexible)

– Number of messages exponential in number of agents

• Small messages but exponentially many

Exact Approaches II

• DPOP (Inference) [Petcu and Faltings 07]

– Distributed Bucket Elimination

– Partial order based on a DFS search (pseudotree)

– Linear number of messages

– Exponential message size (in width of DFS search tree)

– DFS-tree width tipically much less than number of

agents

• Few messages but exponentially large

Dynamic Programming

Optimization Protocol

1. DFS-tree building (special case of Pseudo tree)

– Constraint graph � DFS-Tree

– Token passing

2. Utility propagation

– Compile information to compute optimal value

– Util messages from leaves to root

3. Value Propagation

– Root chooses optimal value and propagate decision

– Value messages from root to leaves

Pseudotrees: basic concepts

• Pseudotree arrangement of a graph G

– A rooted tree with the same node as G

– Adjacent nodes in G falls in the same branch of the tree

• Nodes in different branches do not share direct coinstraints

– A DFS visit of a graph induces a Pseudotree

• Not every pseudotree can be obtained with a DFS visit

23/10/2012

8

Building a DFS tree

• Traverse the graph using a recursive procedure

• Each time we reach Xi from Xj we mark Xi as visited and

state that Xj is the father of Xi (and Xi is a children of Xj)

• When a node Xi has a visited neighbour that is not its

parent we state that Xj is a pseudo-parent of Xi (and Xi is

a pseudochildren of Xj)

• Can be done with a distributed procedure:

– Each node need only to communicate with neighbours

– Token passing to propagate information (e.g., visited nodes)

Building a DFS-tree: example

X1

X3

X2

X4

X1

X3

X2

X4

st = 0

et = 6

st = 1

et = 5

st = 2

et = 2
st = 4

et = 4
1

2

2

4

4

token movement

st: first time node received the token

et: last time node sent the token

time++ = each time token moves

Pseudotrees and Separator

Separator
Definition

Basic Property

Operative Definition

Ci: children of node i

Util Propagation

Aim: build a value function so that root agent can make

optimal decision.

Dynamic programming: provide only key information

23/10/2012

9

Util Propagation: messages Message Computation

Functions � tables (variable are all discrete)

Aggregation � join operator (relational algebra)

Maximization � projection (keeping most valuable tuples)

Join-sum operator Util Message propagation

23/10/2012

10

Value Propagation

Aim: inform all agents about decision from above so that

they can choose best values for their variables

Value Computation

Can reuse stored tables for computing util messages

Value Propagation: messages DPOP analysis

• Synchronous algorithm

• Linear number of messages but exponentially large

• Messages (and computation) is exponential in

separator size

• Separator size � graph induced width with DFS

ordering

23/10/2012

11

Induced graph and Induced width
Given graph G = <V,E>

Width of v = number of v’s ancestors

Width of a graph = maximal width of nodes

Given order o over vertices of a graph G:

G* induced graph of G given o

– Process variables from last to first

– When processing v connect all neighbours that precede v

(ancestors)

Induced width of G (given o) = width of induced graph

Induced width of G = min induced width over orderings

Finding this is NP-hard

Separator size and induced width

Given DFS order o of a graph G:

Induced width of G over o equals the size of largest

separator given by o

Intuition:

• Width of a node = number of induced ancestors

• connecting ancestors = propagating the children’s

separator in the separator computation

DFS tree and efficiency

• Depth first order is crucial for DPOP efficiency

• Finding optimal order is NP-hard

– Optimal � minimize separator size

• Good heuristics:

– Maximum Connected Node (MCN)

– Maximum Cardinality Set (MCS) for DFS

DFS tree Heuristics

23/10/2012

12

DFS tree Pseudotrees

• DPOP would work on any pseudotree arrangement

of primal graph

• But DFS induces only a specific set of orderings:

– Not all pseudotres are DFS trees

• We might loose good orderings to keep computation

local

– Trade-off depends on applications

Summary

• DCOPs, general framework to address Multi-Agent coordination

– Many solution techniques for (relatively) large scale systems

• Complete approaches

– Suffers from exponential element (DCOPs are hard problems)

– ADOPT:

• search based, asynchronous

• Small messages but exponentially many

– DPOP:

• Dynamic programming based, synchronous

• Few message but exponentially large

• Typically much more efficient than ADOPT

References

Constraint Network

• Constraint Processing, R. Dechter, Morgan Kaufmann

ADOPT

• [Modi et al., 2005] P. J. Modi, W. Shen, M. Tambe, and M.Yokoo. ADOPT:

Asynchronous distributed constraint optimization with quality guarantees.

Artificial Intelligence Journal, (161):149-180, 2005.

DPOP

• [Petcu 2007] A. Petcu. A Class of Algorithms for Distributed Constraint

Optimization. PhD. Thesis No. 3942, Swiss Federal Institute of Technology

(EPFL), Lausanne (Switzerland), 2007. (Chapters 2, 3 and 4)

