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Special Topics in AI: Intelligent 

Agents and Multi-Agent Systems

Alessandro Farinelli

Distributed Constraint Optimization 

(Heuristic approaches, Max-Sum)

Approximate Algorithms: outline

• No  guarantees

– DSA-1, MGM-1 (exchange individual assignments)

– Max-Sum (exchange functions)

• Off-Line guarantees

– K-optimality and extensions

• On-Line Guarantees

– Bounded max-sum

Why Approximate Algorithms

• Motivations

– Often optimality in practical applications is not achievable

– Fast good enough solutions are all we can have

• Example – Graph coloring

– Medium size problem (about 20 nodes, three colors per 

node)

– Number of states to visit for optimal solution in the worst 

case  3^20 = 3 billions of states

• Key problem

– Provides guarantees on solution quality

Wide Area Surveillance Domain

Sensor detecting vehicles

on a road network

Heterogeneous Sensing 
range

Neighbor agents can 
communicate
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WAS: Model
• Energy Constraints

– Sense/Sleep modes

– Recharge when sleeping

– Energy neutral operation 

– Contrained on duty cycle

• Sensor model

– Activity can be detected by 
single sensor

• Environment

– Roads have different traffic loads

time

duty cycle WAS: Goal

time

duty cycle

Heavy traffic road small road

Good Schedule

Bad Schedule

Coordinate sensors’ duty 

cycles:

• Achieve energy neutral 

operations

• Minimize probability of 

missing vehicles

K={1}

K={2,3}

K={1,2}

K={1,2,3}

WAS: system wide utility 

Weighted probability of event detection for each possible 
joint schedule

},,{ 321 xxx
Traffic load in the area

Assume Poisson process  for event duration

1x

time

2x

),( 21 xxG

WAS: Interactions among sensors 

System wide utility decomposition in individual utilities

1S 3S2S
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Surveillance demo Heuristic approaches

• Local Greedy Search

– DSA (Distributed Stochastic Algorithm)

– MGM (Maximum Gain Message)

• Inference-based approaches

– Max-Sum (GDL family)

Centralized Local Greedy approaches
• Greedy local search 

– Start from random solution

– Do local changes if global solution improves

– Local: change the value of a subset of variables, usually one
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Centralized Local Greedy approaches

• Problems

– Local minima

– Standard solutions: RandomWalk, Simulated Annealing 
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Distributed Local Greedy approaches

• Local knowledge

• Parallel execution:

– A greedy local move might be harmful/useless

– Need coordination
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Distributed Stochastic Algorithm

• Greedy local search with activation probability to 

mitigate issues with parallel executions

• DSA-1: change value of one variable at time

• Initialize agents with a random assignment and 

communicate values to neighbors

• Each agent:

– Generates a random number and execute only if rnd less 

than activation probability

– When executing changes value maximizing local gain

– Communicate possible variable change to neighbors

DSA-1: Execution Example

-1

P = 1/4

-1

-1

-1

0 -2

rnd > ¼ ? rnd > ¼ ? rnd > ¼ ? rnd > ¼ ?

DSA-1: discussion

• Extremely “cheap” (computation/communication)

• Good performance in various domains

– e.g. target tracking [Fitzpatrick Meertens 03, Zhang et al. 03], 

– Shows an anytime property (not guaranteed)

– Benchmarking technique for coordination 

• Problems

– Activation probablity must be tuned [Zhang et al. 03]

– No general rule, hard to characterise results across domains
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Maximum Gain Message (MGM-1)

• Coordinate to decide who is going to move

– Compute and exchange possible gains

– Agent with maximum (positive) gain executes

• Analysis [Maheswaran et al. 04]

– Empirically, similar to DSA

– More communication (but still linear)

– No Threshold to set

– Guaranteed to be monotonic (Anytime behavior)

MGM-1: Example

-1-1

0 -2
-1 -1 0 -2

-1 -1

G = -2

G = 0 G = 2

G = 0

Local greedy approaches

• Exchange local values for variables 

– Similar to search based methods (e.g. ADOPT)

• Consider only local information when maximizing

– Values of neighbors

• Anytime behaviors 

• Could result in very bad solutions

Max-sum

Agents iteratively computes local functions that depend 

only on the variable they control 

X1

X4 X3

X2

Choose arg max
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Factor Graph

• Computational framework to represent factored 

computation

• Bipartite graph, Variable - Factor 
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All incoming messages except xiMax over all variables except xi
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Agents and the Factor Graph
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• Variables and functions must be allocated to agents

• Allocation does not impact on solution quality

• Allocation does impact on load distribution/communication

1A

3A

2A

Max-Sum Assignments

• At each iteration, each agent

– Computes its local function

• Sets its assignment as the value that maximizes its

local function

All incoming messages
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Max-Sum on Acyclic Graphs

• Convergence guaranteed in 

a polynomial number of

cycles

• Optimal

– Different branches are 

independent

– Z functions provide correct

estimation

– Need Value propagation to

break simmetries

1x 2x

3x

)|( 12 XXH

)( 1XH
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Max-Sum on Cyclic Graphs

• Convergence NOT guaranteed

• When convergence it does

converge to a neighbourhood

maximum

• Neighbourhood maximum: 

– greater than all other maxima

within a particular region of the 

search space
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(Loopy) Max-sum Performance

• Good performance on loopy networks [Farinelli et al. 08] 

– When it converges very good results

• Interesting results when only one cycle [Weiss 00]

– We could remove cycle but pay an exponential price (see 
DPOP)

– Java Library for max-sum http://code.google.com/p/jmaxsum/

Max-Sum for low power devices

• Low overhead 

– Msgs number/size

• Asynchronous computation

– Agents take decisions whenever new messages arrive

• Robust to message loss
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Max-sum on hardware GDL and Max-Sum

• Generalized Distributive Law (GDL)

– Unifying framework for             

inference in Graphical Models

– Based on mathematical              

properties of semi-rings

– Widely used in

• Information theory (turbo codes)

• Probabilistic Graphical models 

(belief propagation)

GDL basic ideas

• Max-Sum semi-ring

– Sum Distributes over Max

– We can efficiently maximise a summation

),max(),max( cabacba ++=+

∑i iix xf )(max
))(( iiix xf⊗⊕

)),(),,(()),(,( cabacba ⊗⊗⊕=⊕⊗

Distributive Law Generalized Distributive Law

Max-Sum for UAVs

Task Assignment for UAVs [Delle Fave et al 12]

Interest points

Video Streaming

Max-Sum
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Task utility

First assigned UAVs reaches 

task

33

Last assigned UAVs leaves 

task (consider battery life)

Priority

Urgency

Task completion

Factor Graph Representation

2PDA

1UAV

1PDA
2UAV

2U 2T
1T

3PDA

1U

3U

3T

1X

2X

UAVs Demo Quality guarantees for approx. 

techniques

• Key area of research

• Address trade-off between guarantees and 

computational effort

• Particularly important for many real world applications

– Critical (e.g. Search and rescue)

– Constrained resource (e.g. Embedded devices)

– Dynamic  settings
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Terminology and notation

• Assume a maximization problem

• optimal solution,       a solution

•

• percentage of optimality 

– [0,1] 

– The higher the better

• approximation ratio 

– >= 1

– The lower the better

• is the bound 

Instance-generic guarantees

Generality

Accuracy

Characterise solution quality without 

running the algorithm

MGM-1, 

DSA-1,  

Max-Sum

Bounded Max-

Sum

DaCSA

K-optimality

T-optimality

Region Opt.

Instance-specific

Instance-generic

No guarantees

Accuracy: high alpha

Generality: less use of 

instance specific knowledge

K-Optimality framework

• Given a characterization of solution gives bound on 

solution quality [Pearce and Tambe 07]

• Characterization of solution: k-optimal

• K-optimal solution:

– Corresponding value of the objective function can not be 

improved by changing the assignment of k or less 

variables.

K-Optimal solutions

1 1 1 1

1

1

1

2-optimal ? No3-optimal ? Yes

0 0 1 0

2

2

0

2

1
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Bounds for K-Optimality

For any DCOP with non-negative rewards [Pearce and Tambe 07]

K-optimal solution

Number of agents Maximum arity of constraints

Binary Network (m=2):

K-Optimality Discussion

• Need algorithms for computing k-optimal solutions

– DSA-1, MGM-1 k=1; DSA-2, MGM-2 k=2 [Maheswaran et al. 04]

– DALO for generic k (and t-optimality) [Kiekintveld et al. 10] 

• The higher k the more complex the computation 

(exponential)

Percentage of Optimal:

• The higher k the better 

• The higher the number of 

agents the worst 

Trade-off between generality and solution 

quality

• K-optimality based on worst case analysis

• assuming more knowledge gives much better bounds 

• Knowledge on structure [Pearce and Tambe 07]

Trade-off between generality and 

solution quality
• Knowledge on reward [Bowring et al. 08]

• Beta: ratio of least minimum reward to the maximum
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Instance-specific guarantees

Generality

Accuracy

Characterise solution quality after/while 

running the algorithm

MGM-1, 

DSA-1,  

Max-Sum

Bounded Max-

Sum

DaCSA

K-optimality

T-optimality

Region Opt.

Instance-specific

Instance-generic

No guarantees

Accuracy: high alpha

Generality: less use of 

instance specific knowledge

Build Spanning tree

Bounded Max-Sum
Aim: Remove cycles from Factor Graph avoiding 

exponential computation/communication (e.g. no junction tree)

Key Idea: solve a relaxed problem instance [Rogers et al.11]

Run Max-Sum
Compute Bound

X1 X2

X1

X2F1

F2

F3

X3 X1

X2F1

F2

F3

X3

X3

Optimal solution on tree

Factor Graph Annotation

• Compute a weight for 

each edge

– maximum possible impact 
of the variable on the 

function

X1

X2F1

F2

F3

X3

w21

w11

w12

w22

w23

w33

w32

Factor Graph Modification

X1

X2F1

F2

F3

X3

w21

w11

w12

w22

w23

w33

w32

W = w22 + w23

• Build a Maximum 

Spanning Tree

– Keep higher weights

• Cut remaining 

dependencies

– Compute 

• Modify functions

• Compute bound
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Results: Random Binary Network

Optimal

Approx.

Lower Bound

Upper Bound

Bound is significant 

– Approx. ratio is 

typically 1.23 (81 %)

Comparison with k-optimal 

with knowledge on 

reward structure

Much more accurate less 
general 

Discussion

• Discussion with other data-dependent techniques

– BnB-ADOPT [Yeoh et al 09]

• Fix an error bound and execute until the error bound is met

• Worst case computation remains exponential

– ADPOP [Petcu and Faltings 05b]

• Can fix message size (and thus computation) or error bound and 

leave the other parameter free

• Divide and coordinate [Vinyals et al 10]

– Divide problems among agents and negotiate agreement 

by exchanging utility

– Provides anytime quality guarantees

Summary

• Approximation techniques crucial for practical applications: 

surveillance, rescue, etc.

• DSA, MGM, Max-Sum heuristic approaches

– Low coordination overhead, acceptable performance

– No guarantees (convergence, solution quality)

• Instance generic guarantees:

– K-optimality framework

– Loose bounds for large scale systems

• Instance specific guarantees

– Bounded max-sum, ADPOP, BnB-ADOPT

– Performance depend on specific instance
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