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Approximate Algorithms: outline

* No guarantees
— DSA-1, MGM-1 (exchange individual assignments)
— Max-Sum (exchange functions)
e Off-Line guarantees
— K-optimality and extensions
* On-Line Guarantees
— Bounded max-sum

Why Approximate Algorithms

* Motivations
— Often optimality in practical applications is not achievable
— Fast good enough solutions are all we can have

* Example — Graph coloring

— Medium size problem (about 20 nodes, three colors per
node)

— Number of states to visit for optimal solution in the worst
case 3720 = 3 billions of states

* Key problem

— Provides guarantees on solution quality

Wide Area Surveillance Domain

Sensor detecting vehicles |
on a road network

Heterogeneous Sensing
range

Neighbor agents can
communicate
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WAS: Model
* Energy Constraints mcweh —

— Sense/Sleep modes ' tme
— Recharge when sleeping

— Energy neutral operation

— Contrained on duty cycle

¢ Sensor model

— Activity can be detected by
single sensor

* Environment
— Roads have different traffic loads |

WAS: Goal

Coordinate sensors’ duty

cycles: ved) [ [

time
* Achieve energy neutral Good Schedule
operations

* Minimize probability of Bad Schedule

missing vehicles Heavy traffic road! small road

WAS: system wide utility

Weighted probability of event detection for each possible
ioint schedule

P(detection|\g, G(xk))

kCS
) ) ={1}
Traffic load in the area 1,2
{x, x5, x5}
Assume Poisson process for event duration S‘/
/ K={2,3}
n [ =

X N ‘
I o e Y > oy
Y Wi\ s

WAS: Interactions among sensors

System wide utility decomposition in individual utilities

U(xy,22,23) = Us (2, x3) H Us(x3)
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Surveillance demo

Heuristic approaches

* Local Greedy Search
— DSA (Distributed Stochastic Algorithm)
— MGM (Maximum Gain Message)

* Inference-based approaches
— Max-Sum (GDL family)

Centralized Local Greedy approaches

* Greedy local search
— Start from random solution

— Do local changes if global solution improves
— Local: change the value of a subset of variables, usually one

Centralized Local Greedy approaches

* Problems
— Local minima

— Standard solutions: RandomWalk, Simulated Annealing
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Distributed Local Greedy approaches

* Local knowledge

* Parallel execution:
— A greedy local move might be harmful/useless

— Need coordination

Distributed Stochastic Algorithm

* Greedy local search with activation probability to
mitigate issues with parallel executions

¢ DSA-1: change value of one variable at time

* |nitialize agents with a random assignment and
communicate values to neighbors

* Each agent:

— Generates a random number and execute only if rnd less
than activation probability

— When executing changes value maximizing local gain
— Communicate possible variable change to neighbors

DSA-1: discussion

* Extremely “cheap” (computation/communication)

* Good performance in various domains
— e.g. target tracking [Fitzpatrick Meertens 03, Zhang et al. 03],
— Shows an anytime property (not guaranteed)
— Benchmarking technique for coordination

* Problems
— Activation probablity must be tuned [Zhang et al. 03]
— No general rule, hard to characterise results across domains
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Maximum Gain Message (MGM-1)

* Coordinate to decide who is going to move
— Compute and exchange possible gains
— Agent with maximum (positive) gain executes
* Analysis [Maheswaran et al. 04]
— Empirically, similar to DSA
— More communication (but still linear)
— No Threshold to set
— Guaranteed to be monotonic (Anytime behavior)

MGM-1: Example

Local greedy approaches

Exchange local values for variables

— Similar to search based methods (e.g. ADOPT)

* Consider only local information when maximizing
— Values of neighbors

* Anytime behaviors

* Could result in very bad solutions

Max-sum

Agents iteratively computes local functions that depend
only on the variable they control
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Factor Graph

* Computational framework to represent factored
computation

* Bipartite graph, Variable - Factor
H(X,,X,,X)=H(X)+H(X,|X)+H(X,1X,)
H(X,1X,)

e ) o B e

N
& X3 HX,1Xx,) 3

Max-Sum Messages

All incoming messages except Xj

I q,'—>j(xi) = Zrk»i(xi)

keadj(i)\j

H(X,1X,)

Local function

I rf—)i(xi) F IEZE( Uj (Xj) ZQkﬁj(xk)J \
J keadj(j)\i

All incoming messages except xi

+

Max over all variables except xi

Agents and the Factor Graph

* Variables and functions must be allocated to agents
* Allocation does not impact on solution quality
* Allocation does impact on load distribution/communication

H(X;1X))

Max-Sum Assignments

* At each iteration, each agent
— Computes its local function

Zi(l’vz)z Z Tk:ai(l'i)

keadj(i)

All incoming messages

¢ Sets its assignment as the value that maximizes its
local function

T; = arg max z;(x;)

2
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Max-Sum on Acyclic Graphs

Convergence guaranteed in
a polynomial number of

cycles HX,1X,)

Optimal X
P Hx) oy M@ %
— Different branches are B o 4
independent
— Z functions provide correct e X
estimation H(X,1X,)

— Need Value propagation to
break simmetries

Max-Sum on Cyclic Graphs

Convergence NOT guaranteed
When convergence it does

converge to a neighbourhood
maximum

Neighbourhood maximum:

— greater than all other maxima
within a particular region of the
search space

H(X,1X,,X,)

(Loopy) Max-sum Performance

* Good performance on loopy networks [Farinelli et al. 08]
— When it converges very good results
* Interesting results when only one cycle [Weiss 00]

— We could remove cycle but pay an exponential price (see
DPOP)
— Java Library for max-sum http://code.google.com/p/jmaxsum/

Conflicts Over Time (Colourable Random Graphs) 4 Conflits Over Time (Colourable Latice Graphs)
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Max-Sum for low power devices

* Low overhead

— Msgs number/size
* Asynchronous computation

— Agents take decisions whenever new messages arrive
* Robust to message loss

Conflicts Over Time (ADOPT Repository Graphs)
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Max-sum on hardware

Number of Conflicts vs Number of Messages
P

B
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GDL and Max-Sum

* Generalized Distributive Law (GDL)

— Unifying framework for K 94,00 “(,1)"  short name
inference in Graphical Models y gjgg Ei;
— Based on mathematical N ‘“ff,’,i;’,”' 51;3; fﬂ sum-product
properties of semi-rings PR e S e QR o s irwi
— Widely used in [=00, o0} (ma.:x,—m) (+.0) .
* Information theory (turbo codes) 130'. ilé’su t(lif,’:;)) l(l:n?fsaj w
* Probabilistic Graphical models }; 2 §X?} ((\’;\3;]

(belief propagation)

GDL basic ideas

* Max-Sum semi-ring
— Sum Distributes over Max
— We can efficiently maximise a summation

Distributive Law Generalized Distributive Law

a+max(b,c) =max(a+b,a+c) ® (a,®(b,c)) = D(®(a,b),B(a,c))

< i

max Zif,-(fi) G‘)x(@f;@))

Max-Sum for UAVs

Task Assignment for UAVs [Delle Fave et al 12]

(a) Task Input (b) Task Monitor
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Task utility Factor Graph Representation
Task completion

Priority ~
5 0) @)~ Do

Urgency

Priority

Urgency

First assigned UAVs reaches
task

Last assigned UAVs leaves
task (consider battery life)

Duration

Quality guarantees for approx.
techniques

UAVs Demo

+ Key area of research
+ Address trade-off between guarantees and
computational effort
+ Particularly important for many real world applications
— Ciritical (e.g. Search and rescue)
— Constrained resource (e.g. Embedded devices)
— Dynamic settings




Terminology and notation

* Assume a maximization problem
* X" optimal solution, X a solution
. F(X)>aF(X%)
* a percentage of optimality
- [0,1]
— The higher the better
. o1 approximation ratio

(o3
—>=1

— The lower the better

* pF(X) isthebound

Instance-generic guarantees

Accuracy: high alpha
Instance-specific Generality: less use of
instance specific knowledge

[ Bounded Max- Characterise solution quality without
Sum running the algorithm

Instance-generic

Accuracy

No guarantees

K-optimalit
MGM-1, E d

T-optimality
Region Opt.

DSA-1,
Max-Sum

Generality

K-Optimality framework

* Given a characterization of solution gives bound on
solution quality [Pearce and Tambe 07]
» Characterization of solution: k-optimal

* K-optimal solution:

— Corresponding value of the objective function can not be
improved by changing the assignment of k or less
variables.

K-Optimal solutions

f\\ 1

2-optimal ? Yes  3-optimal ? No
2
s!;!=;!5!!::IIII'
2
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Bounds for K-Optimality

For any DCOP with non-negative rewards [Pearce and Tambe 07]

Number of agents Maximum arity of constraints

FX) >

K-optimal solution

Binary Network (m=2):

F(X) >
( )_Qn—k—l

kE—1

K-Optimality Discussion

* Need algorithms for computing k-optimal solutions
— DSA-1, MGM-1 k=1; DSA-2, MGM-2 k=2 [Maheswaran et al. 04]
— DALO for generic k (and t-optimality) [Kiekintveld et al. 10]

* The higher k the more complex the computation
(exponential)

K-optinal bound (m=2)

Percentage of Optimal:

* The higher k the better
» The higher the number of
agents the worst

Trade-off between generality and solution
quality

* K-optimality based on worst case analysis
* assuming more knowledge gives much better bounds
* Knowledge on structure [Pearce and Tambe 07]

K-optimal hound; knowledge on structure (k=2,m=2y
100

—o—Ful
O Ring
&0 —C - Star

% Optimal

Trade-off between generality and
solution quality

* Knowledge on reward [Bowring et al. 08]
¢ Beta: ratio of least minimum reward to the maximum

K-optimal bound; knowledge on reward (k=2,m=2)
100

u\\u
TTO=—O=—f— - —~-0-—1

80 —o—f-0
O f02s
—o--B-075

% Optimal
o

Agents
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Bounded Max-Sum

Aim: Remove cycles from Factor Graph avoiding

Instance-specific guarantees

Accuracy: high alpha exponential computation/communication (e.g. no junction tree)
instance-specific Generality: less use of Key Idea: solve a relaxed problem instance [Rogers et al.11]

instance specific knowledge

Bounded Max-
Sum

Characterise solution quality after/while

running the algorithm
Build Spannmg tree
Instance-generic
X2

K-optimality

Accuracy

No guarantees

Compute Bound

P - Run Max-Sum
T-optlmallty F(X*) < ,oF(X) F(X) X
Region Opt. ~ « X1 . X2 Q X3 .
Generaliy F™(X) Optimal solution on tree
Factor Graph Annotation Factor Graph Modification
 Build a Maximum Fi(z1) = nrlinm,gg3 Fy(z1, 22, x3)
. \ Spanning Tree
«  Compute a weight for v = {“53“%(“‘"72""3) o F"(“""Z”T")] — Keep higher weights
each edge + Cut remaining
- maximum possible impact X1 F2 X3 dependencies
of the variable on the
fnotion w21 - Compute  w=3" w;
+ Modify functions “<“
wij = max n};}xF 5(x) — III%IIF (x,)] Wit W22 w33 mlnF (xi)
. Compute bound
wi2 w32 F(X ) < /)F(X) Fm
F1 X2 F3 W = w22 + w23
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Results: Random Binary Network Discussion

Optimal Value (link density 3 )
Bound is significant  Approx. 10| ‘ ‘ * Discussion with other data-dependent techniques
- AppI’OX. ratio is Lower Bound—|

— BnB-ADOPT [Yeoh et al 09]

typically 1.23 (81 %) Upper Bound |
* Fix an error bound and execute until the error bound is met

600
* Worst case computation remains exponential

— ADPOP [Petcu and Faltings 05b]

) 30 * Can fix message size (and thus computation) or error bound and
leave the other parameter free

* Divide and coordinate [Vinyals et al 10]

— Divide problems among agents and negotiate agreement
by exchanging utility

400

Approx. Ratio (gamma, link density 3)

0 10 20 30
Agent number

Comparison with k-optimal
with knowledge on
reward structure

Much more accurate less id ; i
general — Provides anytime quality guarantees

y DOCPs for MRS
* [Delle Fave et al 12] A methodology for deploying the max-sum algorithm and a case study on
+ Approximation techniques crucial for practical applications: unmanned aerial vehicles. In, IAAI 2012 o A ,
. ¢ [Taylor et al. 11] Distributed On-line Multi-Agent Optimization Under Uncertainty: Balancing
Su rvelllance, rescue, etc. Exploration and Exploitation, Advances in Complex Systems
* DSA, MGM, Max-Sum heuristic approaches MGM
¢ [Maheswaran et al. 04] Distributed Algorithms for DCOP: A Graphical Game-Based Approach,
— Low coordination overhead, acceptable performance PDCs-2004
. . DSA
— No guara ntees (convergence, solution quallty) *  [Fitzpatrick and Meertens 03] Distributed Coordination through Anarchic Optimization,
e |nstance generic guara ntees: Distributed Sensor Networks: a multiagent perspective.
’ ¢ [Zhanget al. 03] A Comparative Study of Distributed Constraint algorithms, Distributed
— K-optimality framework Sensor Networks: a multiagent perspective.
Loose bounds for | le syst Max-Sum
00se bounds Tor farge scale systems * [Stranders at al 09] Decentralised Coordination of Mobile Sensors Using the Max-Sum
* Instance specific guarantees Algorithm, AAAI 09 B A A ,
* [Rogers et al. 10] Self-organising Sensors for Wide Area Surveillance Using the Max-sum
— Bounded max-sum, ADpOp, BnB-ADOPT Algorithm, LNCS 6090 Self-Organizing Architectures
. « [Farinelli et al. 08] Decentralised coordination of low-power embedded devices using the
— Performance depend on specific instance max-sum algorithm, AAMAS 08
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