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Reinforcement learning

» Reinforcement learning is learning what to do - how to map situations to

actions - so as to maximize a numerical reward signal.

» The learner is not told which actions to take, as in most forms of machine
learning, but instead must discover which actions yield the most reward by

trying them.

» In the most interesting and challenging cases, actions may affect not only
the immediate reward, but also the next situation and, through that, all

subsequent rewards.



Reinforcement learning

» Supervised learning:

Learning from examples provided by some knowledgeable external
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The multi-armed bandit problem

» Maximize the reward obtained by successively playing gamble

machines (the ‘arms’ of the bandits)

» Invented in early 1950s by Robbins to model decision making under

uncertainty when the environment is unknown

» The lotteries are unknown
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Assumptions

Each machine i has a different (unknown) distribution law for rewards

with (unknown) expectation u; :

» Successive plays of the same machine yeald rewards that are

independent and identically distributed

» Independence also holds for rewards across machines



More formally

» Reward = random variable X; , ;1 <i<K,n=>1
» [ = index of the gambling machine
» n = number of plays

» U; = expected reward of machine i.

A policy, or allocation strategy, A is an algorithm that chooses the next
machine to play based on the sequence of past plays and obtained

rewards.



Some considerations

» If the expected reward is known, then it would be trivial: just pull

the lever with higher expected reward.

» But what if you don’t?

» Approximation of reward for a gambling machine i : average of the

rewards received so far from i



Some simple policies

» Greedy policy: always choose the machine with current best

expected reward

» Exploitation vs exploration dilemma:

Should you exploit the information you’ve learned or explore new options

in the hope of greater payoff?

» In the greedy case, the balance is completely towards exploitation



Some simple policies

» Slight variant: e-greedy algorithm
Choose machine with current best expected reward with probability 1 — ¢

choose another machine randomly with probability € / (K — 1)
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Performance measures of bandit algorithms

Total expected regret (after T plays):

K
Rp = -T =) ;- E[T;(7)]
=1

p*: machine with highest reward expectation

IE[T] (T)]: expectation about the number of times the policy will play

machine j



Performance measures of bandit algorithms

» An algorithm is said to solve the multi-armed bandit problem if it can

match this lower bound: R = 0(logT).

» In other words, if it can be proved that the optimal machine is
played exponentially more often (as the number of plays goes to

infinity) than any other machine



The UCB algorithm

» At each time n, select an arm j s.t. j = argmax Bj,n],T
j

ot 2 log(T)
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- n; :number of times arm j has been pulled

- Sum of an exploitation term and an exploration term



The UCB algorithm

» Intuition: Select an arm that has a high probability of being the best,

given what has been observed so far

» The B-values are upper confidence bounds on (;

» Assures that the optimal machine is played exponentially more often

than any other machine

» Finite time-bound for regret



The UCB algorithm

» Many variants have been proposed:
Which consider the variance of the rewards obtained
Tuned if the distribution of rewards can be approximated as gaussian

Adopted if the process is non-stationary



Some applications

» Many applications have been studied:

Clinical trials

Adaptive routing in networks

Advertising: what ad to put on a web-page!?
Economy: auctions

Computation of Nash equilibria



Design of ethical clinical trials

» Goal: evaluate K possible treatments for a disease

o
o
» Which one is the most effective? Y/
d

Pool of T subjects partitioned randomly into K groups

Resource to allocate: partition of the subjects

In later stages of the trial, a greater fraction of the subjects should be assigned to

treatments which have performed well during the earlier stages of the trial

Reward: 0- lif the treatment is successful or not



Design of ethical cl
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Design of ethical clinical trials

Algorithm Average number of patients treated
Randomization 154.2
Epsilon Greedy 235.6
Softmax 239.2
UCB1 227.9
UCB-Tuned 240.7

[V. Kuleschov et al., “Algorithms for the multi-armed bandit problem”, Journal
of Machine Learning Research 2000]



Internet advertising

» Each time a user visits the site you must choose to display one of K

possible advertisements
» Reward is gained if a user click on it

» No knowledge of the user, the ad content, the web page content
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Internet advertising

» Where it fails: each of these displayed ads should be in the context

of a search or other webpage
» Solution proposed: contextual bandits
» Context: user’s query
» E.g.if a user input “flowers”, choose only between flower ads

» Combination of supervised learning and reinforcement learning

[Lu et al.,“Contextual multi-armed bandits”,
I 3t International Conference on Artificial Intelligence and Statistics (AISTATS), 2010]
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Internet advertising
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Network server selection

» A job has to be processed to one of several servers

v

Servers have different processing speed (due to geographic location,

load, ...)

Each server can be viewed as an arm

v

v

Over time, you want to learn which is the best arm to play

v

Used in routing, DNS server selection, cloud computing, ...
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Take home message

» Bandit problem: starting point for many application and context-
specific tasks
» Widely studied in the literature, both from the methodological and
the applicative perspective
» Still lots of open problem:s:
Exploration/exploitation dilemma

Theoretical proofs for many algorithms

Optimization in finite-time domain
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