Substitution and Unification

Substitution and Unification

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Substitution and Unification [Chang-Lee Ch. 5.3] Unification Algorithm [Chang-Lee Ch. 5.4]

Finding complementary literals

Substitution and Unification

need of unification

- To apply resolution we need to find complementary literals: $L_1 = P, L_2 = \neg P$
- This is not a problem for ground or propositional clauses
- When variables are involved things get more complicated

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 It is not obvious to decide whether two literals are complementary

Example

Substitution and Unification

Example (complementary literals with variables)

$$C_1 = P(x) \lor Q(x), \ C_2 = \neg P(f(y)) \lor R(y)$$

There is no complementary literal, but:

$$C'_1 = P(x = f(a)) \lor Q(x = f(a)), \ C'_2 = \neg P(f(y = a)) \lor R(y = a)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then C'_1 and C'_2 are ground instances of C_1 and C_2 , and P(f(a)) and $\neg P(f(a))$ are complementary.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Example, contd.

Substitution and Unification

Example (complementary literals with variables)

More in general, we can substitute x = f(y) in C_1 and obtain $C_1^* = P(f(y)) \lor Q(f(y))$

 $\frac{P(f(y)) \lor Q(f(y)) \neg P(f(y)) \lor R(y)}{Q(f(y)) \lor R(y)}$

 C_1^* is an instance of C_1 and C_3' is a (ground) instance of $C_3 = Q(f(y)) \lor R(y)$

- By substituting appropriate terms we can generate new clauses for C_1 and C_2
- By applying resolution to such clauses we obtain other clauses which will all be instance of C_3 .
- C₃ is the most general clause and is called a resolvent of C₁ and C₂.

Substitutions

Substitution and Unification

Substitutions

To obtain a resolvent from clauses containing variables we need to substitute variables with terms, and apply resolution.

Definition (Substitution)

A substitution is a finite set $\{t_1/v_1, \dots, t_n/v_n\}$ where every v_i is a variable and every t_i is a term, different from v_i , and no two elements in the set have the same variable after the / symbol.

ション ふゆ く 山 マ チャット しょうくしゃ

Example, contd.

Substitution and Unification

Example (Substitution)

- $\{f(z)/x, y/z\}$ is a substitution
- $\{a/x, g(y)/y, f(g(b))/z\}$ is a substitution
- $\{y/x, g(b)/y\}$ is a substitution
- $\{a/x, g(y)/x, f(g(b))/z\}$ is not a substitution

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

• $\{g(y)/x, z/f(g(b))\}$ is not a substitution

Ground and Empty substitutions

Substitution and Unification

Definition (Ground substitution)

A substitution $\{t_1/v_1, \dots, t_n/v_n\}$ is ground when $\{t_1, \dots, t_n\}$ are all ground terms.

Example (Ground Substitution)

• $\{f(a)/x, b/z\}$ is a ground substitution

• $\{a/x, g(b)/y, f(g(b))/z\}$ is a ground substitution

Definition (Empty substitution)

A substitution that contains no element $\{\}$ is the empty substitution, we denote the empty substitution with ϵ .

Instances of clauses

Substitution and Unification

Definition (Instance)

Let $\theta = \{t_1/v_1, \dots, t_n/v_n\}$ be a substitution and let E be an expression. Then $E\theta$ is an expression obtained by replacing simultaneously all occurrences of every v_i , $1 \le i \le n$, in E with the corresponding term t_i . $E\theta$ is an instance of E.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Example

Substitution and Unification

Example (Instances)

- Let $\theta = \{a/x, f(b)/y, c/z\}$ and E = P(x, y, z) then $E\theta = P(a, f(b), c)$ is an instance of E
- Let $\lambda = \{f(f(a))/x\}$ and $C = P(x) \lor Q(g(x))$ then $G\lambda = P(f(f(a)) \lor Q(g(f(f(a))))$ is an instance of C
- Let $\gamma = \{y/x, f(b)/y\}$ and $R = P(x) \lor Q(y)$ then $R\gamma = P(y) \lor Q(f(b))$ is an instance of R

Notes

 Definition of ground instance of a clause is compatible with definition of instance given here.

 substitution is simultaneous. If not simultaneous we could have different outcomes

$$R\gamma = P(x \leftarrow y \leftarrow f(b)) \lor Q(y \leftarrow f(b))$$

Composition

Substitution and Unification

Composition

Let $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ and $\lambda = \{u_1/y_1, \dots, u_m/y_m\}$ be two substitutions. Then the composition of θ and λ is denoted by $\theta \circ \lambda$, and is obtained by building the set $\{t_1\lambda/x_1, \dots, t_n\lambda/x_n, u_n/y_1, \dots, u_m/y_m\}$ and deleting the following elements:

any element t_jλ/x_j such that t_jλ = x_j
any element u_i/y_i such that y_i is in {x₁, · · · , x_n}

Example

Substitution and Unification

Example (composition)

Given:

- $\theta = \{t_1/x_1, t_2/x_2\} = \{f(y)/x, z/y\}$
- $\lambda = \{u_1/y_1, u_2/y_2, u_3/y_3\} = \{a/x, b/y, y/z\}$ We build the following set:

 $\{t_1\lambda/x_1, t_2\lambda/x_2, u_1/y_1, u_2/y_2, u_3/y_3\} = \{f(b)/x, y/y, a/x, b/y, y/z\}$

We remove the proper elements:

- $t_j\lambda/x_j$ such that $t_j\lambda=x_j$ therefore we remove y/y
- u_i/y_i such that y_i is in $\{x_1, \dots, x_n\}$ therefore we remove a/x and b/y

Finally,

$$\theta \circ \lambda = \{f(b)/x, y/z\}$$

Properties of composition

Substitution and Unification

associativeness

Let θ , λ and μ be substitutions we have that $(\theta \circ \lambda) \circ \mu = \theta \circ (\lambda \circ \mu)$

Example

Let
$$\theta = \{f(y)/x\}$$
, $\lambda = \{z/y\}$ and $\mu = \{a/z\}$. We have
• $\phi = \theta \circ \lambda = \{f(y)\lambda/x, z/y\} = \{f(z)/x, z/y\}$ and
 $\phi \circ \mu = \{f(z)\mu/x, z\mu/y, a/z\} = \{f(a)/x, a/y, a/z\}$
• $\phi' = \lambda \circ \mu = \{z\mu/y, a/z\} = \{a/y, a/z\}$ and
 $\theta \circ \phi' = \{f(y)\phi'/x, a/y, a/z\} = \{f(a)/x, a/y, a/z\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Identity of empty substitution

Let θ be a substitution then $\epsilon \circ \theta = \theta \circ \epsilon = \theta$

Unification and substitutions

Substitution and Unification

Unifying expressions using substitutions

- When using resolution we need to match or unify expressions to find complementary pairs of literals.
- This can be done by applying proper substitutions to relevant expression to make them identical

Example

Let $C_1 = P(x) \lor Q(x)$ and $C_2 = \neg P(f(y)) \lor Q(y)$, and let $L_1 = P(x), \ \neg L_2 = P(f(y))$

ション ふゆ く 山 マ チャット しょうくしゃ

- By applying $\theta = \{f(y)/x\}$.
- We have that $L_1\theta = \neg L_2\theta = P(f(y))$.

Unifier

Substitution and Unification

Definition (Unifier)

A substitution θ is called a unifier for a set $\{E_1, \dots, E_k\}$ iff $E_1\theta = E_2\theta = \dots = E_k\theta$. The set $\{E_1, \dots, E_k\}$ is unifiable iff there exists a unifier for it.

Example

The set $\{P(x), P(f(y))\}$ is unifiable and $\theta = \{f(y)/x\}$ is a unifier for it, because $P(x)\theta = P(f(y))\theta = P(f(y))$

(ロ) (型) (E) (E) (E) (O)

Most General Unifier

Substitution and Unification

Definition (MGF)

A unifier θ is a most general unifier for a set $\{E_1, \dots, E_k\}$ iff for each unifier λ there exists a substitution μ such that $\lambda = \theta \circ \mu$.

Example

Consider the set $\{P(x), P(f(y))\}$ and $\lambda = \{f(f(z))/x, f(z)/y\}.$

• λ is a unifier because $P(x)\lambda = P(f(y))\lambda = P(f(f(z)))$

• $\theta = \{f(y)/x\}$ is a unifier and is a most general unifier

• for example, we can find $\mu = \{f(z)/y\}$ such that $\theta \circ \mu = \{f(y)\mu/x, f(z)/y\} = \{f(f(z))/x, f(z)/y\} = \lambda$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

An algorithm for Unification

Substitution and Unification

Unification Algorithm

Need a procedure to find a MGU given a set of expressions

- Requirements:
 - stop after a finite number of steps
 - return an MGU if the set is unifiable
 - state that the set is not unifiable otherwise
- There are many possibilities
- We go for a recursive procedure.

Disagreement elimination: Example

Substitution and Unification

Example (Disagreement elimination)

Consider the set $\{P(a), P(x)\}$. This expressions are not identical.

- They disagree because of the arguments a and x
- The disagreement set here is $\{a, x\}$
- Since x is a variable, we can eliminate this disagreement by using the substitution $\theta = \{a/x\}$

$$\bullet P(a)\theta = P(x)\theta = P(a)$$

Disagreement set

Substitution and Unification

Definition (Disagreement Set)

The disagreement set of a nonempty set of expressions W is obtained by finding the first position (starting from the left) at which not all the expressions in the W have the same symbol. We then extract, from each expression, the sub-expression that begins with the symbol occupying that position. The set of these sub-expressions is the Disagreement Set.

Example (Disagreement Set)

Consider the set $\{P(a), P(x)\}$, the Disagreement Set is $\{a, x\}$.because the first position at which the string of symbols P(a) and P(x) differ is the position number 3. The sub expression starting from position 3 is a and x respectively.

$$D = \{f(y, z), a, g(h(k(x)))\}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Unification Algorithm: Basic Steps

Substitution and Unification

Basic Steps

- **1** Set k = 0, $W_0 = W$ and $\sigma_0 = \epsilon$
- 2 If W_k is a singleton, STOP, σ_k is a MGU. Otherwise, find the disagreement set D_k for W_k .
- 3 If there is a pair $\langle v_k, t_k \rangle$ such that $v_k, t_k \in D_k$, v_k is a variable that does not occur in t_k go to step 4, otherwise STOP, W is not unifiable.

4 Let
$$\sigma_{k+1} = \sigma_k \circ \{t_k / v_k\}$$
 and $W_{k+1} = W_k \{t_k / v_k\}$.

5 Set k = k + 1 go to step 2.

Note

In step 4 $W_{k+1} = W_k \{t_k/v_k\} = W\sigma_{k+1}$ because composition of substitutions is associative.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへぐ

W is not unifiable

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへぐ

Unification Algorithm: Termination

Substitution and Unification

Termination

The unification algorithm will always terminate after a finite number of steps.

- Otherwise we will have an infinite sequence
 Wσ₀, Wσ₁, Wσ₂, · · ·
- Each step eliminates one variable from W (specifically Wσ_k contains v_k but Wσ_{k+1} does not)
- And W has a finite number of variable
- Thus the algorithm will always terminate: returning a MGU or stating W is not unifiable

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

basic idea.

We can prove by induction on k that for any θ which is a unifier we have $\theta=\sigma_k\circ\lambda_k$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Exercises Unification algorithm

Substitution and Unification

Exercise

Determine whether each of the following set of expressions is unifiable. If yes give a MGU

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

1
$$W = \{Q(a, x, f(x)), Q(a, y, y)\}$$

2
$$W = \{Q(x, y, z), Q(u, h(v, v), u)\}$$