
Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering Tree Decomposition Methods



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Summary

Acyclic Networks

Cluster Tree Elimination



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Importance of Acyclic Networks

Solving Acyclic Network

Topological structure de�ne key features for a wide class of
problems

CSP: Inference in acyclic network is extremely e�cient
(polynomial)

Idea: remove cycles from the network somehow

We can always compile a cyclic graph into an acyclic
tree-like structure

We always pay a price in term of computational complexity

The price we pay depends on the topology of he problem



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Graph Concept: Brief Review

Hypergraphs

Hypergraphs: H = (V , S)

Vertices: V = {v1, · · · , vn}
Hyperegdes: S = {S1, · · · , Sk} where Si ⊆ V

Example (Hypergraph)

V = {A,B,C ,D,E ,F}
S = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Graph Concept: Bries Review

Primal Graph

Primal Graph of a Hypergraph

Nodes → Vertices
Two nodes connected i� they appear in the same
hyperedge

For binary contraint networks, Hypergraph and Primal
graph are identical

Example (Primal Graph)

V = {A,B,C ,D,E ,F}
E = {{A,B}{A,C}{B,C}{A,E}{A,F}
{E ,F}{C ,D}{C ,E}{D,E}}



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Graph Concept: Bries Review

Dual Graph

Dual Graph of a Hypergraph

Nodes → Hyperedges
Two nodes connected i� they share at least one vertex
Edges are labeled by the shared vertices

Example (Dual Graph)

V = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}
E = {{{A,E ,F}{A,B,C}}{{A,E ,F}, {C ,D,E}}
{{A,E ,F}, {A,C ,E}}{{A,B,C}, {C ,D,E}}
{{C ,D,E}, {A,C ,E}}{{A,B,C}, {A,C ,E}}}



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Constraint Networks and Graph Representation

Graph for Consraint Networks

Any constraint network can be associated with a hypergraph

Contraint network R = {X ,D,C} with
C = {RS1 , · · · ,RSr }
Hypergraph HR = (X ,H) where H = {S1, · · · , Sr}
Dual Graph Hd

R = (H,E ) where < Si , Sj >∈ E i�
Si ∩ Sj 6= { }
Dual Problem Rd = {H,D ′,C ′}

D ′ = {D ′
1
, · · · ,D ′r}, D ′i set of tuples accepted by RSi

C ′ = {C ′
1
, · · · ,C ′k}, C ′k =< Si , Sj >, enforces equality for

the set variables Xk = Si ∩ Sj



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Acyclicity of Constraint Network

Acyclic Network

If the graph representation of a problem is acyclic then we
can solve problem e�ciently

Even cyclic graphs can have a tree-like structure relative to
solution techniques

Some arc could be redundant

In general it is hard to recognise redundant constraints



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Acyclicity of Dual Problem

Redundant Constraints for Dual Problems

For the dual graph representation checking whether a
constraint is redundant is actually easy

All constraints force equality over shared variables

A constraint and its corresponding arc can be deleted if the
variables labeling the arc are contained in an alternative
path between the two endpoints

Because the constraint will be enforced by the other paths.

This property is called running intersection or
connectedness



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Example: Acyclicity of Dual Problem

Example (Acyclic Dual Problem)

Consider this dual graph:

V = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}

E = {{{A,E ,F}{A,B,C}}{{A,E ,F}, {C ,D,E}}
{{A,E ,F}, {A,C ,E}}{{A,B,C}, {C ,D,E}}
{{C ,D,E}, {A,C ,E}}}

We can remove redundant constraints:

{{A,E ,F}{A,B,C}} because the alternative path
(AEF )− AE − (ACE )− AC − (ABC ) enforce constraint on A

{{A,E ,F}{C ,D,E}} because the alternative path
(AEF )− AE − (ACE )− CE − (CDE ) enforce constraint on E

{{C ,D,E}{A,B,C}} because the alternative path
(CDE )− CE − (ACE )− AC − (ABC ) enforce constraint on C

The remaining structure is a tree



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Acyclic Network

Main Concepts

Arc Subgraph of a graph G = {V ,E}: any graph
G ′ = {V ,E ′} such that E ′ ⊆ E

Running Intersection property: G dual graph of an
hypergraph, G ′ an arc subgraph satis�es the running
intersection properties if given any two nodes of G ′ that
share a variable, there exists a path of labeled arcs, each
containing the variable.

Join Graph: an arc subgraph of the dual graph that
satis�es the running intersection properties

Join Tree: an acyclic join graph

Hypertree: a Hypergraph whose dual graph has a join tree

Acyclic Network: a network whose hypergraph is an
hypertree



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Solving Acyclic Network

Algorithm for Solving Acyclic Network

Algorithm 1 Tree Solver
Require: An Acyclic Constraint Network R, A join-tree T of R
Ensure: Determine consistency and generate a solution

d = {R1, · · · ,Rr} order induced by T (from root to leaves)
for all j = r to 1 and for all edges < j , k > in the T with k < j do

Rk ← πS
k
(RK ./ Rj )

if we �nd the empty relation then

EXIT and state the problem has NO SOLUTION
end if

end for

Select a tuple in R1

for all i = 2 to r do

Select a tuple that is consistent with all previous assigned tuples
R1, · · · ,Ri−1

end for

return The problem is CONSISTENT return the selected SOLUTION



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Example: Solving Acyclic Problem

Example (Applying Tree Solver)

Consider this join-tree:

V = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}
E = {{{A,E ,F}, {A,C ,E}}{{C ,D,E}, {A,C ,E}}
{{A,B,C}, {A,C ,E}}}

Assume constraints are given by

RABC = RAEF = {(0, 0, 1)(0, 1, 0)(1, 0, 0)}
RCDE = RACE = {(1, 1, 0)(0, 1, 1)(1, 0, 1)}
d = {RACE ,RCDE ,RAEF ,RABC}



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Recognising Acyclic Networks

Main methods

To apply the tree solver algorithm we need to know
whether a network is acyclic

This can not be decided simply by checking whether there
are cycles in the primal or dual graph

Two main methods

Primal based Recognition
Dual based Recognition



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Primal Based Recognition

Primal Based Recognition: main concepts

A hypergraph has a join tree i� its primal graph is chordal
and conformal [Maier 1983]

Conformal A primal graph is conformal to a hypergraph if
there is a one to one mapping between maximal cliques
and scopes of constraints

Chordal A primal graph is chordal if every cycle of length
at least 4 has a chord (an edge connecting two vertices
that are non adjacent in the cycle)

Checking whether a graph is chordal and conformal can be
done e�ciently using a max-cardinality order



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Primal Based Recognition using max cardinality

order

max cardinality order

max-cardinality order is an ordering over vertices such that:

�rst node is chosen arbitrarily
then the node that is connected to a maximal number of
already ordered nodes is selected (breaking ties arbitrarily)

Chordal Graph if in a max-cardinality order each vertex and
all its ancestors form a clique

Find Maximal clique just list nodes in the order and
consider each node ancestors



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Primal Based Recognition: Procedure

Main idea

1 build a max-cardinality order

2 Test whether the graph is chordal

use the max-cardinality order
check if ancestors form a clique

3 Test whether the graph is conformal

use the max-cardinality order
extract maximal cliques, check conformality



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Primal Based Recognition: algorithm

Primal Acyclicity

Algorithm 2 PrimalAcyclicicty
Require: A constraint network R = (X ,D,C) and its primal graph G

Ensure: A join tree T = (S,E) of HR if R is acyclic
Build dm = {x1, · · · , xn} max-cardinality order
Test Chordality using dm :
for all i = n to 1 do

if the ancestors of xi are not all connected then
EXIT (R is not acyclic)

end if
end for
Test Conformality using dm : Let {C1, · · · ,Cr} be the maximal cliques (a node and all its
ancestors)
for all i = r to 1 do

if Ci corresponds to scope of one constraints C then
(R is acyclic)

else
EXIT (R is not acyclic)

end if
end for
Create a join tree of the cliques (e.g., create a maximum spanning tree were weights are number
of shared variables)

return R is acyclic and T is a join tree



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Example: Primal based recognition

Example (Primal based recognition)

Consider this hypergraph

V = {A,B,C ,D,E ,F}
S = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}

decide whether this constraint network is acyclic using the
primal based recongition procedure.



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Dual Based Recognition

Dual Based Recognition: Theoretical Result

Maier 1983

If a hypergraph has a join tree then any maximum
spanning tree of its dual graph is a join tree

Weight of the arc are the number of shared variables



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Dual Based Recognition: Procedure

Main idea

Build the dual graph of the hypergraph

Compute a maximum spanning tree (weight = number of
shared variables)

Check whether the hypertree is a join tree

E�cient because there is only one path for each couple of
nodes



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Dual Based Recognition: algorithm

Dual Acyclicity

Algorithm 3 DualAcyclicicty
Require: A hypergraph HR = (X , S) of a constraint network R =

(X ,D,C)
Ensure: A join tree T = (S ,E) of HR if R is acyclic

T = (S ,E) ← generate a maximum spanning tree of the weighted dual
constraint graph of R
for all couples u, v where u, v ∈ S do

if the unique path connecting them in T does not satisfy the running
intersection property then

EXIT (R is not acyclic)
end if

end for

return R is acyclic and T is a join tree



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Dual Based Recognition: Example

Example (Dual Based Recognition)

Consider this dual graph:

V = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}
E = {{{A,E ,F}{A,B,C}}{{A,E ,F}, {C ,D,E}}
{{A,E ,F}, {A,C ,E}}{{A,B,C}, {C ,D,E}}
{{C ,D,E}, {A,C ,E}}}

If we �nd a MST weighing edges with number of shared
variables we obtain T :

V = {{A,E ,F}{A,B,C}{C ,D,E}{A,C ,E}}
E = {{{A,E ,F}, {A,C ,E}}{{C ,D,E}, {A,C ,E}}
{{A,B,C}, {A,C ,E}}}

Which satis�es the running intersection property.



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Compiling network to tree-like structures

Clustering

Aim:

Compile network to acyclic structure
Solve the acyclic structure e�ciently using a tree-solver
alg.

Clustering: grouping subsets of constraints to form a
tree-like structure

Solve each subproblem (replace the set of relations with
the solution of the problem)

Solve the acyclic network

If all steps are tractable this process is very e�cient



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Clustering Approaches

Methods

Join Tree Clustering

Given a constraint network
Computes an acyclic equivalent constraint problem

Cluster Tree Elimination

More general scheme
Given a Tree Decomposition
Combine the acyclic problem solving with subproblem
solution



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Join Tree Clustering I

Basic Concept

Input: Hypergraph H = {X ,H}, H set of scopes of
constraints

Output: Hypertree S = {X , S}, and a partition of the
original relations (Hyperedges) into the new hypertree
edges

S each edge de�nes a subproblem containing a constraint
if its scope is contained in the hyperedge

Each subproblem is solved independently

Each subproblem is replaced with one constraint that has
the scope of the hyperedges and accept the solution tuples
of the subproblem

The smaller the hyperdge size, the better.



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Join Tree Clustering II

Basic Steps

1 Choose an order of variable

2 Create an induced graph given the ordering to ensure the
running intersection property

3 Create a join tree

Identify all maximal cliques in the chordal graph C1, · · · ,Ct

Create a tree structure T over the cliques (e.g., create a
maximum spanning tree were weights are number of shared
variables)

4 Allocate constraints to any clique that contains its scope
(Pi subproblem associated with Ci ).

5 Solve each Pi with R
′
i its set of solutions

6 Return C ′ = {R ′
1
, · · · ,R ′t}



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Induced graph

Induced Graph and Induced Width

Given graph G :< V ,E > and order d over V

Ancestors: neighbours that precedes the vertices in the
ordering

G ∗ induced graph of G over d is obtained by:

process variables from last to �rst
when processing v , add edges to connect all ancestors of v

The width of a node is the number of ancestors of the node

The width of a graph is the maximal width of its nodes

The induced width w∗(d) of G given d is the width of G ∗

The induced width w∗ of G is minimum induced width
over all possible orderings



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Induced Graph and chordality

Induced Graph and chordality

A graph is chordal i� it has a perfect elimination ordering
[Fulkerson and Gross 1965]

Perfect elimination ordering: ordering of the vertices such
that, for each vertex v, v and its ancestors form a clique

An induced graph < G ∗, d > is chordal:

d is a perfect elimination ordering for G∗



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Example

Example (Creating the join tree)

Consider the following graph and assume it is a primal graph of
binary contraint newtork:

Variables: A,B,C ,D,E ,F Edges:
(A,B)(A,C )(A,E )(B,E )(B,D)(C ,D)(D,F )

Consider the orderings

d1 = F ,E ,D,C ,B,A

d2 = A,B,C ,D,E ,F



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Example contd.

Example (Creating the join tree)

The resulting join trees are:

d1 Cliques:
Q1 = (A,B,C ,E ),Q2 = (B,C ,D,E ),Q3 = (D,E ,F )
Edges: < Q1,Q2 >,< Q2,Q3 >

d1 Cliques: Q1 = (D,F ),Q2 = (A,B,E ),Q3 =
(B,C ,D),Q4 = (A,B,C )
Edges: < Q1,Q3 >,< Q2,Q4 >,< Q3,Q4 >



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Creating the chordal graph

max-cardinality order

Creating the chordal graph using a max-cardinality order is
more e�cient

do not add useless edges if graph is already chordal



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Ensuring the graph is conformal

conformality

When �nding the maximal cliques we might violate
conformality

could create maximal cliques that have no mapping to
constraints

Conformality is enforced in later steps

by creating a unique constraint for each sub problem



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Complexity of JTC

Complexity

The running time of join tree clustering is dominated by
computing the set of solutions of each sub problem

This is exponential in the size of the clique

Running time is dominated by running time to solve the
subproblem of the maximal clique

Size of maximal cliques is the induced width of the graph
plus one

The order used to compute the cliques is crucial

Finding the best ordering is hard



Tree Decom-
position
Methods

Acyclic
Network

Tree Based
Clustering

Finding a Complete Solution

Constraint Propagation

Once we have solved the subproblems we still need to

force arc-consisteny
expand local solution to a global solution (if problem is
consistent)

We can use Tree-Solver for this


	Acyclic Network
	Tree Based Clustering

