Tree Decomposition Methods

Acyclic Networ

Tree Based Clustering

Tree Decomposition Methods

Summary

Tree Decomposition Methods

Acyclic Networ

Tree Based Clustering

- Acyclic Networks
- Cluster Tree Elimination

Importance of Acyclic Networks

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Solving Acyclic Network

- Topological structure define key features for a wide class of problems
- CSP: Inference in acyclic network is extremely efficient (polynomial)
- Idea: remove cycles from the network somehow
- We can always compile a cyclic graph into an acyclic tree-like structure
- We always pay a price in term of computational complexity
- The price we pay depends on the topology of he problem

Graph Concept: Brief Review

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Hypergraphs

- Hypergraphs: H = (V, S)
 - Vertices: $V = \{v_1, \dots, v_n\}$
 - Hyperegdes: $S = \{S_1, \dots, S_k\}$ where $S_i \subseteq V$

Example (Hypergraph)

- $V = \{A, B, C, D, E, F\}$
- $S = \{ \{A, E, F\} \{A, B, C\} \{C, D, E\} \{A, C, E\} \}$

Graph Concept: Bries Review

Tree Decomposition Methods

Acyclic Network

> Tree Based Clustering

Primal Graph

- Primal Graph of a Hypergraph
 - \blacksquare Nodes \rightarrow Vertices
 - Two nodes connected iff they appear in the same hyperedge
- For binary contraint networks, Hypergraph and Primal graph are identical

Example (Primal Graph)

- $V = \{A, B, C, D, E, F\}$
- $E = \{ \{A, B\} \{A, C\} \{B, C\} \{A, E\} \{A, F\} \}$ $\{E, F\} \{C, D\} \{C, E\} \{D, E\} \}$

Graph Concept: Bries Review

Tree Decomposition Methods

Acyclic Network

> Tree Based Clustering

Dual Graph

- Dual Graph of a Hypergraph
 - $lue{}$ Nodes ightarrow Hyperedges
 - Two nodes connected iff they share at least one vertex
 - Edges are labeled by the shared vertices

Example (Dual Graph)

- $V = \{ \{A, E, F\} \{A, B, C\} \{C, D, E\} \{A, C, E\} \}$
- $E = \{\{\{A, E, F\}\{A, B, C\}\}\{\{A, E, F\}, \{C, D, E\}\}\}$ $\{\{A, E, F\}, \{A, C, E\}\}\{\{A, B, C\}, \{C, D, E\}\}$ $\{\{C, D, E\}, \{A, C, E\}\}\{\{A, B, C\}, \{A, C, E\}\}\}$

Constraint Networks and Graph Representation

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Graph for Consraint Networks

Any constraint network can be associated with a hypergraph

- Contraint network $\mathcal{R} = \{X, D, C\}$ with $C = \{R_{S_1}, \dots, R_{S_r}\}$
- Hypergraph $\mathcal{H}_{\mathcal{R}} = (X, H)$ where $H = \{S_1, \cdots, S_r\}$
- Dual Graph $\mathcal{H}^d_{\mathcal{R}} = (H, E)$ where $\langle S_i, S_j \rangle \in E$ iff $S_i \cap S_j \neq \{\}$
- Dual Problem $\mathcal{R}^d = \{H, D', C'\}$
 - $D' = \{D'_1, \dots, D'_r\}, D'_i \text{ set of tuples accepted by } R_{S_i}$
 - $C' = \{C'_1, \dots, C'_k\}, C'_k = \langle S_i, S_j \rangle$, enforces equality for the set variables $X_k = S_i \cap S_i$

Acyclicity of Constraint Network

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Acyclic Network

- If the graph representation of a problem is acyclic then we can solve problem efficiently
- Even cyclic graphs can have a tree-like structure relative to solution techniques
- Some arc could be redundant
- In general it is hard to recognise redundant constraints

Acyclicity of Dual Problem

Tree Decomposition Methods

Acyclic Network

> Tree Based Clustering

Redundant Constraints for Dual Problems

- For the dual graph representation checking whether a constraint is redundant is actually easy
- All constraints force equality over shared variables
- A constraint and its corresponding arc can be deleted if the variables labeling the arc are contained in an alternative path between the two endpoints
- Because the constraint will be enforced by the other paths.
- This property is called running intersection or connectedness

Example: Acyclicity of Dual Problem

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Example (Acyclic Dual Problem)

Consider this dual graph:

- $V = \{ \{A, E, F\} \{A, B, C\} \{C, D, E\} \{A, C, E\} \}$
- $E = \{\{\{A, E, F\}\{A, B, C\}\}\{\{A, E, F\}, \{C, D, E\}\}\}$ $\{\{A, E, F\}, \{A, C, E\}\}\{\{A, B, C\}, \{C, D, E\}\}$ $\{\{C, D, E\}, \{A, C, E\}\}\}$

We can remove redundant constraints:

- $\{\{A, E, F\}\{A, B, C\}\}$ because the alternative path (AEF) AE (ACE) AC (ABC) enforce constraint on A
- $\{A, E, F\}\{C, D, E\}$ because the alternative path (AEF) AE (ACE) CE (CDE) enforce constraint on E
- $\{\{C, D, E\}\{A, B, C\}\}\$ because the alternative path (CDE) CE (ACE) AC (ABC) enforce constraint on C

The remaining structure is a tree

Acyclic Network

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Main Concepts

- Arc Subgraph of a graph $G = \{V, E\}$: any graph $G' = \{V, E'\}$ such that $E' \subseteq E$
- Running Intersection property: G dual graph of an hypergraph, G' an arc subgraph satisfies the running intersection properties if given any two nodes of G' that share a variable, there exists a path of labeled arcs, each containing the variable.
- Join Graph: an arc subgraph of the dual graph that satisfies the running intersection properties
- Join Tree: an acyclic join graph
- Hypertree: a Hypergraph whose dual graph has a join tree
- Acyclic Network: a network whose hypergraph is an hypertree

Solving Acyclic Network

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Algorithm for Solving Acyclic Network

```
Algorithm 1 Tree Solver
Require: An Acyclic Constraint Network \mathcal{R}, A join-tree \mathcal{T} of \mathcal{R}
Ensure: Determine consistency and generate a solution
   d = \{R_1, \dots, R_r\} order induced by T (from root to leaves)
  for all j = r to 1 and for all edges < j, k > in the T with k < j do
       R_k \leftarrow \pi_{S_k}(R_K \bowtie R_i)
       if we find the empty relation then
          EXIT and state the problem has NO SOLUTION
       end if
  end for
  Select a tuple in R_1
  for all i-2 to r do
       Select a tuple that is consistent with all previous assigned tuples
       R_1, \cdots, R_{i-1}
  end for
```

return The problem is CONSISTENT return the selected SOLUTION

Example: Solving Acyclic Problem

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Example (Applying Tree Solver)

Consider this join-tree:

- $V = \{ \{A, E, F\} \{A, B, C\} \{C, D, E\} \{A, C, E\} \}$
- $E = \{\{\{A, E, F\}, \{A, C, E\}\}\}\{\{C, D, E\}, \{A, C, E\}\}\}$ $\{\{A, B, C\}, \{A, C, E\}\}\}$

Assume constraints are given by

- $R_{ABC} = R_{AEF} = \{(0,0,1)(0,1,0)(1,0,0)\}$
- $R_{CDE} = R_{ACE} = \{(1,1,0)(0,1,1)(1,0,1)\}$
- \bullet $d = \{R_{ACE}, R_{CDE}, R_{AEF}, R_{ABC}\}$

Recognising Acyclic Networks

Tree Decomposition Methods

Acyclic Network

> Tree Based Clustering

Main methods

- To apply the tree solver algorithm we need to know whether a network is acyclic
- This can not be decided simply by checking whether there are cycles in the primal or dual graph
- Two main methods
 - Primal based Recognition
 - Dual based Recognition

Primal Based Recognition

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Primal Based Recognition: main concepts

- A hypergraph has a join tree iff its primal graph is chordal and conformal [Maier 1983]
- Conformal A primal graph is conformal to a hypergraph if there is a one to one mapping between maximal cliques and scopes of constraints
- Chordal A primal graph is chordal if every cycle of length at least 4 has a chord (an edge connecting two vertices that are non adjacent in the cycle)
- Checking whether a graph is chordal and conformal can be done efficiently using a max-cardinality order

Primal Based Recognition using max cardinality order

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

max cardinality order

- max-cardinality order is an ordering over vertices such that:
 - first node is chosen arbitrarily
 - then the node that is connected to a maximal number of already ordered nodes is selected (breaking ties arbitrarily)
- Chordal Graph if in a max-cardinality order each vertex and all its ancestors form a clique
- Find Maximal clique just list nodes in the order and consider each node ancestors

Primal Based Recognition: Procedure

Tree Decomposition Methods

Acyclic Network

> Tree Based Clustering

Main idea

- build a max-cardinality order
- 2 Test whether the graph is chordal
 - use the max-cardinality order
 - check if ancestors form a clique
- 3 Test whether the graph is conformal
 - use the max-cardinality order
 - extract maximal cliques, check conformality

Primal Based Recognition: algorithm

Tree Decomposition Methods

Acyclic Network

> Tree Based Clustering

Primal Acyclicity

Algorithm 2 PrimalAcyclicicty

return \mathcal{R} is acyclic and T is a join tree

```
Require: A constraint network \mathcal{R} = (X, D, C) and its primal graph G
Ensure: A join tree T = (S, E) of \mathcal{H}_{\mathcal{R}} if \mathcal{R} is acyclic
    Build d^m = \{x_1, \dots, x_n\} max-cardinality order
   Test Chordality using dm
   for all i = n to 1 do
         if the ancestors of x; are not all connected then
              EXIT (R is not acyclic)
         end if
   end for
    Test Conformality using d^m: Let \{C_1, \dots, C_r\} be the maximal cliques (a node and all its
    ancestors)
   for all i = r to 1 do
         if C; corresponds to scope of one constraints C then
              (R is acvelie)
         else
              EXIT (R is not acyclic)
         end if
   end for
   Create a join tree of the cliques (e.g., create a maximum spanning tree were weights are number
   of shared variables)
```

Example: Primal based recognition

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Example (Primal based recognition)

Consider this hypergraph

- $V = \{A, B, C, D, E, F\}$
- $S = \{ \{A, E, F\} \{A, B, C\} \{C, D, E\} \{A, C, E\} \}$

decide whether this constraint network is acyclic using the primal based recongition procedure.

Dual Based Recognition

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Dual Based Recognition: Theoretical Result

- Maier 1983
- If a hypergraph has a join tree then any maximum spanning tree of its dual graph is a join tree
- Weight of the arc are the number of shared variables

Dual Based Recognition: Procedure

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Main idea

- Build the dual graph of the hypergraph
- Compute a maximum spanning tree (weight = number of shared variables)
- Check whether the hypertree is a join tree
 - Efficient because there is only one path for each couple of nodes

Dual Based Recognition: algorithm

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

```
Dual Acyclicity
```

Algorithm 3 DualAcyclicicty

```
Require: A hypergraph \mathcal{H}_{\mathcal{R}} = (X, S) of a constraint network \mathcal{R} =
   (X, D, C)
Ensure: A join tree T = (S, E) of \mathcal{H}_{\mathcal{R}} if \mathcal{R} is acyclic
   T = (S, E) \leftarrow generate a maximum spanning tree of the weighted dual
   constraint graph of \mathcal{R}
   for all couples u, v where u, v \in S do
       if the unique path connecting them in T does not satisfy the running
       intersection property then
           EXIT (\mathcal{R} is not acyclic)
       end if
   end for
   return \mathcal{R} is acyclic and T is a join tree
```

Dual Based Recognition: Example

Tree Decomposition Methods

Acyclic Network

> Tree Based Clustering

Example (Dual Based Recognition)

Consider this dual graph:

- $V = \{ \{A, E, F\} \{A, B, C\} \{C, D, E\} \{A, C, E\} \}$
- $E = \{\{\{A, E, F\}\{A, B, C\}\}\{\{A, E, F\}, \{C, D, E\}\}\}$ $\{\{A, E, F\}, \{A, C, E\}\}\{\{A, B, C\}, \{C, D, E\}\}$ $\{\{C, D, E\}, \{A, C, E\}\}\}$

If we find a MST weighing edges with number of shared variables we obtain T:

- $V = \{\{A, E, F\}\{A, B, C\}\{C, D, E\}\{A, C, E\}\}$
- $E = \{\{\{A, E, F\}, \{A, C, E\}\}\}\{\{C, D, E\}, \{A, C, E\}\}\}$ $\{\{A, B, C\}, \{A, C, E\}\}\}$

Which satisfies the running intersection property.

Compiling network to tree-like structures

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Clustering

- Aim:
 - Compile network to acyclic structure
 - Solve the acyclic structure efficiently using a tree-solver alg.
- Clustering: grouping subsets of constraints to form a tree-like structure
- Solve each subproblem (replace the set of relations with the solution of the problem)
- Solve the acyclic network
- If all steps are tractable this process is very efficient

Clustering Approaches

Tree Decomposition Methods

Acyclic Networ

Tree Based Clustering

Methods

- Join Tree Clustering
 - Given a constraint network
 - Computes an acyclic equivalent constraint problem
- Cluster Tree Elimination
 - More general scheme
 - Given a Tree Decomposition
 - Combine the acyclic problem solving with subproblem solution

Join Tree Clustering I

Tree Decomposition Methods

Acyclic Networl

Tree Based Clustering

Basic Concept

- Input: Hypergraph $\mathcal{H} = \{X, H\}$, H set of scopes of constraints
- Output: Hypertree $S = \{X, S\}$, and a partition of the original relations (Hyperedges) into the new hypertree edges
- S each edge defines a subproblem containing a constraint if its scope is contained in the hyperedge
- Each subproblem is solved independently
- Each subproblem is replaced with one constraint that has the scope of the hyperedges and accept the solution tuples of the subproblem
- The smaller the hyperdge size, the better.

Join Tree Clustering II

Tree Decomposition Methods

Acyclic Networl

Tree Based Clustering

Basic Steps

- Choose an order of variable
- 2 Create an induced graph given the ordering to ensure the running intersection property
- 3 Create a join tree
 - lacksquare Identify all maximal cliques in the chordal graph C_1,\cdots,C_t
 - Create a tree structure T over the cliques (e.g., create a maximum spanning tree were weights are number of shared variables)
- 4 Allocate constraints to any clique that contains its scope $(P_i \text{ subproblem associated with } C_i)$.
- **5** Solve each P_i with R'_i its set of solutions
- 6 Return $C' = \{R'_1, \dots, R'_t\}$

Induced graph

Tree Decomposition Methods

Acyclic Networl

Tree Based Clustering

Induced Graph and Induced Width

- Given graph $G : \langle V, E \rangle$ and order d over V
- Ancestors: neighbours that precedes the vertices in the ordering
- G^* induced graph of G over d is obtained by:
 - process variables from last to first
 - lacktriangle when processing v, add edges to connect all ancestors of v
- The width of a node is the number of ancestors of the node
- The width of a graph is the maximal width of its nodes
- The induced width $w^*(d)$ of G given d is the width of G^*
- The induced width w^* of G is minimum induced width over all possible orderings

Induced Graph and chordality

Tree Decomposition Methods

Acyclic Networ

Tree Based Clustering

Induced Graph and chordality

- A graph is chordal iff it has a perfect elimination ordering [Fulkerson and Gross 1965]
- Perfect elimination ordering: ordering of the vertices such that, for each vertex v, v and its ancestors form a clique
- An induced graph $< G^*, d >$ is chordal:
 - lacksquare d is a perfect elimination ordering for G^*

Example

Tree Decomposition Methods

Acy clic Networ

Tree Based Clustering

Example (Creating the join tree)

Consider the following graph and assume it is a primal graph of binary contraint newtork:

■ Variables: A, B, C, D, E, F Edges: (A, B)(A, C)(A, E)(B, E)(B, D)(C, D)(D, F)

Consider the orderings

- \bullet $d_1 = F, E, D, C, B, A$
- $d_2 = A, B, C, D, E, F$

Example (Creating the join tree)

The resulting join trees are:

 \bullet d_1 Cliques:

$$Q_1 = (A,B,C,E), Q_2 = (B,C,D,E), Q_3 = (D,E,F)$$

Edges:
$$< Q_1, Q_2>, < Q_2, Q_3>$$

• d_1 Cliques: $Q_1 = (D, F), Q_2 = (A, B, E), Q_3 = (B, C, D), Q_4 = (A, B, C)$

Edges:
$$< Q_1, Q_3>, < Q_2, Q_4>, < Q_3, Q_4>$$

Creating the chordal graph

Tree Decomposition Methods

Acy clic Networ

Tree Based Clustering

max-cardinality order

- Creating the chordal graph using a max-cardinality order is more efficient
- do not add useless edges if graph is already chordal

Ensuring the graph is conformal

Tree Decomposition Methods

Acyclic Networ

Tree Based Clustering

conformality

- When finding the maximal cliques we might violate conformality
 - could create maximal cliques that have no mapping to constraints
- Conformality is enforced in later steps
 - by creating a unique constraint for each sub problem

Complexity of JTC

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Complexity

- The running time of join tree clustering is dominated by computing the set of solutions of each sub problem
- This is exponential in the size of the clique
- Running time is dominated by running time to solve the subproblem of the maximal clique
- Size of maximal cliques is the induced width of the graph plus one
- The order used to compute the cliques is crucial
- Finding the best ordering is hard

Finding a Complete Solution

Tree Decomposition Methods

Acyclic Networ

Tree Based Clustering

Constraint Propagation

- Once we have solved the subproblems we still need to
 - force arc-consisteny
 - expand local solution to a global solution (if problem is consistent)
- We can use Tree-Solver for this