Summary

- Acyclic Networks
- Cluster Tree Elimination
Importance of Acyclic Networks

Solving Acyclic Network

- Topological structure define key features for a wide class of problems
- CSP: Inference in acyclic network is extremely efficient (polynomial)
- Idea: remove cycles from the network somehow
- We can always compile a cyclic graph into an acyclic tree-like structure
- We always pay a price in term of computational complexity
- The price we pay depends on the topology of the problem
Graph Concept: Brief Review

Hypergraphs

- Hypergraphs: $H = (V, S)$
 - Vertices: $V = \{v_1, \cdots, v_n\}$
 - Hyperedges: $S = \{S_1, \cdots, S_k\}$ where $S_i \subseteq V$

Example (Hypergraph)

- $V = \{A, B, C, D, E, F\}$
- $S = \{\{A, E, F\}\{A, B, C\}\{C, D, E\}\{A, C, E\}\}$
Graph Concept: Bries Review

Primal Graph

- Primal Graph of a Hypergraph
 - Nodes → Vertices
 - Two nodes connected iff they appear in the same hyperedge
- For binary constraint networks, Hypergraph and Primal graph are identical

Example (Primal Graph)

- \(V = \{A, B, C, D, E, F\} \)
Graph Concept: Bries Review

Dual Graph

- Dual Graph of a Hypergraph
 - Nodes → Hyperedges
 - Two nodes connected iff they share at least one vertex
 - Edges are labeled by the shared vertices

Example (Dual Graph)

- \(V = \{\{A, E, F\}, \{A, B, C\}, \{C, D, E\}, \{A, C, E\}\} \)
- \(E = \{\{\{A, E, F\}, \{A, B, C\}\}, \{\{A, E, F\}, \{C, D, E\}\}, \{\{A, B, C\}, \{C, D, E\}\}, \{\{C, D, E\}, \{A, C, E\}\}, \{\{A, B, C\}, \{A, C, E\}\}\} \)
Constraint Networks and Graph Representation

Graph for Constraint Networks

Any constraint network can be associated with a hypergraph:

- **Contraint network** $\mathcal{R} = \{X, D, C\}$ with

 $$C = \{R_{S_1}, \cdots, R_{S_r}\}$$

- **Hypergraph** $\mathcal{H}_R = (X, H)$ where $H = \{S_1, \cdots, S_r\}$

- **Dual Graph** $\mathcal{H}^d_R = (H, E)$ where $<S_i, S_j> \in E$ iff $S_i \cap S_j \neq \emptyset$

- **Dual Problem** $\mathcal{R}^d = \{H, D', C'\}$
 - $D' = \{D'_1, \cdots, D'_r\}$, D'_i set of tuples accepted by R_{S_i}
 - $C' = \{C'_1, \cdots, C'_k\}$, $C'_k = <S_i, S_j>$, enforces equality for the set variables $X_k = S_i \cap S_j$
Acyclicity of Constraint Network

- If the graph representation of a problem is acyclic then we can solve the problem efficiently.
- Even cyclic graphs can have a tree-like structure relative to solution techniques.
- Some arcs could be redundant.
- In general, it is hard to recognise redundant constraints.
Acyclicity of Dual Problem

Redundant Constraints for Dual Problems

- For the dual graph representation checking whether a constraint is redundant is actually easy
- All constraints force equality over shared variables
- A constraint and its corresponding arc can be deleted if the variables labeling the arc are contained in an alternative path between the two endpoints
- Because the constraint will be enforced by the other paths
- This property is called running intersection or connectedness
Example: Acyclicity of Dual Problem

Example (Acyclic Dual Problem)

Consider this dual graph:

\[V = \{\{A, E, F\}, \{A, B, C\}, \{C, D, E\}, \{A, C, E\}\} \]

\[E = \{\{\{A, E, F\}, \{A, B, C\}\}, \{\{A, E, F\}, \{C, D, E\}\}, \{\{A, B, C\}, \{C, D, E\}\}, \{\{C, D, E\}, \{A, C, E\}\}\} \]

We can remove redundant constraints:

- \{\{A, E, F\}, \{A, B, C\}\} because the alternative path (AEF) – AE – (ACE) – AC – (ABC) enforce constraint on A
- \{\{A, E, F\}, \{C, D, E\}\} because the alternative path (AEF) – AE – (ACE) – CE – (CDE) enforce constraint on E
- \{\{C, D, E\}, \{A, B, C\}\} because the alternative path (CDE) – CE – (ACE) – AC – (ABC) enforce constraint on C

The remaining structure is a tree
Main Concepts

- **Arc Subgraph** of a graph \(G = \{V, E\} \): any graph \(G' = \{V, E'\} \) such that \(E' \subseteq E \)

- **Running Intersection** property: \(G \) dual graph of an hypergraph, \(G' \) an arc subgraph satisfies the running intersection properties if given any two nodes of \(G' \) that share a variable, there exists a path of labeled arcs, each containing the variable.

- **Join Graph**: an arc subgraph of the dual graph that satisfies the running intersection properties

- **Join Tree**: an acyclic join graph

- **Hypertree**: a Hypergraph whose dual graph has a join tree

- **Acyclic Network**: a network whose hypergraph is an hypertree
Algorithm for Solving Acyclic Network

Algorithm 1 Tree Solver

Require: An Acyclic Constraint Network \(R \), A join-tree \(T \) of \(R \)

Ensure: Determine consistency and generate a solution

\[d = \{R_1, \cdots, R_r\} \text{ order induced by } T \text{ (from root to leaves)} \]

for all \(j = r \) to 1 and for all edges \(< j, k > \) in the \(T \) with \(k < j \) do

\[R_k \leftarrow \pi_{S_k}(R_K \bowtie R_j) \]

if we find the empty relation then

EXIT and state the problem has NO SOLUTION

end if

end for

Select a tuple in \(R_1 \)

for all \(i = 2 \) to \(r \) do

Select a tuple that is consistent with all previous assigned tuples \(R_1, \cdots, R_{i-1} \)

end for

return The problem is CONSISTENT return the selected SOLUTION
Example: Solving Acyclic Problem

Example (Applying Tree Solver)

Consider this join-tree:

- \(V = \{\{A, E, F\}, \{A, B, C\}, \{C, D, E\}, \{A, C, E\}\} \)
- \(E = \{\{\{A, E, F\}, \{A, C, E\}\}, \{\{C, D, E\}, \{A, C, E\}\}, \{\{A, B, C\}, \{A, C, E\}\}\} \)

Assume constraints are given by

- \(R_{ABC} = R_{AEF} = \{(0,0,1)(0,1,0)(1,0,0)\} \)
- \(R_{CDE} = R_{ACE} = \{(1,1,0)(0,1,1)(1,0,1)\} \)
- \(d = \{R_{ACE}, R_{CDE}, R_{AEF}, R_{ABC}\} \)
Recognising Acyclic Networks

Main methods

- To apply the tree solver algorithm we need to know whether a network is acyclic.
- This can not be decided simply by checking whether there are cycles in the primal or dual graph.
- Two main methods
 - Primal based Recognition
 - Dual based Recognition
Primal Based Recognition: main concepts

- A hypergraph has a join tree iff its primal graph is **chordal** and **conformal** [Maier 1983]
- **Conformal** A primal graph is conformal to a hypergraph if there is a one to one mapping between maximal cliques and scopes of constraints
- **Chordal** A primal graph is chordal if every cycle of length at least 4 has a **chord** (an edge connecting two vertices that are non adjacent in the cycle)
- Checking whether a graph is chordal and conformal can be done **efficiently** using a **max-cardinality** order
Primal Based Recognition using max cardinality order

max cardinality order

- **max-cardinality** order is an ordering over vertices such that:
 - first node is chosen arbitrarily
 - then the node that is connected to a maximal number of already ordered nodes is selected (breaking ties arbitrarily)

- **Chordal Graph** if in a max-cardinality order each vertex and all its ancestors form a clique

- Find **Maximal clique** just list nodes in the order and consider each node ancestors
Primal Based Recognition: Procedure

Main idea

1. build a max-cardinality order
2. Test whether the graph is chordal
 - use the max-cardinality order
 - check if ancestors form a clique
3. Test whether the graph is conformal
 - use the max-cardinality order
 - extract maximal cliques, check conformality
Primal Based Recognition: algorithm

Primal Acyclicity

Algorithm 2 PrimalAcyclicity

Require: A constraint network $\mathcal{R} = (X, D, C)$ and its primal graph G
Ensure: A join tree $T = (S, E)$ of $\mathcal{H}_\mathcal{R}$ if \mathcal{R} is acyclic

1. Build $d^m = \{x_1, \ldots, x_n\}$ max-cardinality order
2. Test Chordality using d^m:
 - for all $i = n$ to 1 do
 - if the ancestors of x_i are not all connected then
 - EXIT (\mathcal{R} is not acyclic)
 - end if
 - end for
3. Test Conformality using d^m: Let $\{C_1, \ldots, C_r\}$ be the maximal cliques (a node and all its ancestors)
 - for all $i = r$ to 1 do
 - if C_i corresponds to scope of one constraints C then
 - (\mathcal{R} is acyclic)
 - else
 - EXIT (\mathcal{R} is not acyclic)
 - end if
 - end for
4. Create a join tree of the cliques (e.g., create a maximum spanning tree were weights are number of shared variables)

Return \mathcal{R} is acyclic and T is a join tree
Example: Primal based recognition

Example (Primal based recognition)

Consider this hypergraph

- \(V = \{A, B, C, D, E, F\} \)
- \(S = \{\{A, E, F\}, \{A, B, C\}, \{C, D, E\}, \{A, C, E\}\} \)

decide whether this constraint network is acyclic using the primal based recognition procedure.
Dual Based Recognition: Theoretical Result

- Maier 1983
- If a hypergraph has a join tree then any \textit{maximum} spanning tree of its dual graph is a join tree
- Weight of the arc are the number of shared variables
Dual Based Recognition: Procedure

Main idea

- Build the dual graph of the hypergraph
- Compute a maximum spanning tree (weight = number of shared variables)
- Check whether the hypertree is a join tree
 - Efficient because there is only one path for each couple of nodes
Dual Based Recognition: algorithm

Dual Acyclicity

Algorithm 3 DualAcyclicity

Require: A hypergraph $\mathcal{H}_R = (X, S)$ of a constraint network $R = (X, D, C)$

Ensure: A join tree $T = (S, E)$ of \mathcal{H}_R if R is acyclic

$T = (S, E) \leftarrow$ generate a maximum spanning tree of the weighted dual constraint graph of R

for all couples u, v where $u, v \in S$ do

if the unique path connecting them in T does not satisfy the running intersection property then

EXIT (R is not acyclic)

end if

end for

return R is acyclic and T is a join tree
Example (Dual Based Recognition)

Consider this dual graph:

- $V = \{\{A, E, F\}, \{A, B, C\}, \{C, D, E\}, \{A, C, E\}\}$
- $E = \{\{\{A, E, F\}, \{A, B, C\}\}, \{\{A, E, F\}, \{C, D, E\}\}, \{\{A, B, C\}, \{C, D, E\}\}, \{\{C, D, E\}, \{A, C, E\}\}\}$

If we find a MST weighing edges with number of shared variables we obtain T:

- $V = \{\{A, E, F\}, \{A, B, C\}, \{C, D, E\}, \{A, C, E\}\}$
- $E = \{\{\{A, E, F\}, \{A, C, E\}\}, \{\{C, D, E\}, \{A, C, E\}\}, \{\{A, B, C\}, \{A, C, E\}\}\}$

Which satisfies the running intersection property.
Compiling network to tree-like structures

Tree Decomposition Methods

Acyclic Network

Tree Based Clustering

Clustering

- **Aim:**
 - Compile network to acyclic structure
 - Solve the acyclic structure efficiently using a tree-solver alg.
- Clustering: grouping subsets of constraints to form a tree-like structure
- Solve each subproblem (replace the set of relations with the solution of the problem)
- Solve the acyclic network
- If all steps are tractable this process is very efficient
Clustering Approaches

Methods

- **Join Tree Clustering**
 - Given a constraint network
 - Computes an acyclic equivalent constraint problem

- **Cluster Tree Elimination**
 - More general scheme
 - Given a Tree Decomposition
 - Combine the acyclic problem solving with subproblem solution
Join Tree Clustering I

Basic Concept

- **Input:** Hypergraph $\mathcal{H} = \{X, H\}$, H set of scopes of constraints
- **Output:** Hypertree $S = \{X, S\}$, and a partition of the original relations (Hyperedges) into the new hypertree edges
- Each edge defines a subproblem containing a constraint if its scope is contained in the hyperedge
- Each subproblem is solved *independently*
- Each subproblem is replaced with one constraint that has the scope of the hyperedges and accept the solution tuples of the subproblem
- **The smaller** the hyperedge size, **the better**.
Join Tree Clustering II

Basic Steps

1. Choose an order of variable
2. Create an induced graph given the ordering to ensure the running intersection property
3. Create a join tree
 - Identify all maximal cliques in the chordal graph C_1, \cdots, C_t
 - Create a tree structure T over the cliques (e.g., create a maximum spanning tree where weights are number of shared variables)
4. Allocate constraints to any clique that contains its scope (P_i subproblem associated with C_i).
5. Solve each P_i with R'_i its set of solutions
6. Return $C' = \{R'_1, \cdots, R'_t\}$
Induced graph

Induced Graph and Induced Width

- Given graph $G : \langle V, E \rangle$ and order d over V
- **Ancestors**: neighbours that precedes the vertices in the ordering
- G^* induced graph of G over d is obtained by:
 - process variables from last to first
 - when processing v, add edges to connect all ancestors of v
- The width of a node is the number of ancestors of the node
- The width of a graph is the maximal width of its nodes
- The induced width $w^*(d)$ of G given d is the width of G^*
- The induced width w^* of G is minimum induced width over all possible orderings
Induced Graph and chordality

- A graph is chordal iff it has a perfect elimination ordering [Fulkerson and Gross 1965]
- **Perfect elimination ordering**: ordering of the vertices such that, for each vertex v, v and its ancestors form a clique
- An induced graph $\langle G^*, d \rangle$ is chordal:
 - d is a perfect elimination ordering for G^*
Example (Creating the join tree)

Consider the following graph and assume it is a primal graph of binary constraint network:

- Variables: A, B, C, D, E, F

Consider the orderings

- $d_1 = F, E, D, C, B, A$
- $d_2 = A, B, C, D, E, F$
Example contd.

Example (Creating the join tree)

The resulting join trees are:

- d_1 Cliques:
 \[Q_1 = (A, B, C, E), Q_2 = (B, C, D, E), Q_3 = (D, E, F) \]
 Edges: $< Q_1, Q_2 >, < Q_2, Q_3 >$

- d_1 Cliques:
 \[Q_1 = (D, F), Q_2 = (A, B, E), Q_3 = (B, C, D), Q_4 = (A, B, C) \]
 Edges: $< Q_1, Q_3 >, < Q_2, Q_4 >, < Q_3, Q_4 >$
Creating the chordal graph

max-cardinality order

- Creating the chordal graph using a max-cardinality order is more efficient
- do not add useless edges if graph is already chordal
Ensuring the graph is conformal

- When finding the maximal cliques we might violate conformality
 - could create maximal cliques that have no mapping to constraints
- Conformality is enforced in later steps
 - by creating a unique constraint for each subproblem
Complexity of JTC

Complexity

- The running time of join tree clustering is dominated by computing the set of solutions of each sub problem.
- This is exponential in the size of the clique.
- Running time is dominated by running time to solve the subproblem of the maximal clique.
- Size of maximal cliques is the induced width of the graph plus one.
- The order used to compute the cliques is crucial.
- Finding the best ordering is hard.
Finding a Complete Solution

Constraint Propagation

- Once we have solved the subproblems we still need to
 - force arc-consistency
 - expand local solution to a global solution (if problem is consistent)
- We can use Tree-Solver for this