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Summary

Introduction and a bit of History [Chang-Lee Ch.4.1]

Skolem Standard Form [Chang-Lee Ch. 4.2]

Properties of Skolem Standard Form [Chang-Lee 4.2]



Skolem

Standard

Form

Introduction

Skolem

Standard

Form

Properties of

Skolem Form

Intro

Solving problem by proving theorem

formalise a situation using a logic formula (e.g. FOL)

prove validity

e.g. Quacks and Doctor

Similar techniques applied to other scenarios (e.g. is a
software module bug free ?)
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Problems with Logic formalisation

FOL is not decidable

Prop Logic not �exible enough

FOL is not decidable Negative Result!

Church Turing: FOL is semidecidable: there is no �nite
procedure to check whether a formula is valid

Can verify that a formula is valid in �nite steps but for
invalid ones, the procedure might not terminate
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Herbrand and FOL interpretation

Herbrand contribution

We want to �nd a procedure to verify valid (inconsistent)
formulas at least!

Herbrand showed we can focus on only one interpretation
Positive Result!

We can then construct a semi-decidable automatic
procedure, and this is the best we can do

Further developments: build more e�cient procedures
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Automatic proof procedures: Gilmore

Gilmore 1960

Following Herbrand's idea

First implemented proof procedure

Given a formula F , check inconsistency of ¬F
Check inconsistency of a series of propositional formula

If ¬F is inconsistent, program will terminate detecting this.

Worked on simple known valid formulas.

But could not proove many FOL valid formulas.

Main bottleneck: checking satis�ability of propositional
formulas.
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Automatic proof procedures: using DPLL

Davis and Putnam 1960

Improvement on Gilmore's work

More e�cient method to check satis�ability

Consistent improvement, but still not satisfactory
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Resolution proof procedures

Robinson 1965

very e�cient

many re�nements:

Semantic Resolution

Lock Resolution

Unit Resolution

Set of Support Strategy

Ordered Resolution
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Refutational Procedures

Proving inconsistency

Given a formula G we want to proove that G is valid

But we know that ¬G is inconsistent i� G is valid

We try to refute ¬G
We use refutation just for convenience
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Standard Form

Davis Putnam 1960

Given a FOL formula F we can:

1 obtain a prenex normal form Q1x1 · · ·QnxnM

2 reduce M to CNF C1 ∧ · · · ∧ Cm where Ci = L1 ∨ · · · ∨ Lk .
3 remove all existential quanti�ers from the pre�x

We know how to do 1 and 2, we will see how 3 can be done.
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Eliminating Existential Quanti�ers

Procedure to eliminate existential quanti�ers

Given a formula G , Q1x1 · · ·QnxnM.

Let's focus on one speci�c existential quanti�er Qr with
1 ≤ r ≤ n

1 if no universal quanti�ers appear before Qr then we can

remove Qrxr from the pre�x and replace every occurrence

of xr with a new constant c

2 Suppose Qs1 , · · · ,Qsm are all universal quanti�ers

appearing before Qr , then we can remove Qrxr from the

pre�x and replace every occurrence of xr with a new

m-placed function sysmbol f (xs1 , · · · , xsm )
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Skolem Standard Form

Skolem Form, Constant and Functions

When the above procedures has been applied to remove all
exisestential quanti�er, the formula is in Skolem Standard
Form

The new introduced constants are called Skolem constants

The new introduced functions are called Skolem functions
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Intuition

Intuitive explanation

F , ∃xE (s(0), x) F Sko , E (s(0), a)

G , ∀x∃yE (s(x), y) GSko , ∀xE (s(x), g(x))

If we consider that E (x , y) x equals y, s(x) successor of x.

F = there exists a number which is the successor of zero

F sko = we make that number a costant and call it a

G = for every number there exists a successor of that
number

G sko = we make up a new function that gives us the

successor of x and call it g(x)
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Skolem Standard Form: Example I

Example (Skolem standard form)

Obtain standard Normal Form for the formula:
∃x∀y∀z∃u∀v∃wP(x , y , z , u, v ,w)

x is not preceded by any ∀ thus x → c

u is preceded by ∀y and ∀z thus u → f (y , z)

w is preceded by ∀y and ∀z and ∀v thus w → g(y , z , v)

we have ∀y∀z∀vP(c, y , z , f (y , z), g(y , z , v))
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Skolem Standard Form: Example II

Example (Skolem standard form)

Obtain standard Normal Form for the formula:
∀x∃y∃z((¬P(x , y) ∧ Q(x , z)) ∨ R(x , y , z))

transform the matrix in CNF:
∀x∃y∃z((¬P(x , y) ∨ R(x , y , z)) ∧ (Q(x , z) ∨ R(x , y , z))

y is preceded by ∀x thus y → f (x)

z is preceded by ∀x thus z → g(x)

we have ∀x((¬P(x , f (x)) ∨ R(x , f (x), g(x))) ∧
(Q(x , g(x)) ∨ R(x , f (x), g(x)))
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Exercise: Skolem Standard Form

Example (Skolem Standard Form)

Given the formula
G , ∀x∀y∃z∀w∃u(P(x , y) ∧ (Q(z ,w) ∨ R(u))) �nd its Skolem
Normal Form G sko

Sol.

z is preceded by ∀x∀y thus z → f (x , y)

u is preceded by ∀x∀y∀w thus u → g(x , y ,w)

thus we have
G sko , ∀x∀y∀w(P(x , y)∧(Q(f (x , y),w)∨R(g(x , y ,w))))
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Exercise: Skolem Standard Form

Example (Skolem Standard Form)

Given the formula
G , ∀x∀y∃z∀w∃u(P(x , y) ∧ (Q(z ,w) ∨ R(u))) �nd its Skolem
Normal Form G sko

Sol.

z is preceded by ∀x∀y thus z → f (x , y)

u is preceded by ∀x∀y∀w thus u → g(x , y ,w)

thus we have
G sko , ∀x∀y∀w(P(x , y)∧(Q(f (x , y),w)∨R(g(x , y ,w))))
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Exercise: Skolem Standard Form

Exercise

Give the skolem standard form for each of the formulas below:

1 F1 , ∀(x)∀(y)((P(x , y) ∧ L(x))→ C (y))

2 F2 , ∀(x)(L(x)→ ∃(y)(P(y , x) ∧ L(y)))

3 F3 , ∃y∀(x)(C (x)→ V (x , y))
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Notation and terminology

Notation and Terminology for Clauses

Given a Clause C = L1 ∨ · · · ∨ Lk we can write
C = {L1, · · · , Lk}
Example: C , ¬Q ∨ S ∨ P = {¬Q, S ,P}
A clause with only one literal is a unit clause

The empty clause will be often represented with �

The empty clause is considered to be always false

We assume that every variable in a set of clauses is always
universally quanti�ed



Skolem

Standard

Form

Introduction

Skolem

Standard

Form

Properties of

Skolem Form

Example

Example (No quanti�ers)

With: S , {((¬P(x , f (x)) ∨ R(x , f (x), g(x))), (Q(x , g(x)) ∨
R(x , f (x), g(x)))}
we represent: ∀x∃y∃z((¬P(x , y) ∧ Q(x , z)) ∨ R(x , y , z))
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Preserving Inconsistency

Theorem

Inconsistency Preservation of Skolem Form Let F be a formula

and S be a set of clauses in Skolem Standard Form that

represent F , then F is inconsistent i� S is inconsistent

Sketch of proof.

We assume F , (Q1x1) · · · (Qnxn)M[x1, · · · , xn]
Let Qr be the �rst existential quanti�er and let
F1 , (Q1x1) · · · (Qrxr )(Qr+1xr+1) · · · (Qnxn)
M[x1, · · · , xr−1, f (x1, · · · , xr−1), xr+1, · · · , xn] with 1 ≤ r ≤ n

we want to show that F is inconsistent i� F1 is.
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Preserving Inconsistency: sketch of proof I

⇒.

Suppose F is inconsistent and F1 is consistent
Then there exists I |= F1, therefore
∀x1, · · · , xr−1∃f (x1, · · · , xr−1) such that
I |= Qr+1xr+1, · · · ,Qnxn
M[x1, · · · , xr−1, f (x1, · · · , xr−1), xr+1, · · · , xn] but this means
that I |= F which contradicts the assumption.
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Preserving Inconsistency: sketch of proof II

⇐.

Suppose F1 is inconsistent and F is consistent
Then there exists I |= F , therefore ∀x1, · · · , xr−1∃e such that
I |= Qr+1xr+1, · · · ,Qnxn
M[x1, · · · , xr−1, e, xr+1, · · · , xn] We can then extend the
interpretation I including a function symbol f (.) such that
∀x1, · · · ,∀xr−1f (∀x1, · · · ,∀xr−1) = e. Then I ′ |= F1 which
contradicts the assumption.
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Preserving Inconsistency: sketch of proof III

Generalising to m existential quanti�ers.

Suppose we have m existential quanti�ers in F . Let's denote
F0 = F and let Fk be obtained from Fk−1 by replacing the �rst
existential quanti�er appearing in Fk−1 with k = 1, · · · ,m. and
S = Fm. Then we can clearly show that Fk−1 is consistent i�
Fk is. for all k. Therefore we conclude that F is inconsistent i�
S is.
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Logical Equivalence

Given a formula F and a set of clauses S that represents a
standard normal form for S

Can we write S ≡ F ?

Example (Equivalence and Skolem Form)

F , ∃xP(x) and S , P(a)
I = 〈D,A〉 assume D = {1, 2}, aA = 1 and
{PA(1) = ⊥,PA(2) = >} Then I |= F but I 6|= S therefore in
general S 6↔ F
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Skolem Form Does not Preserve Logical Equivalence

Given a formula F and a set of clauses S that represent a
standard normal form for S

We have that S ⇔ F i� F is inconsistent

If F is not inconsistent then S is not a logically equivalent
to F :

we can �nd an interpretation I such that I |= S but I 6|= F
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Skolem Form is not Unique

Given a formula F we can have more than one set of clauses that
represents a skolem standard form for F

Example

Consider this formula F , ∀xP(x) ∧ ∃yQ(y)

Φ1 , ∀x∃y(P(x) ∧ Q(y))

Φ2 , ∃y∀x(P(x) ∧ Q(y))

Both are prenex normal forms.
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�Better� Skolem Forms

We want to �nd skolem forms which are as simple as possible

Example

Φ1 ⇒sko S1 , ∀x(P(x) ∧ Q(f (a)))

Φ2 ⇒sko S2 , ∀x(P(x) ∧ Q(a))

The less arguments we have in the skolem functions the better
⇒ Move existential quanti�ers to the left as much as possible.
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Skolemisation for Clauses

If we have F = F1 ∧ · · · ∧ Fn We can:

Obtain skolem a form Si for each Fi

S , S1 ∪ · · · ∪ Sn
F is inconsistent i� S is.

Example

S , {S1, S2} = {P(x),Q(a)}
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Exercise

Example (Validity and prenex normal form)

Suppose S , ∃x∀yM[x , y ] is prenex normal form of F . Prove
that F is valid ↔ S ′ , ∃xM[x , f (x)] is valid.

Sol.

1 F valid ↔ ¬F inc. ↔ ¬S inc.

2 ¬S ≡ ¬∃x∀yM[x , y ] ≡ ∀x¬∀yM[x , y ] ≡ ∀x∃y¬M[x , y ] ,
φ

3 φ inc. ↔ φsko inc.

4 φsko ≡ ∀x¬M[x , f (x)] ≡ ¬(∃xM[x , f (x)]) ≡ ¬S ′

5 ¬S ′ inc. ↔ S ′ valid.
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Exercise

Example (Validity and prenex normal form)

Suppose S , ∃x∀yM[x , y ] is prenex normal form of F . Prove
that F is valid ↔ S ′ , ∃xM[x , f (x)] is valid.

Sol.

1 F valid ↔ ¬F inc. ↔ ¬S inc.

2 ¬S ≡ ¬∃x∀yM[x , y ] ≡ ∀x¬∀yM[x , y ] ≡ ∀x∃y¬M[x , y ] ,
φ

3 φ inc. ↔ φsko inc.

4 φsko ≡ ∀x¬M[x , f (x)] ≡ ¬(∃xM[x , f (x)]) ≡ ¬S ′

5 ¬S ′ inc. ↔ S ′ valid.
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Complete example

Example (Using Skolemisation)

We want to show that
F , ∀xP(x)→ Q(x) ∧ ∃yP(y) |= G , ∃zQ(z)

Sol. : Proof by refutation

1 We know that F |= G i� F ∧ ¬G is inconsistent

2 φ , ∀x(P(x)→ Q(x)) ∧ ∃yP(y) ∧ ¬∃zQ(z)

3 φ ≡ φ1 ∧ φ2 ∧ φ3
4 φsko ≡ φsko

1
∪ φsko

2
∪ φsko

3

5 φ inc. i� φsko inc.

6 φsko
1

= ¬P(x) ∨ Q(x) φsko
2

= P(a) φsko
3

= ¬Q(z)

7 φsko ≡ ¬P(x) ∨ Q(x),P(a),¬Q(z)

We need to �nd a way to show that φsko is inconsistent.
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Complete example

Example (Using Skolemisation)

We want to show that
F , ∀xP(x)→ Q(x) ∧ ∃yP(y) |= G , ∃zQ(z)

Sol. : Proof by refutation

1 We know that F |= G i� F ∧ ¬G is inconsistent

2 φ , ∀x(P(x)→ Q(x)) ∧ ∃yP(y) ∧ ¬∃zQ(z)

3 φ ≡ φ1 ∧ φ2 ∧ φ3
4 φsko ≡ φsko

1
∪ φsko

2
∪ φsko

3

5 φ inc. i� φsko inc.

6 φsko
1

= ¬P(x) ∨ Q(x) φsko
2

= P(a) φsko
3

= ¬Q(z)

7 φsko ≡ ¬P(x) ∨ Q(x),P(a),¬Q(z)
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Exercises

Exercise

Find a standard form for each of the following formulas
[Chang-Lee 1 pag 67]

1 ¬((∀x)P(x)→ (∃y)(∀z)Q(y , z))
2 (∀x)(¬E (x , 0)→ ((∃y)(E (y , g(x)) ∧ (∀z)(E (z , g(x))→

E (y , z)))))
3 ¬((∀x)P(x)→ (∃y)P(y))

Given the following formulas:

1 F1 , (∀x)(∀y)(S(x , y) ∧M(y)→ (∃z)(I (z) ∧ E (x , z)))
2 F2 , ((¬∃I (x))→ ¬(∃x)(∀y)(M(y) ∧ S(x , y)))

�nd the skolem standard form of F1 ∧ ¬F2 [Chang-Lee 4
pag 67 (partial)]
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