| Sko  | em   |
|------|------|
| Stan | dard |
| Foi  | m    |

Introduction

Skolem Standard Form

Properties of Skolem Form

# Skolem Standard Form Background Knowledge

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

# Summary

Skolem Standard Form

Introduction

Skolem Standard Form

Properties of Skolem Form

- Introduction and a bit of History [Chang-Lee Ch.4.1]
- Skolem Standard Form [Chang-Lee Ch. 4.2]
- Properties of Skolem Standard Form [Chang-Lee 4.2]

## Intro

Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

## Solving problem by proving theorem

- formalise a situation using a logic formula (e.g. FOL)
- prove validity
- e.g. Quacks and Doctor
- Similar techniques applied to other scenarios (e.g. is a software module bug free ?)

# Problems with Logic formalisation

Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

#### FOL is not decidable

- Prop Logic not flexible enough
- FOL is not decidable Negative Result!
- Church Turing: FOL is semidecidable: there is no finite procedure to check whether a formula is valid
- Can verify that a formula is valid in finite steps but for invalid ones, the procedure might not terminate

うして ふゆう ふほう ふほう うらつ

# Herbrand and FOL interpretation

Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

#### Herbrand contribution

- We want to find a procedure to verify valid (inconsistent) formulas at least!
- Herbrand showed we can focus on only one interpretation Positive Result!
- We can then construct a semi-decidable automatic procedure, and this is the best we can do
- Further developments: build more efficient procedures

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

# Automatic proof procedures: Gilmore

Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

#### Gilmore 1960

- Following Herbrand's idea
- First implemented proof procedure
- Given a formula F, check inconsistency of  $\neg F$
- Check inconsistency of a series of propositional formula
- If  $\neg F$  is inconsistent, program will terminate detecting this.
- Worked on simple known valid formulas.
- But could not proove many FOL valid formulas.
- Main bottleneck: checking satisfiability of propositional formulas.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

# Automatic proof procedures: using DPLL

Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

#### Davis and Putnam 1960

- Improvement on Gilmore's work
- More efficient method to check satisfiability
- Consistent improvement, but still not satisfactory

# Resolution proof procedures

Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

### Robinson 1965

- very efficient
- many refinements:
  - Semantic Resolution
  - Lock Resolution
  - Unit Resolution
  - Set of Support Strategy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ordered Resolution

# **Refutational Procedures**

Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

## Proving inconsistency

Given a formula G we want to proove that G is valid

- But we know that  $\neg G$  is inconsistent iff G is valid
- We try to refute  $\neg G$
- We use refutation just for convenience

# Standard Form

Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

#### Davis Putnam 1960

Given a FOL formula F we can:

- **1** obtain a prenex normal form  $Q_1 x_1 \cdots Q_n x_n M$
- **2** reduce *M* to CNF  $C_1 \wedge \cdots \wedge C_m$  where  $C_i = L_1 \vee \cdots \vee L_k$ .

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

3 remove all existential quantifiers from the prefix

We know how to do 1 and 2, we will see how 3 can be done.

# Eliminating Existential Quantifiers

Skolem Standard Form

#### Procedure to eliminate existential quantifiers

Skolem

Standard Form

Properties of Skolem Form

- Given a formula  $G \triangleq Q_1 x_1 \cdots Q_n x_n M$ .
  - $\blacksquare$  Let's focus on one specific existential quantifier  $Q_r$  with  $1 \leq r \leq n$ 
    - **1** if no universal quantifiers appear before  $Q_r$  then we can remove  $Q_r x_r$  from the prefix and replace every occurrence of  $x_r$  with a **new** constant c
    - Suppose Q<sub>s1</sub>,..., Q<sub>sm</sub> are all universal quantifiers appearing before Q<sub>r</sub>, then we can remove Q<sub>r</sub>x<sub>r</sub> from the prefix and replace every occurrence of x<sub>r</sub> with a **new** m-placed function sysmbol f(x<sub>s1</sub>,..., x<sub>sm</sub>)

ション ふゆ アメリア メリア しょうくしゃ

# Skolem Standard Form

Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

#### Skolem Form, Constant and Functions

- When the above procedures has been applied to remove all exisestential quantifier, the formula is in Skolem Standard Form
- The new introduced constants are called Skolem constants
- The new introduced functions are called Skolem functions

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

# Intuition

Skolem Standard Form

#### Intuitive explanation

Introduction

Skolem Standard Form

Properties of Skolem Form

- $F \triangleq \exists x E(s(0), x) F^{Sko} \triangleq E(s(0), a)$
- $G \triangleq \forall x \exists y E(s(x), y) \ G^{Sko} \triangleq \forall x E(s(x), g(x))$
- If we consider that  $E(x, y) \times equals y$ , s(x) successor of x.
- F = there exists a number which is the successor of zero
  - F<sup>sko</sup> = we make that number a costant and call it a
- *G* = for every number there exists a successor of that number
  - G<sup>sko</sup> = we make up a new function that gives us the successor of x and call it g(x)

うして ふゆう ふほう ふほう うらつ

# Skolem Standard Form: Example I

Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

### Example (Skolem standard form)

Obtain standard Normal Form for the formula:  $\exists x \forall y \forall z \exists u \forall v \exists w P(x, y, z, u, v, w)$ 

- x is not preceded by any  $\forall$  thus  $x \rightarrow c$
- *u* is preceded by  $\forall y$  and  $\forall z$  thus  $u \rightarrow f(y, z)$
- w is preceded by  $\forall y$  and  $\forall z$  and  $\forall v$  thus  $w \rightarrow g(y, z, v)$

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

• we have  $\forall y \forall z \forall v P(c, y, z, f(y, z), g(y, z, v))$ 

# Skolem Standard Form: Example II

Skolem Standard Form

## Example (Skolem standard form)

Skolem Standard Form

Properties of Skolem Form

- Obtain standard Normal Form for the formula:  $\forall x \exists y \exists z ((\neg P(x, y) \land Q(x, z)) \lor R(x, y, z))$ 
  - transform the matrix in CNF: ∀x∃y∃z((¬P(x,y) ∨ R(x,y,z)) ∧ (Q(x,z) ∨ R(x,y,z))
    y is preceded by ∀x thus y → f(x)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- z is preceded by  $\forall x$  thus  $z \to g(x)$
- we have  $\forall x((\neg P(x, f(x)) \lor R(x, f(x), g(x))) \land (Q(x, g(x)) \lor R(x, f(x), g(x)))$

# Exercise: Skolem Standard Form

Skolem Standard Form

### Example (Skolem Standard Form)

Skolem Standard Form

Properties of Skolem Form Given the formula  $G \triangleq \forall x \forall y \exists z \forall w \exists u (P(x, y) \land (Q(z, w) \lor R(u)))$  find its Skolem Normal Form  $G^{sko}$ 

# Exercise: Skolem Standard Form

Skolem Standard Form

### Example (Skolem Standard Form)

Skolem Standard Form

Properties of Skolem Form

## Given the formula

 $G \triangleq \forall x \forall y \exists z \forall w \exists u (P(x, y) \land (Q(z, w) \lor R(u)))$  find its Skolem Normal Form  $G^{sko}$ 

### Sol.

- z is preceded by  $\forall x \forall y$  thus  $z \to f(x, y)$
- *u* is preceded by  $\forall x \forall y \forall w$  thus  $u \rightarrow g(x, y, w)$
- thus we have

 $G^{sko} \triangleq \forall x \forall y \forall w (P(x, y) \land (Q(f(x, y), w) \lor R(g(x, y, w))))$ 

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

# Exercise: Skolem Standard Form

Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

### Exercise

Give the skolem standard form for each of the formulas below:

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

- $F_1 \triangleq \forall (x) \forall (y) ((P(x, y) \land L(x)) \to C(y))$
- 2  $F_2 \triangleq \forall (x)(L(x) \rightarrow \exists (y)(P(y,x) \land L(y)))$
- 3  $F_3 \triangleq \exists y \forall (x) (C(x) \to V(x,y))$

# Notation and terminology

Skolem Standard Form

### Notation and Terminology for Clauses

- Given a Clause  $C = L_1 \lor \cdots \lor L_k$  we can write  $C = \{L_1, \cdots, L_k\}$ 
  - Example:  $C \triangleq \neg Q \lor S \lor P = \{\neg Q, S, P\}$
  - A clause with only one literal is a unit clause
  - $\blacksquare$  The empty clause will be often represented with  $\square$
  - The empty clause is considered to be always false
  - We assume that every variable in a set of clauses is always universally quantified

ション ふゆ アメリア メリア しょうくしゃ

#### Introduction

Skolem Standard Form

Properties of Skolem Form

| Exampl | е |
|--------|---|
| слаттр | C |

| Skolei | m  |
|--------|----|
| Standa | rd |
| Form   |    |

#### Introduction

Skolem Standard Form

Properties of Skolem Form

## Example (No quantifiers)

With:  $S \triangleq \{((\neg P(x, f(x)) \lor R(x, f(x), g(x))), (Q(x, g(x)) \lor R(x, f(x), g(x)))\}$ we represent:  $\forall x \exists y \exists z ((\neg P(x, y) \land Q(x, z)) \lor R(x, y, z))$ 

# Preserving Inconsistency

Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

## Theorem

Inconsistency Preservation of Skolem Form Let F be a formula and S be a set of clauses in Skolem Standard Form that represent F, then F is inconsistent iff S is inconsistent

#### Sketch of proof.

We assume  $F \triangleq (Q_1x_1)\cdots(Q_nx_n)M[x_1,\cdots,x_n]$ Let  $Q_r$  be the first existential quantifier and let  $F_1 \triangleq (Q_1x_1)\cdots(Q_rx_r)(Q_{r+1}x_{r+1})\cdots(Q_nx_n)$  $M[x_1,\cdots,x_{r-1},f(x_1,\cdots,x_{r-1}),x_{r+1},\cdots,x_n]$  with  $1 \le r \le n$ we want to show that F is inconsistent iff  $F_1$  is.

# Preserving Inconsistency: sketch of proof I

Skolem Standard Form

Introduction

 $\Rightarrow$ .

Skolem Standard Form

Properties of Skolem Form Suppose F is inconsistent and  $F_1$  is consistent Then there exists  $I \models F_1$ , therefore  $\forall x_1, \dots, x_{r-1} \exists f(x_1, \dots, x_{r-1})$  such that  $I \models Q_{r+1}x_{r+1}, \dots, Q_n x_n$  $M[x_1, \dots, x_{r-1}, f(x_1, \dots, x_{r-1}), x_{r+1}, \dots, x_n]$  but this means that  $I \models F$  which contradicts the assumption.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

# Preserving Inconsistency: sketch of proof II

Skolem Standard Form

Introduction

Skolem Standard Form

Properties of Skolem Form Suppose  $F_1$  is inconsistent and F is consistent Then there exists  $I \models F$ , therefore  $\forall x_1, \dots, x_{r-1} \exists e$  such that  $I \models Q_{r+1}x_{r+1}, \dots, Q_nx_n$  $M[x_1, \dots, x_{r-1}, e, x_{r+1}, \dots, x_n]$  We can then extend the interpretation I including a function symbol f(.) such that  $\forall x_1, \dots, \forall x_{r-1}f(\forall x_1, \dots, \forall x_{r-1}) = e$ . Then  $I' \models F_1$  which contradicts the assumption.

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

# Preserving Inconsistency: sketch of proof III

Skolem Standard Form

Introduction

Skolem Standard Form

Properties of Skolem Form

## Generalising to m existential quantifiers.

Suppose we have *m* existential quantifiers in *F*. Let's denote  $F_0 = F$  and let  $F_k$  be obtained from  $F_{k-1}$  by replacing the first existential quantifier appearing in  $F_{k-1}$  with  $k = 1, \dots, m$ . and  $S = F_m$ . Then we can clearly show that  $F_{k-1}$  is consistent iff  $F_k$  is. for all k. Therefore we conclude that *F* is inconsistent iff *S* is.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

# Logical Equivalence

Skolem Standard Form

Introduction

Skolem Standard Form

Properties of Skolem Form ■ Given a formula *F* and a set of clauses *S* that represents a standard normal form for *S* 

## Example (Equivalence and Skolem Form)

$$F \triangleq \exists x P(x) \text{ and } S \triangleq P(a)$$
  
 $I = \langle D, A \rangle \text{ assume } D = \{1, 2\}, a^A = 1 \text{ and}$   
 $\{P^A(1) = \bot, P^A(2) = \top\}$  Then  $I \models F$  but  $I \not\models S$  therefore in  
general  $S \nleftrightarrow F$ 

# Skolem Form Does not Preserve Logical Equivalence

#### Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

- Given a formula F and a set of clauses S that represent a standard normal form for S
- We have that  $S \Leftrightarrow F$  iff F is inconsistent
- If F is not inconsistent then S is not a logically equivalent to F:
  - we can find an interpretation I such that  $I \models S$  but  $I \not\models F$

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

# Skolem Form is not Unique

Skolem Standard Form

Introduction

Skolem Standard Form

Properties of Skolem Form Given a formula F we can have more than one set of clauses that represents a skolem standard form for F

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

## Example

Consider this formula  $F \triangleq \forall x P(x) \land \exists y Q(y)$ 

$$\Phi_1 \triangleq \forall x \exists y (P(x) \land Q(y))$$

•  $\Phi_2 \triangleq \exists y \forall x (P(x) \land Q(y))$ 

Both are prenex normal forms.

# "Better" Skolem Forms

Skolem Standard Form

Introduction

Skolem Standard Form

Properties of Skolem Form

## We want to find skolem forms which are as simple as possible

### Example

• 
$$\Phi_1 \Rightarrow^{sko} S_1 \triangleq \forall x (P(x) \land Q(f(a)))$$
  
•  $\Phi_2 \Rightarrow^{sko} S_2 \triangleq \forall x (P(x) \land Q(a))$ 

The less arguments we have in the skolem functions the better  $\Rightarrow$  Move existential quantifiers to the left as much as possible.

# Skolemisation for Clauses

Skolem Standard Form

Introduction

Skolem Standard Form

Properties of Skolem Form If we have  $F = F_1 \wedge \cdots \wedge F_n$  We can:

• Obtain skolem a form S<sub>i</sub> for each F<sub>i</sub>

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

$$S \triangleq S_1 \cup \cdots \cup S_n$$

• F is inconsistent iff S is.

## Example

$$S \triangleq \{S_1, S_2\} = \{P(x), Q(a)\}$$



Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

### Example (Validity and prenex normal form)

Suppose  $S \triangleq \exists x \forall y M[x, y]$  is prenex normal form of F. Prove that F is valid  $\leftrightarrow S' \triangleq \exists x M[x, f(x)]$  is valid.



Skolem Standard Form

#### Introduction

Skolem Standard Form

Properties of Skolem Form

## Example (Validity and prenex normal form)

Suppose  $S \triangleq \exists x \forall y M[x, y]$  is prenex normal form of F. Prove that F is valid  $\leftrightarrow S' \triangleq \exists x M[x, f(x)]$  is valid.

## Sol.

**1** 
$$F$$
 valid  $\leftrightarrow \neg F$  inc.  $\leftrightarrow \neg S$  inc.

$$\neg S \equiv \neg \exists x \forall y M[x, y] \equiv \forall x \neg \forall y M[x, y] \equiv \forall x \exists y \neg M[x, y] \triangleq \phi$$

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

3 
$$\phi$$
 inc.  $\leftrightarrow \phi^{sko}$  inc.  
4  $\phi^{sko} \equiv \forall x \neg M[x, f(x)] \equiv \neg(\exists x M[x, f(x)]) \equiv \neg S$   
5  $\neg S'$  inc.  $\leftrightarrow S'$  valid.

# Complete example

Skolem Standard Form

## Example (Using Skolemisation)

Introduction

Skolem Standard Form

Properties of Skolem Form We want to show that  $F \triangleq \forall x P(x) \rightarrow Q(x) \land \exists y P(y) \models G \triangleq \exists z Q(z)$ 

# Complete example

Skolem Standard Form

## Example (Using Skolemisation)

Introduction

Skolem Standard Form

Properties of Skolem Form

## We want to show that $F \triangleq \forall x P(x) \rightarrow Q(x) \land \exists y P(y) \models G \triangleq \exists z Q(z)$

## Sol. : Proof by refutation

1 We know that  $F \models G$  iff  $F \land \neg G$  is inconsistent  $\phi \triangleq \forall x (P(x) \to Q(x)) \land \exists y P(y) \land \neg \exists z Q(z)$  $\phi \equiv \phi_1 \land \phi_2 \land \phi_3$  $\phi^{sko} \equiv \phi_1^{sko} \cup \phi_2^{sko} \cup \phi_3^{sko}$  $\phi$  inc. iff  $\phi^{sko}$  inc.  $\phi_1^{sko} = \neg P(x) \lor Q(x) \phi_2^{sko} = P(a) \phi_3^{sko} = \neg Q(z)$  $\phi^{sko} \equiv \neg P(x) \lor Q(x), P(a), \neg Q(z)$ 

We need to find a way to show that  $\phi^{sko}$  is inconsistent.

= \*)Q(~

## Exercises

Skolem Standard Form

Introduction

Skolem Standard Form

Properties of Skolem Form

#### Exercise

- Find a standard form for each of the following formulas [Chang-Lee 1 pag 67]

  - $(\forall x)(\neg E(x,0) \rightarrow ((\exists y)(E(y,g(x)) \land (\forall z)(E(z,g(x)) \rightarrow E(y,z)))) )$
  - $\exists \neg ((\forall x) P(x) \to (\exists y) P(y))$
- Given the following formulas:
  - 1  $F_1 \triangleq (\forall x)(\forall y)(S(x,y) \land M(y) \to (\exists z)(I(z) \land E(x,z)))$ 2  $F_2 \triangleq ((\neg \exists I(x)) \to \neg (\exists x)(\forall y)(M(y) \land S(x,y)))$

find the skolem standard form of  $F_1 \land \neg F_2$  [Chang-Lee 4 pag 67 (partial)]

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで