The Resolution Principle

The Resolution Principle

Summary

The Resolution Principle

- Introduction [Chang-Lee Ch. 5.1]
- Resolution Principle for Propositional Logic [Chang-Lee Ch. 5.2]

Herbrand's Theorem and refutation procedures

The Resolution Principle

Satisfiability procedures

- We can build refutation procedures building on Herbrand's Theorem.
- For example Gilmore's method using DPLL for checking satisfiability.
- This requires the generation of sets S_0' , S_1' , \cdots of ground clauses.
- Computation issue: for most cases this sequence grows exponentially.

Computational issue

The Resolution Principle

Exponential grow of sequence

- Consider $S = \{P(x, g(x), y, h(x, y), z, k(x, y, z)), \neg P(u, v, e(v), w, f(v, w), x)\}$
- $H_0 = \{a\} \ H_1 = \{a, g(a), h(a, a), k(a, a, a), e(a), f(a, a)\}$
- $|S_0'| = 2$, $|S_1'| = 1512$
- Earliest unsatisfiable set is S_5' which has approximately 10^{256} elements!

The Resolution Principle

The Resolution Principle

Robinson 1965

- Aim: directly test unsatisfiability of a set of clauses S without generating all possible associated ground clauses.
- lacksquare Basic idea: test whether S contains the empty clause \Box
 - If $\square \in S$ then S is unsatisfiable
 - Otherwise need to check whether $S \models \Box$

Connection with Sematic trees

The Resolution Principle

Res. Principle and Sem. Trees

- Recall: by Herbrand's Theorem (version I) S is unsatisfiable iff there is a finite closed semantic tree T for S.
- S contains \square iff the corresponsing closed semantic tree T contains only the root node.
- If S does not contain \square then T must contain more than one node.
- If we can reduce the number of nodes in T then we can force \square to appear.

Inference Rules

- The resolution principle is an Inference Rule
- Inference Rule: a rule that generates new clauses which are a logical consequence of some of the existing clauses
- New clauses can be used to turn some of the nodes in T to failure nodes.
- Thus number of nodes in T are reduced and \square will eventually appear.

Example (Resolution Principle and Sem. Trees)

The semantic tree for $S = \{\neg P \lor Q, P, \neg Q\}$ can be reduced to \Box by adding $\{\neg P\}$ to S.

Resolution and One-Literal rule

- Extension of One-Literal rule of DPLL to any pair of clauses
- Focus on a unit clause containing a literal *L* and look for the complement of *L* in another clause. Obtain a new clause deleting the One-Literal clause, and the complement literal from the other clause.

Example (One-Literal and resolution)

$$C_1=P,\ C_2=\neg P\lor Q$$

Applying the One-Literal rule of DPLL to $\{C_1,C_2\}$ we obtain $C_3=Q$

Resolution Principle

For any two clauses C_1 and C_2 if there is a literal L_1 in C_1 that is complementary to a literal L_2 in C_2 then delete L_1 and L_2 from C_1 and C_2 and generate a new clause C_3 as the disjunction of the remaining clauses.

 C_3 is a resolvent for C_1 and C_2 .

Resolution Principle: Inference rule

$$\begin{array}{c|c}
L_1 \lor C_1' & \neg L_1 \lor C_2' \\
\hline
C_1' \lor C_2'
\end{array}$$

Example

The Resolution Principle

Example (Resolution Principle)

Consider the following clauses $\mathit{C}_1 = \mathit{P} \lor \mathit{R}$ and $\mathit{C}_2 = \neg \mathit{P} \lor \mathit{Q}$

$$P \vee R$$
 $\neg P \vee Q$

Example

The Resolution Principle

Example (Resolution Principle)

Consider the following clauses $\mathit{C}_1 = \mathit{P} \lor \mathit{R}$ and $\mathit{C}_2 = \neg \mathit{P} \lor \mathit{Q}$

$$\begin{array}{c|cc}
P \lor R & \neg P \lor Q \\
\hline
R \lor Q
\end{array}$$

Example

The Resolution Principle

Example (Resolution Principle)

Consider the following clauses $\mathit{C}_1 = \mathit{P} \lor \mathit{R}$ and $\mathit{C}_2 = \neg \mathit{P} \lor \mathit{Q}$

$$\frac{P \vee R}{R \vee Q} \qquad \neg P \vee Q$$

 $C_3 = R \vee Q$ is the resolvent for C_1 and C_2 .

Example II

The Resolution Principle

Example (Resolution Principle)

Consider the following clauses $C_1 = \neg P \lor Q \lor R$ and $C_2 = \neg Q \lor S$

$$\neg P \lor Q \lor R$$

$$\neg Q \lor S$$

Example II

The Resolution Principle

Example (Resolution Principle)

Consider the following clauses $C_1 = \neg P \lor Q \lor R$ and $C_2 = \neg Q \lor S$

$$\frac{\neg P \lor Q \lor R}{\neg P \lor R \lor S}$$

Example II

The Resolution Principle

Example (Resolution Principle)

Consider the following clauses $C_1 = \neg P \lor Q \lor R$ and $C_2 = \neg Q \lor S$

$$\begin{array}{c|cccc}
\neg P \lor Q \lor R & \neg Q \lor S \\
\hline
\neg P \lor R \lor S
\end{array}$$

 $C_3 = \neg P \lor R \lor S$ is the resolvent for C_1 and C_2 .

Example III

The Resolution Principle

Example (Resolution Principle)

Consider the following clauses $C_1 = \neg P \lor Q$ and $C_2 = \neg P \lor S$ There is no resolvent in this case as no complementary pair can be found in the clauses.

Property of Resolution

The Resolution Principle

Logical consequence

Given two clauses C_1 and C_2 , and their resolvent C, $C_1 \wedge C_2 \models C$ (C is a logical consequence of C_1 and C_2).

Proof.

Let $C_1 = L \vee C_1'$, $C_2 = \neg L \vee C_2'$, $C = C_1' \vee C_2'$ where C_1' and C_2' are disjunctions of literals. Suppose $I \models C_1 \wedge C_2$, we want to show that $I \models C$.

- Note that either $I \models L$ or $I \models \neg L$.
- Assume $I \models \neg L$
- Then since $I \models C_1$, $C'_1 \neq \square$ and $I \models C'_1$.
- Therefore since $C = C_1' \lor C_2'$ we have that $I \models C$.
- Similar considerations hold for $I \models L$.

Derivation of the empty clause

The Resolution Principle

Resolution and satisfiability

- If C_1 and C_2 are unit clauses then, if there is resolvent, that resolvent will necessary be \square .
- If we can derive the empty clause from S, then S is unsatisfiable (correctness)
- If S is unsatisfiable using resolution we can always derive the empty clause (completeness)

Deduction

The Resolution Principle

Definition (Deduction)

Given a set of clauses S a (resolution) deduction of C from S is a finite sequence C_1, C_2, \cdots, C_k of clauses such that each C_i is either a clause in S or a resolvent of clauses preceding C_i , and $C_k = C$.

Example I: Deduction

The Resolution Principle

Example (deduction)

Consider $S = \{C_1, C_2, C_3\}$, where $C_1 = \neg P \lor Q$ $C_2 = P$ and $C_3 = \neg Q$. Applying resolution to C_1 and C_2 we have:

$$\frac{\neg P \lor Q, \qquad P}{Q}$$

Then applying

$$\frac{\neg Q, Q}{\Box}$$

Deducing the empty clause

The Resolution Principle

Empty clause, Deduction and Unsatisfiability

- Given S, suppose we derive \square using resolution;
- $\blacksquare \Rightarrow \Box$ is a logical consequence of S;
- Since $S \models \Box$ then $\forall I$ if $I \models S$ then $I \models \Box$;
- But there is no I that can verify □;
- ightharpoonup if we derive \square from S using refutation then S is unsatisfiable.
- Later we will show that if S is unsatisfiable then we can always derive \square using resolution.

Definition (Refutation)

A deduction of \square is called a refutation (or a proof) of S

Example II: Deduction

The Resolution Principle

Example (deduction)

```
Given S = \{C_1, C_2, C_3, C_4\} and C_1 = \{P \lor Q\}, C_2 = \{\neg P \lor Q\}, C_3 = \{P \lor \neg Q\} and C_4 = \{\neg P \lor \neg Q\}. Apply resolution to C_1 and C_2 and obtain C' = \{Q\}. Apply resolution to C_3 and C_4 and obtain C'' = \{\neg Q\}. Apply resolution to C' and C'' and obtain \square. Hence S is unsat.
```

Example II: Deduction Tree

The Resolution Principle

Example (deduction)

Consider ${\cal S}$ from previous example and the associated deduction steps.

The deduction tree is:

$$\begin{array}{c|c} \underline{P \lor Q}, & \neg P \lor Q \\ \hline Q & & \neg Q \\ \hline & \Box \\ \end{array}$$

Exercise

The Resolution Principle

Exercise

Prove that the following formulas are unsat. using the resolution principle

Exercise

- $F_2 \triangleq P$
- $F_3 \triangleq \neg S$
- $G = \neg Q$

Prove using the resolution principle that $F_1 \wedge F_2 \wedge F_3 \models G$