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Summary

Introduction [Chang-Lee Ch. 5.1]

Resolution Principle for Propositional Logic [Chang-Lee
Ch. 5.2]
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Herbrand's Theorem and refutation procedures

Satis�ability procedures

We can build refutation procedures building on Herbrand's
Theorem.

For example Gilmore's method using DPLL for checking
satis�ability.

This requires the generation of sets S ′
0
, S ′

1
, · · · of ground

clauses.

Computaton issue: for most cases this sequence grows
exponentially.
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Computational issue

Exponential grow of sequence

Consider S =

{P(x , g(x), y , h(x , y), z , k(x , y , z)),¬P(u, v , e(v),w , f (v ,w), x)}
H0 = {a} H1 = {a, g(a), h(a, a), k(a, a, a), e(a), f (a, a)}
|S ′

0
| = 2, |S ′

1
| = 1512

Earliest unsatis�able set is S ′
5
which has approximately

10256 elements!
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The Resolution Principle

Robinson 1965

Aim: directly test unsatis�ability of a set of clauses S
without generating all possible associated ground clauses.

Basic idea: test whether S contains the empty clause �
If � ∈ S then S is unsatis�able

Otherwise need to check whether S |= �
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Connection with Sematic trees

Res. Principle and Sem. Trees

Recall: by Herbrand's Theorem (version I) S is unsatis�able
i� there is a �nite closed semantic tree T for S .

S contains � i� the corresponsing closed semantic tree T
contains only the root node.

If S does not contain � then T must contain more than
one node.

If we can reduce the number of nodes in T then we can
force � to appear.
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Inference Rules

Inference Rules

The resolution principle is an Inference Rule

Inference Rule: a rule that generates new clauses which are
a logical consequence of some of the existing clauses

New clauses can be used to turn some of the nodes in T

to failure nodes.

Thus number of nodes in T are reduced and � will
eventually appear.

Example (Resolution Principle and Sem. Trees)

The semantic tree for S = {¬P ∨ Q,P,¬Q} can be reduced to
� by adding {¬P} to S .
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Resolution principle for Propositional Logic

Resolution and One-Literal rule

Extension of One-Literal rule of DPLL to any pair of
clauses

Focus on a unit clause containing a literal L and look for
the complement of L in another clause. Obtain a new
clause deleting the One-Literal clause, and the complement
literal from the other clause.

Example (One-Literal and resolution)

C1 = P , C2 = ¬P ∨ Q
Applying the One-Literal rule of DPLL to {C1,C2} we obtain
C3 = Q



The

Resolution

Principle

The Resolution Principle

Resolution Principle

For any two clauses C1 and C2 if there is a literal L1 in C1 that is
complementary to a literal L2 in C2 then delete L1 and L2 from
C1 and C2 and generate a new clause C3 as the disjunction of
the remaining clauses.
C3 is a resolvent for C1 and C2.

Resolution Principle: Inference rule

L1 ∨ C ′
1

¬L1 ∨ C ′
2

C ′
1
∨ C ′

2
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Example

Example (Resolution Principle)

Consider the following clauses C1 = P ∨ R and C2 = ¬P ∨ Q

P ∨ R ¬P ∨ Q

R ∨ Q

C3 = R ∨ Q is the resolvent for C1 and C2.



The

Resolution

Principle

Example

Example (Resolution Principle)

Consider the following clauses C1 = P ∨ R and C2 = ¬P ∨ Q

P ∨ R ¬P ∨ Q
R ∨ Q

C3 = R ∨ Q is the resolvent for C1 and C2.
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Example (Resolution Principle)

Consider the following clauses C1 = P ∨ R and C2 = ¬P ∨ Q

P ∨ R ¬P ∨ Q
R ∨ Q

C3 = R ∨ Q is the resolvent for C1 and C2.
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Example II

Example (Resolution Principle)

Consider the following clauses C1 = ¬P ∨ Q ∨ R and
C2 = ¬Q ∨ S

¬P ∨ Q ∨ R ¬Q ∨ S

¬P ∨ R ∨ S

C3 = ¬P ∨ R ∨ S is the resolvent for C1 and C2.
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Example II

Example (Resolution Principle)

Consider the following clauses C1 = ¬P ∨ Q ∨ R and
C2 = ¬Q ∨ S

¬P ∨ Q ∨ R ¬Q ∨ S
¬P ∨ R ∨ S

C3 = ¬P ∨ R ∨ S is the resolvent for C1 and C2.
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Example II

Example (Resolution Principle)

Consider the following clauses C1 = ¬P ∨ Q ∨ R and
C2 = ¬Q ∨ S

¬P ∨ Q ∨ R ¬Q ∨ S
¬P ∨ R ∨ S

C3 = ¬P ∨ R ∨ S is the resolvent for C1 and C2.
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Example III

Example (Resolution Principle)

Consider the following clauses C1 = ¬P ∨ Q and C2 = ¬P ∨ S
There is no resolvent in this case as no complementary pair can
be found in the clauses.
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Property of Resolution

Logical consequence

Given two clauses C1 and C2, and their resolvent C , C1∧C2 |= C

(C is a logical consequence of C1 and C2).

Proof.

Let C1 = L ∨ C ′
1
, C2 = ¬L ∨ C ′

2
, C = C ′

1
∨ C ′

2
where C ′

1
and C ′

2

are disjunctions of literals. Suppose I |= C1 ∧ C2, we want to
show that I |= C .

Note that either I |= L or I |= ¬L.
Assume I |= ¬L
Then since I |= C1, C

′
1
6= � and I |= C ′

1
.

Therefore since C = C ′
1
∨ C ′

2
we have that I |= C .

Similar considerations hold for I |= L.
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Derivation of the empty clause

Resolution and satis�ability

If C1 and C2 are unit clauses then, if there is resolvent,
that resolvent will necessary be �.

If we can derive the empty clause from S , then S is
unsatis�able (correctness)

If S is unsatis�able using resolution we can always derive
the empty clause (completeness)



The

Resolution

Principle

Deduction

De�nition (Deduction)

Given a set of clauses S a (resolution) deduction of C from S is
a �nite sequence C1,C2, · · · ,Ck of clauses such that each Ci is
either a clause in S or a resolvent of clauses preceding Ci , and
Ck = C .
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Example I: Deduction

Example (deduction)

Consider S = {C1,C2,C3}, where C1 = ¬P ∨ Q C2 = P and
C3 = ¬Q. Applying resolution to C1 and C2 we have:

¬P ∨ Q, P

Q

Then applying

¬Q,Q

�
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Deducing the empty clause

Empty clause, Deduction and Unsatis�ability

Given S , suppose we derive � using resolution;

⇒ � is a logical consequence of S ;

Since S |= � then ∀I if I |= S then I |= �;
But there is no I that can verify �;

⇒ if we derive � from S using refutation then S is
unsatis�able.

Later we will show that if S is unsatis�able then we can
always derive � using resolution.

De�nition (Refutation)

A deduction of � is called a refutation (or a proof) of S
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Example II: Deduction

Example (deduction)

Given S = {C1,C2,C3,C4} and C1 = {P ∨ Q},
C2 = {¬P ∨Q}, C3 = {P ∨ ¬Q} and C4 = {¬P ∨ ¬Q}. Apply
resolution to C1 and C2 and obtain C ′ = {Q}.
Apply resolution to C3 and C4 and obtain C ′′ = {¬Q}.
Apply resolution to C ′ and C ′′ and obtain �.
Hence S is unsat.
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Example II: Deduction Tree

Example (deduction)

Consider S from previous example and the associated deduction
steps.
The deduction tree is:

P∨Q, ¬P∨Q
Q

P∨¬Q, ¬P∨¬Q
¬Q

�
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Exercise

Exercise

Prove that the following formulas are unsat. using the resolution
principle

1 ¬q ∨ p, ¬p ∨ ¬q, q ∨ r , ¬q ∨ ¬r , ¬p ∨ ¬r , p ∨ ¬r
2 P(a),¬D(a)∨L(a, a),¬P(a)∨¬Q(a)∨¬L(a, a),D(a),Q(a)
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Exercise II

Exercise

1 F1 , P → (¬Q ∨ (R ∧ S))
2 F2 , P

3 F3 , ¬S
4 G = ¬Q

Prove using the resolution principle that F1 ∧ F2 ∧ F3 |= G


